Some NP-Complete Problems Six basic genres of NP-complete problems and paradigmatic examples. - Packing problems: SET-PACKING, INDEPENDENT SET. - Covering problems: SET-COVER, VERTEX-COVER. - Constraint satisfaction problems: SAT, 3-SAT. - Sequencing problems: HAMILTONIAN-CYCLE, TSP. - Partitioning problems: 3D-MATCHING 3-COLOR. - Numerical problems: SUBSET-SUM, KNAPSACK. Practice. Most NP problems are either known to be in P or NP-complete. Notable exceptions. Factoring, graph isomorphism, Nash equilibrium. ## Polynomial-Time Reductions ## Independent Set INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \ge k$, and for each edge at most one of its endpoints is in S? Ex. Is there an independent set of size \geq 6? Yes. Ex. Is there an independent set of size \geq 7? No. #### 3 Satisfiability Reduces to Independent Set Claim. 3-SAT ≤ P INDEPENDENT-SET. Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable. #### Construction. - G contains 3 vertices for each clause, one for each literal. - Connect 3 literals in a clause in a triangle. - Connect literal to each of its negations. x_2 x_1 x_1 G x_2 x_1 x_2 x_{4} $\Phi = \left(\overline{x_1} \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(\overline{x_1} \vee x_2 \vee x_4\right)$ k = 3 ### 3 Satisfiability Reduces to Independent Set Claim. G contains independent set of size $k = |\Phi|$ iff Φ is satisfiable. Pf. \Rightarrow Let S be independent set of size k. - S must contain exactly one vertex in each triangle. - Set these literals to true. ← and any other variables in a consistent way - Truth assignment is consistent and all clauses are satisfied. Pf ← Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. ■ $\overline{x_1}$ $\overline{x_2}$ $\overline{x_1}$ $\overline{x_2}$ $\overline{x_1}$ $\overline{x_2}$ $\overline{x_2}$ $\overline{x_1}$ $\overline{x_2}$ x_3 x_1 x_3 x_2 x_4 x_4 $A = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$ #### Vertex Cover VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \le k$, and for each edge, at least one of its endpoints is in S? Ex. Is there a vertex cover of size \leq 4? Yes. Ex. Is there a vertex cover of size \leq 3? No. ## Vertex Cover and Independent Set Claim. VERTEX-COVER \equiv_P INDEPENDENT-SET. Pf. We show S is an independent set iff V - S is a vertex cover. #### Vertex Cover and Independent Set Claim. VERTEX-COVER = INDEPENDENT-SET. Pf. We show S is an independent set iff V - S is a vertex cover. #### \Rightarrow - Let S be any independent set. - Consider an arbitrary edge (u, v). - S independent \Rightarrow u \notin S or v \notin S \Rightarrow u \in V S or v \in V S. - Thus, V S covers (u, v). #### \Leftarrow - Let V S be any vertex cover. - Consider two nodes $u \in S$ and $v \in S$. - Observe that $(u, v) \notin E$ since V S is a vertex cover. - Thus, no two nodes in S are joined by an edge \Rightarrow S independent set. ■ #### Set Cover SET COVER: Given a set U of elements, a collection S_1, S_2, \ldots, S_m of subsets of U, and an integer k, does there exist a collection of \leq k of these sets whose union is equal to U? #### Sample application. - m available pieces of software. - Set U of n capabilities that we would like our system to have. - The ith piece of software provides the set $S_i \subseteq U$ of capabilities. - Goal: achieve all n capabilities using fewest pieces of software. #### Ex: $$U = \{1, 2, 3, 4, 5, 6, 7\}$$ $$k = 2$$ $$S_1 = \{3, 7\} \qquad S_4 = \{2, 4\}$$ $$S_2 = \{3, 4, 5, 6\} \qquad S_5 = \{5\}$$ $$S_3 = \{1\} \qquad S_6 = \{1, 2, 6, 7\}$$ #### Vertex Cover Reduces to Set Cover Claim. VERTEX-COVER $\leq p$ SET-COVER. Pf. Given a VERTEX-COVER instance G = (V, E), k, we construct a set cover instance whose size equals the size of the vertex cover instance. #### Construction. - Create SET-COVER instance: - k = k, U = E, $S_v = \{e \in E : e \text{ incident to } v \}$ - Set-cover of size ≤ k iff vertex cover of size ≤ k. SET COVER $$U = \{1, 2, 3, 4, 5, 6, 7\}$$ $$k = 2$$ $$S_a = \{3, 7\}$$ $$S_b = \{2, 4\}$$ $$S_c = \{3, 4, 5, 6\}$$ $$S_d = \{5\}$$ $$S_e = \{1\}$$ $$S_f = \{1, 2, 6, 7\}$$ #### Review #### Basic reduction strategies. - Simple equivalence: INDEPENDENT-SET = P VERTEX-COVER. - Special case to general case: VERTEX-COVER ≤ p SET-COVER. - Encoding with gadgets: 3-SAT ≤ P INDEPENDENT-SET. Transitivity. If $X \leq_P Y$ and $Y \leq_P Z$, then $X \leq_P Z$. Pf idea. Compose the two algorithms. Ex: 3-SAT ≤ p INDEPENDENT-SET ≤ p VERTEX-COVER ≤ p SET-COVER. ### Self-Reducibility Decision problem. Does there exist a vertex cover of size $\leq k$? Search problem. Find vertex cover of minimum cardinality. Self-reducibility. Search problem $\leq p$ decision version. - Applies to all (NP-complete) problems in this chapter. - Justifies our focus on decision problems. #### Ex: to find min cardinality vertex cover. - (Binary) search for cardinality k* of min vertex cover. - Find a vertex v such that $G \{v\}$ has a vertex cover of size $\leq k^* 1$. - any vertex in any min vertex cover will have this property - Include v in the vertex cover. - Recursively find a min vertex cover in $G \{v\}$. delete v and all incident edges # Hamiltonian Cycle HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V. YES: vertices and faces of a dodecahedron. # Hamiltonian Cycle HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V. NO: bipartite graph with odd number of nodes. ### Directed Hamiltonian Cycle DIR-HAM-CYCLE: given a digraph G = (V, E), does there exists a simple directed cycle Γ that contains every node in V? Claim. DIR-HAM-CYCLE ≤ P HAM-CYCLE. Pf. Given a directed graph G = (V, E), construct an undirected graph G' with 3n nodes. ### Directed Hamiltonian Cycle Claim. G has a Hamiltonian cycle iff G' does. #### $Pf. \Rightarrow$ - Suppose G has a directed Hamiltonian cycle Γ . - Then G' has an undirected Hamiltonian cycle (same order). #### Pf. ← - Suppose G' has an undirected Hamiltonian cycle Γ' . - lacktriangleright T' must visit nodes in G' using one of following two orders: ``` ..., B, G, R, B, G, R, B, G, R, B,, B, R, G, B, R, G, B, R, G, B, ... ``` ■ Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or reverse of one. ■ Claim. 3-SAT ≤ P DIR-HAM-CYCLE. Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable. Construction. First, create graph that has 2ⁿ Hamiltonian cycles which correspond in a natural way to 2ⁿ possible truth assignments. Construction. Given 3-SAT instance Φ with n variables x_i and k clauses. - Construct G to have 2ⁿ Hamiltonian cycles. - Intuition: traverse path i from left to right \Leftrightarrow set variable $x_i = 1$. Construction. Given 3-SAT instance Φ with n variables \mathbf{x}_i and k clauses. ■ For each clause: add a node and 6 edges. Claim. Φ is satisfiable iff G has a Hamiltonian cycle. #### $Pf. \Rightarrow$ - Suppose 3-SAT instance has satisfying assignment x^* . - Then, define Hamiltonian cycle in G as follows: - if $x^*_i = 1$, traverse row i from left to right - if $x^*_i = 0$, traverse row i from right to left - for each clause C_j , there will be at least one row i in which we are going in "correct" direction to splice node C_j into tour Claim. Φ is satisfiable iff G has a Hamiltonian cycle. #### Pf. **⇐** - Suppose G has a Hamiltonian cycle Γ . - \blacksquare If Γ enters clause node \mathcal{C}_{i} , it must depart on mate edge. - thus, nodes immediately before and after $\mathcal{C}_{\mathbf{j}}$ are connected by an edge e in \mathbf{G} - removing C_j from cycle, and replacing it with edge e yields Hamiltonian cycle on G { C_j } - Continuing in this way, we are left with Hamiltonian cycle Γ' in $G \{C_1, C_2, \ldots, C_k\}$. - Set $x^*_i = 1$ iff Γ' traverses row i left to right. - Since Γ visits each clause node C_j , at least one of the paths is traversed in "correct" direction, and each clause is satisfied. ■ #### Longest Path SHORTEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at most k edges? LONGEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at least k edges? Claim. $3-SAT \leq PLONGEST-PATH$. Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s. Pf 2. Show HAM-CYCLE ≤ p LONGEST-PATH. 3D-MATCHING. Given n instructors, n courses, and n times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times? | Instructor | Course | Time | |------------|---------|--------------| | Wayne | COS 423 | MW 11-12:20 | | Wayne | COS 423 | TTh 11-12:20 | | Wayne | COS 226 | TTh 11-12:20 | | Wayne | COS 126 | TTh 11-12:20 | | Tardos | COS 523 | TTh 3-4:20 | | Tardos | COS 423 | TTh 11-12:20 | | Tardos | COS 423 | TTh 3-4:20 | | Kleinberg | COS 226 | TTh 3-4:20 | | Kleinberg | COS 226 | MW 11-12:20 | | Kleinberg | COS 423 | MW 11-12:20 | 3D-MATCHING. Given disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples? Claim. $3-SAT \le P$ INDEPENDENT-COVER. Pf. Given an instance Φ of 3-SAT, we construct an instance of 3D-matching that has a perfect matching iff Φ is satisfiable. #### Construction. (part 1) number of clauses - Create gadget for each variable x_i with 2k core and tip elements. - No other triples will use core elements. - In gadget i, 3D-matching must use either both grey triples or both blue ones. Set x_i = true Set x_i = true Set x_i = false #### Construction. (part 2) - For each clause C_i create two elements and three triples. - Exactly one of these triples will be used in any 3D-matching. - Ensures any 3D-matching uses either (i) grey core of x_1 or (ii) blue core of x_2 or (iii) grey core of x_3 . ## Construction. (part 3) For each tip, add a cleanup gadget. Claim. Instance has a 3D-matching iff Φ is satisfiable. Detail. What are X, Y, and Z? Does each triple contain one element from each of X, Y, Z? Claim. Instance has a 3D-matching iff Φ is satisfiable. Detail. What are X, Y, and Z? Does each triple contain one element from each of X, Y, Z? 3-COLOR: Given an undirected graph G does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color? #### Register Allocation Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register. Interference graph. Nodes are program variables names, edge between u and v if there exists an operation where both u and v are "live" at the same time. Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable. Fact. 3-COLOR $\leq p$ k-REGISTER-ALLOCATION for any constant $k \geq 3$. Claim. $3-SAT \leq P 3-COLOR$. Pf. Given 3-SAT instance Φ , we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable. #### Construction. - i. For each literal, create a node. - ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B. - iii. Connect each literal to its negation. - iv. For each clause, add gadget of 6 nodes and 13 edges. to be described next Claim. Graph is 3-colorable iff Φ is satisfiable. Pf. \Rightarrow Suppose graph is 3-colorable. - Consider assignment that sets all T literals to true. - (ii) ensures each literal is T or F. - (iii) ensures a literal and its negation are opposites. Claim. Graph is 3-colorable iff Φ is satisfiable. Pf. \Rightarrow Suppose graph is 3-colorable. - Consider assignment that sets all T literals to true. - (ii) ensures each literal is T or F. - (iii) ensures a literal and its negation are opposites. - (iv) ensures at least one literal in each clause is T. Claim. Graph is 3-colorable iff Φ is satisfiable. Pf. \Rightarrow Suppose graph is 3-colorable. - Consider assignment that sets all T literals to true. - (ii) ensures each literal is T or F. - (iii) ensures a literal and its negation are opposites. - (iv) ensures at least one literal in each clause is T. Claim. Graph is 3-colorable iff Φ is satisfiable. Pf. \leftarrow Suppose 3-SAT formula Φ is satisfiable. - Color all true literals T. - Color node below green node F, and node below that B. - Color remaining middle row nodes B. - Color remaining bottom nodes T or F as forced. #### Subset Sum SUBSET-SUM. Given natural numbers w_1 , ..., w_n and an integer W, is there a subset that adds up to exactly W? Ex: { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 }, W = 3754. Yes. 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754. Remark. With arithmetic problems, input integers are encoded in binary. Polynomial reduction must be polynomial in binary encoding. Claim. 3-SAT ≤ p SUBSET-SUM. Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff Φ is satisfiable. #### Subset Sum Construction. Given 3-SAT instance Φ with n variables and k clauses, form 2n + 2k decimal integers, each of n+k digits, as illustrated below. Claim. Φ is satisfiable iff there exists a subset that sums to W. Pf. No carries possible.