Theory of Computation Undecidability of Post Correspondence Problem

The Problem

Input: Two lists $A = \{w_1, w_2, \dots, w_k\}$ and $B = \{x_1, x_2, \dots, x_k\}$ of strings over Σ . Solution: A sequence of integers i_1, i_2, \dots, i_m (multiplicity allowed, no ordering on the integers) for some m > 1 such that

$$w_{i_1}w_{i_2}\ldots w_{i_m}=x_{i_1}x_{i_2}\ldots x_{i_m}.$$

*A solution may not always exist.

Example 1

```
Input: \Sigma=\{0,1\}, A=\{1,10111,10\}, B=\{111,10,0\} Solution: m=4, i_1=2,i_2=1,i_3=1,i_4=3. The string 1011110
```

Example 2

```
Input: \Sigma = \{0, 1\}, A = \{10, 011, 101\}, B = \{101, 11, 011\}
No Solution: The strings are such that the alphabets will match only if i_1 = 1, i_2 = i_3 = i_4 = \cdots = 3. But for any i_j, |w_{i_1}w_{i_2}\dots w_{i_j}| < |x_{i_1}x_{i_2}\dots x_{i_j}|.
```

Modified PCP (MPCP)

Input: Two lists $A = \{w_1, w_2, \dots, w_k\}$ and $B = \{x_1, x_2, \dots, x_k\}$ of strings over Σ .

Solution: A sequence of integers $i_1, i_2, \ldots i_r$ (multiplicity allowed, no ordering on the integers) for some $r \geq 0$ such that $w_1 w_{i_1} w_{i_2} \ldots w_{i_r} = x_1 x_{i_1} x_{i_2} \ldots x_{i_r}$.

*Solution required to start with the first strings of *A* And *B*. A solution may not always exist.

MPCP and PCP

Lemma: MPCP is Turing reducible to PCP. Thus, If MPCP is undecidable then so is PCP.

MPCP and PCP contd.

Proof:

- $A = \{w_1, w_2, \dots, w_k\}$ and $B = \{x_1, x_2, \dots, x_k\}$ of strings over Σ are an input instance of MPCP.
- We construct an instance of PCP such that the given instance of MPCP has a solution if and only if the constructed instance of PCP has a solution.

MPCP and PCP contd.

Proof contd.:

- Let symbols \vdash and \$ not be in Σ . Construct new alphabet $\Sigma' = \Sigma \cup \{\vdash, \$\}$.
- Over Σ' , construct set $C = \{y_0, y_1, y_2, \dots, y_{k+1}\}$, where for $1 \le i \le k$, y_i is obtained from w_i by inserting the symbol \vdash after each alphabet,
 - $y_0 = \vdash y_1 \text{ and } y_{k+1} = \$.$
- Over Σ' , construct set $D = \{z_0, z_1, z_2, \dots, z_{k+1}\}$, where for $1 \le i \le k$, z_i is obtained from x_i by inserting the symbol \vdash before each alphabet,
 - $z_0 = z_1 \text{ and } z_{k+1} = \vdash \$.$

MPCP and PCP contd.

Proof contd.

- If $\{1, i_1, i_2, \ldots, i_r\}$ is a solution of instance (Σ, A, B) of MPCP, then $\{0, i_1, i_2, \ldots, i_r, k+1\}$ is a solution of instance (Σ', C, D) of PCP.
- If $\{i_1,i_2,\ldots i_r\}$, $r\geq 1$ is a solution for PCP then $i_1=0$ and $i_r=k+1$ as y_0 and z_0 are the only words with the same index that start with the same symbol, and y_{k+1} and z_{k+1} are the only words with same index that end with the same symbol. Let i_j be the smallest integer where $i_j=k+1$. Then $\{i_1,i_2,\ldots,i_j\}$ is also a solution of the PCP instance: The symbol $\{i_1,i_2,\ldots,i_j\}$ is also a solution of $\{i_1,i_2,\ldots,i_j\}$ and $\{i_1,i_2,\ldots,i_{j-1}\}$ is a solution for the instance $\{i_1,i_2,\ldots,i_{j-1}\}$ is a solution for the instance $\{i_1,i_2,\ldots,i_{j-1}\}$ of MPCP.

MPCP is undecidable

Proof:

- We reduce Membership problem MP ($\{M\#x|x\in L(M)\}$) to MPCP.
- Recall that the current configuration of a Turing machine can be denoted as $\alpha p\beta$, where $\alpha\beta$ is the current tape content, p is the current state, and the current position of the tape head is at the first alphabet of β .
- If M#x is a yes instance of MP, there it can be captured by a finite sequence of configurations $(q_0w, \alpha_1q_1\beta_1, \alpha_2q_2\beta_2, \ldots, \alpha_kq_k\beta_k)$, where q_0 is the start state, w is the input string and q_k is a final state.
- Our constructed instance of MPCP will be such that there will be a solution if and only if $M\#x \in MP$ and the solution will create the string $\#q_0w\#\alpha_1q_1\beta_1\#\alpha_2q_2\beta_2\#\ldots\#\alpha_kq_k\beta_k\#$.

Proof contd.:

- We describe the sets A and B of strings for the MPCP instance constructed by the reduction.
- The first pair for A and B will be # and $\#q_0w\#$ respectively (starting off according to accepting sequence of M#x).
- Group I (matching tape content and accepting sequence separator):

```
X \in A and X \in B for each X \in \Gamma
# \in A and # \in B.
```

Proof contd.:

• Group II (copying non-final state transitions): For each $q \in Q - F$ (non-final) and $X, Y, Z \in \Gamma$: $qX \in A$ and $Yp \in B$ if $\delta(q, X) = (p, Y, R)$ $ZqX \in A$ and $pZY \in B$ if $\delta(q, X) = (p, Y, L)$ $q\# \in A$ and $Yp\# \in B$ if $\delta(q, B) = (p, Y, R)$ $Zq\# \in A$ and $pZY\# \in B$ if $\delta(q, B) = (p, Y, L)$

Proof contd.:

• Group III (clearing out the tape contents after final state): For each $q \in F$ (final state, which does not change once entered) and $X, Y \in \Gamma$: $XqY \in A$ and $q \in B$ $Xq \in A$ and $q \in B$ $qY \in A$ and $q \notin B$

Proof contd.:

• Group IV (final matching): $q#\# \in A$ and $\# \in B$ for each $q \in F$.

Proof contd.:

- (x, y) is a partial MPCP solution if x is a prefix of y, and x, y are concatenations of corresponding strings from A and B. If xz = y then z is called the remainder.
- Suppose the accepting sequence of configurations starting with q_0w has k configurations then there is a partial solution $(x,y)=(\#q_0w\#\alpha_1q_1\beta_1\#\alpha_2q_2\beta_2\#\dots\#\alpha_{k-1}q_{k-1}\beta_{k-1}\#,\ \#q_0w\#\alpha_1q_1\beta_1\#\alpha_2q_2\beta_2\#\dots\#\alpha_kq_k\beta_k\#)$ such that this is the only partial solution whose larger string is as long as |y| (Can prove by induction on k, using the description of first pair of strings # and $\#q_0w\#$, and the strings in Groups I III).

Proof contd.:

- Suppose $q_k \in F$ then it is possible to derive a solution from the partial solution, by first using pairs from Groups I and III, and then using the pair in Group IV once. Note that this happens when M#x is in MP.
- If M#x is not in MP, then in the partial solution (x,y) at any stage no pairs from Groups III and IV can be used. Therefore the partial solution will always have |y| > |x| and cannot be converted into a solution.
- Reduction from MP to MPCP

 MPCP undecidable

 PCP undecidable.

Practice Problems

- Provide a solution for the following instance of PCP over $\Sigma = \{0, 1\}$: $A = \{110, 0, 01\}, B = \{11, 100, 00\}$
- 2 Show that PCP is decidable over the unary alphabet {1}.
- ③ Show that the language $PF = \{G | G \text{ is a CFG and L(G) is prefix-free}\}$ is undecidable. The language L(G) is such that for no $u, v \in L(G)$ is u a prefix of v or vice-versa. Hint: Reduce from ¬PCP.

(Please try the problems first. Solutions in next slide.)

Problem 1

Solution: m = 4, $\{1, 3, 1, 2\}$.

Problem 2

- Let $A = \{w_1, w_2, \dots, w_n\}$, $B = \{x_1, x_2, \dots, x_n\}$ be an instance of PCP over $\Sigma = \{1\}$.
- for any i, if $|w_i| = |x_i|$ then as $\Sigma = \{1\}$, $w_i = x_i$ and we have found a solution.
- If for each i, $|w_i| > |x_i|$, then there is no solution. Similarly, if for each i, $|x_i| > |w_i|$
- Now, there is an i where $|w_i| |x_i| = a > 0$ and a j where $|x_j| |w_j| = b > 0$: Solution is m = b + a, a sequence where i appears b times and j appears a times.

Problem 3

- If PCP is undecidable then so is $\neg PCP$. We give a reduction from $\neg PCP$ to PF.
- $A = \{w_1, \dots, w_k\}, B = \{x_1, x_2, \dots, x_k\}$ is an instance of $\neg PCP$ over alphabet Σ .
- New distinct symbols introduced to form Σ':
 a₁, a₂,..., a_k, #, ∃.

• Define CFG $G = (N = \{S, S_A, S_B\}, \Sigma', P, S)$ with the following productions:

$$S \rightarrow S_A \# \dashv |S + B \#,$$

 $S_A \rightarrow w_i S_A a_i | w_i a_i \text{ for } 1 \leq i \leq k,$
 $S_B \rightarrow x_i S_A a_i | x_i a_i \text{ for } 1 \leq i \leq k.$

- All strings derived from $S \to S_A \# \dashv$ end with $\# \dashv$ and all strings derived from $S \to S_B \#$ end with #.
- Suppose for contradiction, there are distinct strings $u, v \in L(G)$ such that u is a prefix of v.
- All symbols in u and v upto and including # must match. It must be that $u=u'\#, v=v'\#\dashv$ such that u'=v', $S_A \to^* v'$ and $S_B \to^* u'$.

- We show that $(A, B) \in \neg PCP$ iff L(G) is prefix-free.
- One direction: Suppose that $(A, B) \notin \neg PCP$. For a solution $\{i_1, i_2, \ldots, i_m\}$, we have $w_{i_1} w_{i_2} \ldots w_{i_m} = x_{i_1} x_{i_2} \ldots x_{i_m}$.
- Let $z = w_{i_1} w_{i_2} \dots w_{i_m} a_{i_m} \dots a_{i_2} a_{i_1} = x_{i_1} x_{i_2} \dots x_{i_m} a_{i_m} \dots a_{i_2} a_{i_1}$.
- By the grammar G, L(G) contains both z#a and z# and hence is not prefix-free.

- Other direction: Suppose there are $u, v \in L(G)$ such that u is a prefix of v. Then, u = u'#, $v = v'\# \dashv$ such that u' = v', $S_A \to^* v'$ and $S_B \to^* u'$.
- The string v', derived from S_A , must be of the form $w_{i_1}w_{i_2}\ldots w_{i_m}a_{i_m}\ldots a_{i_2}a_{i_1}$. Similarly, u' has the form $x_{i_1}x_{i_2}\ldots x_{i_m}a_{i_m}\ldots a_{i_2}a_{i_1}$.
- The a_i 's at the end must all match since u' = v'.
- So, $w_{i_1}w_{i_2}\ldots w_{i_m}=x_{i_1}x_{i_2}\ldots x_{i_m}$, implying that $\{i_1,i_2,\ldots,i_m\}$ is a solution for (A,B) i.e., $(A,B)\notin \neg PCP$.
- Therefore PF is undecidable.