Theory of Computation:
Polynomial Hierarchy



Problems not captured by NP

@ Exact IndSet: Determine if the largest independent set of
input graph G has size exactly k.

@ No short certificate: How do you determine that all other
independent set sizes are at most k?



Class 5

@ Set of all languages L for which there exists a polynomial time
TM M and a polynomial g such that:

o xc L «— Jue{0,1}9Dvy e {0, 1}9DM(x,u,v) =1
for all x € {0,1}*.
@ Contains NP: M will ignore v no matter what it is.

@ Contains coNP: M will take u to be the empty string.



Exact IndSet

@ In 2’2’: There exists a size-k vertex subset S of G such that for
all " of size k + 1, S is an independent set and S’ is not an
independent set.



Polynomial Hierarchy

@ For each i > 1, a language L is in Zf-’ if there exists a
polynomial time deterministic TM M and a polynomial g such
that:

o xc L <= 3Juy €{0,1}90Dvuy € {0,1}9XD . Qiu; €
{0,1}9DM(x, uy, ..., u) =1
where Q; denotes 1 or V depending on whether / is even or
odd.

e Polynomial hierarchy PH = J; ©%.



Polynomial Hierarchy

o ¥¥ = NP

o For each i, define MN? = cox? = {L|L € £7}.
Thus, I'I’lJ = coNP.

o Foreach/, ¥ cn? cx?,.
So, PH = J; 1°.



Hierarchy Collapse

o If P= NP then PH = P.
o If ¥7 =M% then PH = £? : Similar proof.



If P = NP then PH = P

Proof by induction on / that X¥, 17 C P.

True for i = 1. Assume true for / — 1 and prove

PCP = NP CP.

Let L € P, Thereis a TM M and polynomial g such that
xel <=

Jup € {0,1}90XDvu, € {0, 139D . Qiu; € {0, 1}9(XD
M(x, u1, uz, ..., uj) = 1.

Language L': < x,u; > ! —

Vup € {0,1}90D . Qju; € {0, 1}9(xD)

M(x,u1, up, ... u;) = 1.

So L’ € N? | C P. So there is a polynomial time TM M’
computing L'

Thus, x € L <= Ju; € {0, 1}9DM/(x, u1) = 1.
SoLe NP=P.



Complete problems for PH

@ A language L in Zf? is Zf—complete if every L' € Zf-’ reduces
to L in polynomial time.

@ Similarly PH-completeness.



Complete problems for PH

@ PH-complete problem = there is an / such that PH = ¥*.
o Let L be PH-complete. L belongs to some 7.



Complete problems on different levels

Z?SAT = 3U1VU2 e Q,-u,-(b(ul, up, ..., U,') =1

where ¢ is an unquantified Boolean formula (may not be CNF).
This problem is 7-complete.

Similarly, I'If-’SAT can be defined and is a I'If-’—complete problem.



Alternating TM

Like NDTM

At each step there are two transitions to choose from

Each state other than accept state t and halt state r is
labelled with either 3 or V.

Suppose we are in a state labelled with 3 then during this
time, we have to find a sequence of choices that will carry the
computation towards accept state t.

Suppose we are in a state labelled with V then during this
time, we have to ensure that for all sequence of choices the
machine is moving towards the accept state t.



Alternating Time

@ Forevery T : N — N, an alternating TM M runs in T(n) time
if for each input x € {0,1}* and all possible sequence of
transition choices M halts after at most T(|x|) steps.

o L = L(M) belongs to ATIME(T(n)): M is a c.T(n)-time
ATM.



Acceptance in ATM

@ Look at the configuration graph G .

@ Labelled of some vertices of the graph as "accept”: Any
configuration where the state is t is labelled "accept”.
If a configuration C has the state labelled 3 and there is an
edge from C to C’ labelled "accept”, then label C as
"accept”.
If a configuration C has the state labelled V and C has edges
to C; and G, both labelled "accept”, then label C as
"accept”.

@ M accepts x if the start configuration Cs is labelled "accept”.



Fixed number of alternations

e X, TIME(T(n)): Set of languages accepted by c. T (n)-time
ATMs M with
initial state s labelled 3,
and on any input x there are at most / — 1 alternations from
states with one label to states with another label on any
directed path in Gy, starting from C.

e Similarly, I; TIME(T(n)).



PH and ATMs

For every i € N, £ = [J_ X; TIME(n¢) and N? = |J_MN; TIME(n®).



Time-Space tradeoff for SAT

TISP(T(n),S(n)) = set of languages decided by a TM M that on
every input x takes at most O(T(|x|)) steps and uses at most
O(S(|x])) cells of its worktapes.



Time-Space tradeoff for SAT

Theorem: SAT ¢ TISP(nt, n%1).
@ SAT could still be in P
@ SAT could still be in L or NL.

@ This says that efficiency in both time and space resources is
not possible for SAT.



Time-Space tradeoff for SAT

e Enough to show NTIME(n) ¢ TISP(n'2, n%2):
e By Cook-Levin Theorem, any language in NTIME(n) reduces
to SAT in npolylogn time.

e If SAT € TISP(n*1, n%1), then by Cook-Levin Theorem we
have that NTIME(n) C TISP(n'2, n%2).



Step 1: Relation to Alternations

TISP(n'2, n?) C S, TIME(n®):
Machine can use c.n'? time and c.n? space, for some c.
So each configuration described by O(n?) length string.

Path from C; to accepting configuration can be of length at
most n'2.

Necessary and sufficient:

there exist n° configurations Co = Cs, ... C,s(accepting
config.) such that

for every i € [n®] C; can be computed from C;_; within n®
steps. [This can be verified in O(n”) time by checking
reachability from C;_4].

2 alternations in quantifiers- O(n®)-time ¥, TM for deciding

membership in L (length of the certificate for the n® C;'s is
Oo(nd)).



Step 2: Replacing Alternations with Time

e For contradiction, suppose NTIME(n) C TISP(n'2, n%2)
(C DTIME(n*?)).

@ Then we show that ¥» TIME(n®) C NTIME(n®®):

o L €Y, TIME(n®) <= there is a deterministic TM M such
that x € L <=
Au € 0,1} vy € {0, 114" M(x, u, v) = 1
and M runs in O(|x®|) time.



Step 2: Replacing Alternations with Time

Assumption: NTIME(n) € DTIME(n*?).

v € {0, 1} M(x, u, v) = 0 is a language L’ taking input
< x,u > and belonging in NTIME(n®).

By assumption, L also belongs in

DTIME((n®)*2) = DTIME(n®®) (by padding). Assume D is
a deterministic algorithm that answers 1 when input

< x,u>el.

This means that is < x,u >€ L/, D(x,u) = 0. This happens
when Vv € {0, 1}4X° M(x, u, v) = 1.

Thus, x € L <= 3Juc {0,1}XD(x,u) =0

Thus, L € NTIME(n®®).



Conclusion

o (Assumption) NTIME(n) C TISP(n2, n%2)

= NTIME(n'®) C TISP(n'2, n?) (by padding)
o C Y, TIME(n®) (Step 1)
o C NTIME(n®®) (Step 2)

e So NTIME(n'®) C NTIME(n®®) (—< Nondeterministic
Time Hierarchy Theorem).



