Practice problems

1. Show that that the language BIPARTITE = {G|G is bipartite } is in P.
2. Show that the language Triangle — Free = {G|G is triangle-free } is in P.

3. Assuming NP # coN P, prove that no NP-complete problem can be in
coNP.

4. Show that the Halting problem is NP-hard.

5. DOUBLESAT = {¢|¢ is a CNF formula with at least 2 satisfying assignments}.
Show that the problem is NP-complete.

Solutions in the next page. Please try the problems first.

1. If a graph is bipartite then it is possible to colour its vertices with 2 colours
such that for any edge its endpoints are of different colours: give all vertices
of first partition colour red and all vertices of the second partition colour
blue; any edge has one endpoint in the red partition and the other endpoint
in the blue partition. Now, from a vertex v, build a BFS tree such that
v is given the colour red, its neighbours are coloured blue, the vertices in
the third level are coloured red and so on - vertices in alternate levels get
red and blue. Consider a cross edge in the BFS tree - the endpoints can
be in the same level, or at a difference of 1 level. The endpoints will get
the same colour if and only if they are in the same level. Therefore, if
there are cross edges that have endpoints in the same level then the graph
is not bipartite, otherwise it is. Running time = O(n?) where n is the
number of vertices.

2. Enumerate all vertex subsets of size 3. This takes O(n?) time if n is the
number of vertices in the graph. Check for each 3-vertex subset if the
vertices form a triangle in the graph. If you find a triangle then the graph
is not triangle-free, otherwise it is.

3. If an NP-complete IT problem is in coNP, then there is a polynomial p and
a polynomial-time deterministic TM such that on an input string x, for all
z € {0,1}P0=l M(x,2) = 1. Now, consider a language L € NP. There is
a polynomial time reduction L <, I for a polynomial p’, conducted by a
TM M;. We design a TM My, for L that shows that L is in coNP: M, first
runs M to reduce the input instance x of L to an instance z’ of II such
that |#'| < ¢(]z|). Note that p(|z']) = O(p(¢q(|z]))), where r = p...qis also
a polynomial function. Then My, runs M on 2’ and every z € {0, 1}“‘“").
Thus, My, accepts the language L. This implies NP C coNP. On the
other hand, II, which is a coNP-complete problem would be in NP. This
means that coNP C NP. Thus, this would imply NP = coN P, which is
a contradiction.

4. HP is NP-hard if L <, HP for all L € NP. Equivalently HP is NP-hard if
SAT <, HP. We show a polynomial time computable function mapping
a formula ¢ to a TM N and a string x such that ¢ € SAT iff (N,z) € HP.
Let M be a polynomial time deterministic machine that takes as input a
formula ¢, an assignment z and accepts iff z satisfies ¢. Such a TM exists
since SAT € NP. Construct N so that on input z it does the following;:
(i) Parse x as a Boolean formula over n variables. If z cannot be parsed
as a Boolean formula then N enters a trivial loop.

(ii) For all assignments z € {0,1}", run M (x, z) to check if z satisfies x;
accept and halt if M accepts.

(iii) If 2 is not satisfied by any z, enter a trivial loop.

Map ¢ to (N, ¢). This map can be computed in time polynomial in |¢| (the
size of ¢) irrespective of fact that N ’s running time would be exponential
in the |¢|. Now, ¢ € SAT iff 3z such that M (¢, z) accepts iff N halts on
input ¢ iff (N, ¢) € HP. This completes the reduction SAT <, HP.

5. Reduction from SAT. Take a formula v of SAT, and create a formula ¢
for DOUBLESAT by introducing a new variable z and adding an extra
clause (z V —z) to ¢. Notice that ¢ has a satisfying assignment if and
only if ¢ has two satisfying assignments (one assignment where z = 1 and
another where -z = 1).

