
Theory of Computation:
Polynomial Hierarchy



Problems not captured by NP

Exact IndSet: Determine if the largest independent set of
input graph G has size exactly k .

No short certificate: How do you determine that all other
independent set sizes are at most k?



Class Σp
2

Set of all languages L for which there exists a polynomial time
TM M and a polynomial q such that:

x ∈ L ⇐⇒ ∃u ∈ {0, 1}q(|x |)∀v ∈ {0, 1}q(|x |)M(x , u, v) = 1
for all x ∈ {0, 1}∗.
Contains NP: M will ignore v no matter what it is.

Contains coNP: M will take u to be the empty string.



Exact IndSet

In Σp
2 : There exists a size-k vertex subset S of G such that for

all S ′ of size k + 1, S is an independent set and S ′ is not an
independent set.



Polynomial Hierarchy

For each i ≥ 1, a language L is in Σp
i if there exists a

polynomial time deterministic TM M and a polynomial q such
that:

x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}q(|x |)∀u2 ∈ {0, 1}q(|x |) . . .Qiui ∈
{0, 1}q(|x |)M(x , u1, . . . , ui ) = 1
where Qi denotes ∃ or ∀ depending on whether i is even or
odd.

Polynomial hierarchy PH =
⋃

i Σp
i .



Polynomial Hierarchy

Σp
1 = NP

For each i , define Πp
i = coΣp

i = {L|L ∈ Σp
i }.

Thus, Πp
1 = coNP.

For each i , Σp
i ⊆ Πp

i+1 ⊆ Σp
i+2.

So, PH =
⋃

i Πp
i .



Hierarchy Collapse

If P = NP then PH = P.

If Σp
i = Πp

i then PH = Σp
i : Similar proof.



If P = NP then PH = P

Proof by induction on i that Σp
i ,Π

p
i ⊆ P.

True for i = 1. Assume true for i − 1 and prove
Σp
i ⊆ P =⇒ Πp

i ⊆ P.

Let L ∈ Σp
i . There is a TM M and polynomial q such that

x ∈ L ⇐⇒
∃u1 ∈ {0, 1}q(|x |)∀u2 ∈ {0, 1}q(|x |) . . .Qiui ∈ {0, 1}q(|x |)
M(x , u1, u2, . . . , ui ) = 1.

Language L′: < x , u1 >∈ L′ ⇐⇒
∀u2 ∈ {0, 1}q(|x |) . . .Qiui ∈ {0, 1}q(|x |)
M(x , u1, u2, . . . , ui ) = 1.

So L′ ∈ Πp
i−1 ⊆ P. So there is a polynomial time TM M ′

computing L′.

Thus, x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}q(|x |)M ′(x , u1) = 1.

So L ∈ NP = P.



Complete problems for PH

A language L in Σp
i is Σp

i -complete if every L′ ∈ Σp
i reduces

to L in polynomial time.

Similarly PH-completeness.



Complete problems for PH

PH-complete problem =⇒ there is an i such that PH = Σp
i .

Let L be PH-complete. L belongs to some Σp
i .



Complete problems on different levels

Σp
i SAT = ∃u1∀u2 . . .Qiuiφ(u1, u2, . . . , ui ) = 1

where φ is an unquantified Boolean formula (may not be CNF).
This problem is Σp

i -complete.
Similarly, Πp

i SAT can be defined and is a Πp
i -complete problem.



Alternating TM

Like NDTM

At each step there are two transitions to choose from

Each state other than accept state t and halt state r is
labelled with either ∃ or ∀.

Suppose we are in a state labelled with ∃ then during this
time, we have to find a sequence of choices that will carry the
computation towards accept state t.

Suppose we are in a state labelled with ∀ then during this
time, we have to ensure that for all sequence of choices the
machine is moving towards the accept state t.



Alternating Time

For every T : N→ N, an alternating TM M runs in T (n) time
if for each input x ∈ {0, 1}∗ and all possible sequence of
transition choices M halts after at most T (|x |) steps.

L = L(M) belongs to ATIME (T (n)): M is a c.T (n)-time
ATM.



Acceptance in ATM

Look at the configuration graph GM,x .

Labelled of some vertices of the graph as ”accept”: Any
configuration where the state is t is labelled ”accept”.
If a configuration C has the state labelled ∃ and there is an
edge from C to C ′ labelled ”accept”, then label C as
”accept”.
If a configuration C has the state labelled ∀ and C has edges
to C1 and C2 both labelled ”accept”, then label C as
”accept”.

M accepts x if the start configuration Cs is labelled ”accept”.



Fixed number of alternations

ΣiTIME (T (n)): Set of languages accepted by c .T (n)-time
ATMs M with
initial state s labelled ∃,
and on any input x there are at most i − 1 alternations from
states with one label to states with another label on any
directed path in GM,x starting from Cs .

Similarly, ΠiTIME (T (n)).



PH and ATMs

For every i ∈ N, Σp
i =

⋃
c ΣiTIME (nc) and Πp

i =
⋃

c ΠiTIME (nc).



Time-Space tradeoff for SAT

TISP(T (n),S(n)) = set of languages decided by a TM M that on
every input x takes at most O(T (|x |)) steps and uses at most
O(S(|x |)) cells of its worktapes.



Time-Space tradeoff for SAT

Theorem: SAT /∈ TISP(n1.1, n0.1).

SAT could still be in P

SAT could still be in L or NL.

This says that efficiency in both time and space resources is
not possible for SAT.



Time-Space tradeoff for SAT

Enough to show NTIME (n) * TISP(n1.2, n0.2):

By Cook-Levin Theorem, any language in NTIME (n) reduces
to SAT in npolylogn time.

If SAT ∈ TISP(n1.1, n0.1), then by Cook-Levin Theorem we
have that NTIME (n) ⊆ TISP(n1.2, n0.2).



Step 1: Relation to Alternations

TISP(n12, n2) ⊆ Σ2TIME (n8):

Machine can use c.n12 time and c .n2 space, for some c .

So each configuration described by O(n2) length string.

Path from Cs to accepting configuration can be of length at
most n12.

Necessary and sufficient:
there exist n6 configurations C0 = Cs , . . .Cn6(accepting
config.) such that
for every i ∈ [n6] Ci can be computed from Ci−1 within n6

steps. [This can be verified in O(n7) time by checking
reachability from Ci−1].

2 alternations in quantifiers- O(n8)-time Σ2 TM for deciding
membership in L (length of the certificate for the n6 Ci ’s is
O(n8)).



Step 2: Replacing Alternations with Time

For contradiction, suppose NTIME (n) ⊆ TISP(n1.2, n0.2)
(⊆ DTIME (n1.2)).

Then we show that Σ2TIME (n8) ⊆ NTIME (n9.6):

L ∈ Σ2TIME (n8) ⇐⇒ there is a deterministic TM M such
that x ∈ L ⇐⇒
∃u ∈ {0, 1}c|x |8∀v ∈ {0, 1}d |x |8M(x , u, v) = 1
and M runs in O(|x8|) time.



Step 2: Replacing Alternations with Time

Assumption: NTIME (n) ⊆ DTIME (n1.2).

∃v ∈ {0, 1}d |x |8M(x , u, v) = 0 is a language L′ taking input
< x , u > and belonging in NTIME (n8).

By assumption, L′ also belongs in
DTIME ((n8)1.2) = DTIME (n9.6) (by padding). Assume D is
a deterministic algorithm that answers 1 when input
< x , u >∈ L′.

This means that is < x , u >∈ L′, D(x , u) = 0. This happens
when ∀v ∈ {0, 1}d |x |8M(x , u, v) = 1.

Thus, x ∈ L ⇐⇒ ∃u ∈ {0, 1}c|x |D(x , u) = 0
Thus, L ∈ NTIME (n9.6).



Conclusion

(Assumption) NTIME (n) ⊆ TISP(n1.2, n0.2)
=⇒ NTIME (n10) ⊆ TISP(n12, n2) (by padding)

⊆ Σ2TIME (n8) (Step 1)

⊆ NTIME (n9.6) (Step 2)

So NTIME (n10) ⊆ NTIME (n9.6) (→← Nondeterministic
Time Hierarchy Theorem).


