Theory of Computation: Polynomial Hierarchy

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Problems not captured by NP

- Exact IndSet: Determine if the largest independent set of input graph G has size exactly k.
- No short certificate: How do you determine that all other independent set sizes are at most k?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Class Σ_2^p

 Set of all languages *L* for which there exists a polynomial time TM *M* and a polynomial *q* such that:

- $x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \forall v \in \{0,1\}^{q(|x|)} M(x,u,v) = 1$ for all $x \in \{0,1\}^*$.
- Contains NP: *M* will ignore *v* no matter what it is.
- Contains coNP: *M* will take *u* to be the empty string.

Exact IndSet

In Σ₂^p: There exists a size-k vertex subset S of G such that for all S' of size k + 1, S is an independent set and S' is not an independent set.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Polynomial Hierarchy

- For each i ≥ 1, a language L is in Σ_i^p if there exists a polynomial time deterministic TM M and a polynomial q such that:
- $x \in L \iff \exists u_1 \in \{0,1\}^{q(|x|)} \forall u_2 \in \{0,1\}^{q(|x|)} \dots Q_i u_i \in \{0,1\}^{q(|x|)} M(x, u_1, \dots, u_i) = 1$ where Q_i denotes \exists or \forall depending on whether *i* is even or odd.

A D N A 目 N A E N A E N A B N A C N

• Polynomial hierarchy $PH = \bigcup_i \Sigma_i^p$.

Polynomial Hierarchy

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $\Sigma_1^p = NP$
- For each *i*, define $\Pi_i^p = co\Sigma_i^p = \{\overline{L} | L \in \Sigma_i^p\}$. Thus, $\Pi_1^p = coNP$.
- For each *i*, $\Sigma_i^p \subseteq \prod_{i+1}^p \subseteq \Sigma_{i+2}^p$. So, $PH = \bigcup_i \prod_i^p$.

Hierarchy Collapse

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- If P = NP then PH = P.
- If $\sum_{i}^{p} = \prod_{i}^{p}$ then $PH = \sum_{i}^{p}$: Similar proof.

If P = NP then PH = P

- Proof by induction on *i* that $\sum_{i=1}^{p} \prod_{i=1}^{p} \subseteq P$. True for i = 1. Assume true for i - 1 and prove $\sum_{i=1}^{p} \subseteq P \implies \prod_{i=1}^{p} \subseteq P$.
- Let $L \in \Sigma_i^p$. There is a TM M and polynomial q such that $x \in L \iff$ $\exists u_1 \in \{0,1\}^{q(|x|)} \forall u_2 \in \{0,1\}^{q(|x|)} \dots Q_i u_i \in \{0,1\}^{q(|x|)}$ $M(x, u_1, u_2, \dots, u_i) = 1.$
- Language $L': \langle x, u_1 \rangle \in L' \iff$ $\forall u_2 \in \{0, 1\}^{q(|x|)} \dots Q_i u_i \in \{0, 1\}^{q(|x|)}$ $M(x, u_1, u_2, \dots, u_i) = 1.$
- So L' ∈ Π^p_{i-1} ⊆ P. So there is a polynomial time TM M' computing L'.

- Thus, $x \in L \iff \exists u_1 \in \{0,1\}^{q(|x|)} M'(x,u_1) = 1$.
- So $L \in NP = P$.

Complete problems for PH

A language L in Σ^p_i is Σ^p_i-complete if every L' ∈ Σ^p_i reduces to L in polynomial time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Similarly PH-completeness.

Complete problems for PH

PH-complete problem ⇒ there is an *i* such that PH = Σ_i^p.
Let *L* be PH-complete. *L* belongs to some Σ_i^p.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Complete problems on different levels

 $\Sigma_i^p SAT = \exists u_1 \forall u_2 \dots Q_i u_i \phi(u_1, u_2, \dots, u_i) = 1$ where ϕ is an unquantified Boolean formula (may not be CNF). This problem is Σ_i^p -complete.

Similarly, $\prod_{i=1}^{p} SAT$ can be defined and is a $\prod_{i=1}^{p} Complete problem.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Alternating TM

- Like NDTM
- At each step there are two transitions to choose from
- Each state other than accept state *t* and halt state *r* is labelled with either ∃ or ∀.
- Suppose we are in a state labelled with ∃ then during this time, we have to find a sequence of choices that will carry the computation towards accept state *t*.
- Suppose we are in a state labelled with ∀ then during this time, we have to ensure that for all sequence of choices the machine is moving towards the accept state *t*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Alternating Time

For every T : N → N, an alternating TM M runs in T(n) time if for each input x ∈ {0,1}* and all possible sequence of transition choices M halts after at most T(|x|) steps.

• L = L(M) belongs to ATIME(T(n)): M is a c. T(n)-time ATM.

Acceptance in ATM

- Look at the configuration graph $G_{M,x}$.
- Labelled of some vertices of the graph as "accept": Any configuration where the state is *t* is labelled "accept".
 If a configuration *C* has the state labelled ∃ and there is an edge from *C* to *C'* labelled "accept", then label *C* as "accept".

If a configuration C has the state labelled \forall and C has edges to C_1 and C_2 both labelled "accept", then label C as "accept".

• *M* accepts x if the start configuration C_s is labelled "accept".

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fixed number of alternations

• $\sum_{i} TIME(T(n))$: Set of languages accepted by c.T(n)-time ATMs M with initial state s labelled \exists , and on any input x there are at most i - 1 alternations from

states with one label to states with another label on any directed path in $G_{M,x}$ starting from C_s .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Similarly, $\prod_i TIME(T(n))$.

PH and ATMs

For every $i \in \mathbb{N}$, $\sum_{i=1}^{p} \bigcup_{c} \sum_{i} TIME(n^{c})$ and $\prod_{i=1}^{p} \bigcup_{c} \prod_{i} TIME(n^{c})$.

Time-Space tradeoff for SAT

TISP(T(n), S(n)) = set of languages decided by a TM M that on every input x takes at most O(T(|x|)) steps and uses at most O(S(|x|)) cells of its worktapes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Time-Space tradeoff for SAT

Theorem: SAT \notin TISP $(n^{1.1}, n^{0.1})$.

- SAT could still be in P
- SAT could still be in L or NL.
- This says that efficiency in both time and space resources is not possible for SAT.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Time-Space tradeoff for SAT

- Enough to show $NTIME(n) \nsubseteq TISP(n^{1.2}, n^{0.2})$:
- By Cook-Levin Theorem, any language in NTIME(n) reduces to SAT in npolylogn time.
- If SAT \in TISP $(n^{1.1}, n^{0.1})$, then by Cook-Levin Theorem we have that $NTIME(n) \subseteq TISP(n^{1.2}, n^{0.2})$.

Step 1: Relation to Alternations

- TISP $(n^{12}, n^2) \subseteq \Sigma_2 TIME(n^8)$:
- Machine can use $c.n^{12}$ time and $c.n^2$ space, for some c.
- So each configuration described by $O(n^2)$ length string.
- Path from C_s to accepting configuration can be of length at most n^{12} .
- Necessary and sufficient: there exist n^6 configurations $C_0 = C_s, \ldots, C_{n^6}$ (accepting config.) such that for every $i \in [n^6] C_i$ can be computed from C_{i-1} within n^6 steps. [This can be verified in $O(n^7)$ time by checking reachability from C_{i-1}].
- 2 alternations in quantifiers- $O(n^8)$ -time Σ_2 TM for deciding membership in L (length of the certificate for the $n^6 C_i$'s is $O(n^8)$).

Step 2: Replacing Alternations with Time

- For contradiction, suppose NTIME(n) ⊆ TISP(n^{1.2}, n^{0.2}) (⊆ DTIME(n^{1.2})).
- Then we show that $\Sigma_2 TIME(n^8) \subseteq NTIME(n^{9.6})$:
- $L \in \Sigma_2 TIME(n^8) \iff$ there is a deterministic TM M such that $x \in L \iff$ $\exists u \in \{0,1\}^{c|x|^8} \forall v \in \{0,1\}^{d|x|^8} M(x, u, v) = 1$ and M runs in $O(|x^8|)$ time.

Step 2: Replacing Alternations with Time

- Assumption: $NTIME(n) \subseteq DTIME(n^{1.2})$.
- $\exists v \in \{0,1\}^{d|x|^8} M(x, u, v) = 0$ is a language L' taking input $\langle x, u \rangle$ and belonging in $NTIME(n^8)$.
- By assumption, L' also belongs in $DTIME((n^8)^{1.2}) = DTIME(n^{9.6})$ (by padding). Assume D is a deterministic algorithm that answers 1 when input $< x, u > \in L'$.
- This means that is $\langle x, u \rangle \in \overline{L'}$, D(x, u) = 0. This happens when $\forall v \in \{0, 1\}^{d|x|^8} M(x, u, v) = 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Thus, $x \in L \iff \exists u \in \{0,1\}^{c|x|} D(x,u) = 0$ Thus, $L \in NTIME(n^{9.6})$.

Conclusion

- (Assumption) $NTIME(n) \subseteq TISP(n^{1.2}, n^{0.2})$ $\implies NTIME(n^{10}) \subseteq TISP(n^{12}, n^2)$ (by padding)
- $\subseteq \Sigma_2 TIME(n^8)$ (Step 1)
- \subseteq *NTIME*($n^{9.6}$) (Step 2)
- So NTIME(n¹⁰) ⊆ NTIME(n^{9.6}) (→← Nondeterministic Time Hierarchy Theorem).