Practice problems: PH

1. Show that for every i € N, ¥ = |J_ S, TIME(n°). A similar statement
can be made for I and |J, ILTIM E(nc).

2. Show that if 3S AT is polynomial time reducible to 35S AT then PH = NP.

3. A DNF formula is a disjunction of conjunctive clauses. Eg: (z1 A z2) V
(x3 A gy A x5). In the SUCCINCT — SETCOV ER problem we are
given a collection S = {¢1, P2, ..., P} of 3-DNF formulae on n variables,
and an integer k. The aim is to determine whether there is a subset
S C {1,2,...,m} of size at most k for which V;cg¢; is a tautology.
Show that SUCCINCT — SETCOVER € Xb.

Solutions in the next page. Please try the problems first.



1. We see how to show X;Time(n¢) € PH for each c. This will give RHS C
LHS. A language L is said to be ¥;TTM E(n¢) when there is a polynomial
time deterministic TM M and constants ¢y, co, . . . ¢; such that x € L if and
only if Ju; € 0,117y € 0,111 . Qu; € 0,191 M (z,uq, ... u;) =
1. If we can get a polynomial ¢ and the w;’s to be from {0, 1}4(=D
then we will have given the certificate definition of PH. We can assume
that the constants c,cy,cs,...,¢; are all hardwired in the TM M. Let
q(Jz|) = max;{c1,...,¢;}x|°. Suppose we pad each u; by q(|z|) — ¢;|x|°
many 1’s. The description of M will be such that it first reads the first
q(]z]) bits and from there only considers the first ¢;|z|¢ bits to be uy, and
so on. Thus, we obtain a certificate definition of PH for L and we are
done.

The other direction of the proof, i.e., showing LHS C RHS is easy to
show. Please try it using the definition of X, TIMFE classes and the cer-
tificate definition of PH.

2. If 3SAT is polynomial time reducible to 3SAT then NP = coNP as
3S AT is NP-complete and its complement is coNP-complete.Given that
NP = coNP we show that ¥ C NP and IIY C coNP = NP. This will
result in PH collapsing to NP.

We can show this by induction on 7. In the base case, Consider ¥. For a
language L € X, there is a deterministic TM M and a polynomial ¢ such
that = € L if and only if Ju; € {0,1}902Dvuy € {0, 139050 M (2, uy, up) =
1. Note that when we consider the problem Yuy € {0, 1}902D M (2, up, up) =
1 on inputs (x,uq), this can be thought of as a problem in II; = coNP =
NP. Thus, there is a deterministic TM M’ and a polynomial ¢’ such
that = € L iff Ju; € {0,1}90#030; € {0,137 0@uID M (2, up,v1) = 1 iff
Juy, vy € {0,134 =DM (2 uy,v1) = 1. In other words, M’ is a determin-
istic TM taking x as input and uj,v; as a certificate (Can combine the 2
existential certificates by concatenating the two strings separated by a 1
in between). Thus, L € NP. This implies that X% in NP. Similarly, we
can show that II5 € NP.

Induction Hypothesis: For all j < i, X%, TIY C N P. Using arguments simi-
lar to the base case, show that the truth of the statement can be extended
to 4.

3. To show that SUCCINCT — SETCOVER € ¥ , it is sufficient to
provide the appropriate certificate definition for the language. Let (S =
{b1,d2,...,0m}, k) be an instance of SUCCINCT-SETCOVER over vari-
ables U = {u1,...,u,}. Let S denote the truth value of S resulting from
the assignment f : U — {0,1}. Note that a formula ¢ is a tautology if
for all assignments f , ¥(f) = 1. This immediately gives us the following
certificate definition:

(S,k) € SUCCINCT — SETCOV ER if and only if 38" C [1,m|Vf : U —
{0,1},19"] < k and (Vies ¢i)r = 1,
thus showing that SUCCINCT — SETCOVER € X2 .



