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Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.

 Packing problems:  SET-PACKING, INDEPENDENT SET.

 Covering problems:  SET-COVER, VERTEX-COVER.

 Constraint satisfaction problems:  SAT, 3-SAT.

 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

 Partitioning problems: 3D-MATCHING 3-COLOR.

 Numerical problems:  SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions.  Factoring, graph isomorphism, Nash equilibrium.
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Polynomial-Time Reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

Dick Karp (1972)
1985 Turing Award

3-SAT reduces to

INDEPENDENT SET

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

packing and covering sequencing partitioning numerical

constraint satisfaction
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Independent Set

INDEPENDENT SET:  Given a graph G = (V, E) and an integer k, is there a
subset of vertices S ⊆ V such that |S| ≥ k, and for each edge at most
one of its endpoints is in S?

Ex.  Is there an independent set of size ≥ 6?  Yes.

Ex.  Is there an independent set of size ≥ 7?  No.

independent set
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3 Satisfiability Reduces to Independent Set

Claim.  3-SAT ≤ P INDEPENDENT-SET.

Pf.  Given an instance Φ of 3-SAT, we construct an instance (G, k) of

INDEPENDENT-SET that has an independent set of size k iff Φ is

satisfiable.

Construction.
 G contains 3 vertices for each clause, one for each literal.

 Connect 3 literals in a clause in a triangle.

 Connect literal to each of its negations.
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3 Satisfiability Reduces to Independent Set

Claim.  G contains independent set of size k = |Φ| iff Φ is satisfiable.

Pf.  ⇒  Let S be independent set of size k.

 S must contain exactly one vertex in each triangle.

 Set these literals to true.

 Truth assignment is consistent and all clauses are satisfied.

Pf  ⇐   Given satisfying assignment, select one true literal from each

triangle. This is an independent set of size k.  ▪
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Vertex Cover

VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a
subset of vertices S ⊆ V such that |S| ≤ k, and for each edge, at least
one of its endpoints is in S?

Ex.  Is there a vertex cover of size ≤ 4?  Yes.

Ex.  Is there a vertex cover of size ≤ 3?  No.

vertex cover
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Vertex Cover and Independent Set

Claim.  VERTEX-COVER ≡P INDEPENDENT-SET.

Pf.  We show S is an independent set iff V − S is a vertex cover.

vertex cover

independent set
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Vertex Cover and Independent Set

Claim.  VERTEX-COVER ≡P INDEPENDENT-SET.

Pf.  We show S is an independent set iff V − S is a vertex cover.

⇒

 Let S be any independent set.

 Consider an arbitrary edge (u, v).

 S independent ⇒ u ∉ S or v ∉ S  ⇒  u ∈ V − S or v ∈ V − S.

 Thus, V − S covers (u, v).

⇐

 Let V − S be any vertex cover.

 Consider two nodes u ∈ S and v ∈ S.

 Observe that (u, v) ∉ E since V − S is a vertex cover.

 Thus, no two nodes in S are joined by an edge  ⇒ S independent set. ▪
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Set Cover

SET COVER:  Given a set U of elements, a collection S1, S2, . . . , Sm of
subsets of U, and an integer k, does there exist a collection of ≤ k of
these sets whose union is equal to U?

Sample application.

 m available pieces of software.

 Set U of n capabilities that we would like our system to have.

 The ith piece of software provides the set Si ⊆ U of capabilities.

 Goal:  achieve all n capabilities using fewest pieces of software.

Ex:

U = { 1, 2, 3, 4, 5, 6, 7 }

k = 2

S1 = {3, 7} S4 = {2, 4}

S2 = {3, 4, 5, 6} S5 = {5}

S3 = {1} S6 =  {1, 2, 6, 7}
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SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

Vertex Cover Reduces to Set Cover

Claim.  VERTEX-COVER ≤ P SET-COVER.
Pf.  Given a VERTEX-COVER instance G = (V, E), k, we construct a set
cover instance whose size equals the size of the vertex cover instance.

Construction.

 Create SET-COVER instance:

– k = k,  U = E,  Sv = {e ∈ E : e incident to v }

 Set-cover of size ≤ k iff vertex cover of size ≤ k.  ▪
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Review

Basic reduction strategies.

 Simple equivalence:  INDEPENDENT-SET ≡ P VERTEX-COVER.

 Special case to general case:  VERTEX-COVER ≤ P SET-COVER.

 Encoding with gadgets:  3-SAT ≤ P INDEPENDENT-SET.

Transitivity.  If X ≤ P Y and Y ≤ P Z, then X ≤ P Z.

Pf idea.  Compose the two algorithms.

Ex:  3-SAT ≤ P INDEPENDENT-SET ≤ P VERTEX-COVER ≤ P SET-COVER.
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Self-Reducibility

Decision problem.  Does there exist a vertex cover of size ≤  k?

Search problem.  Find vertex cover of minimum cardinality.

Self-reducibility.  Search problem ≤ P decision version.

 Applies to all (NP-complete) problems in this chapter.

 Justifies our focus on decision problems.

Ex:  to find min cardinality vertex cover.

 (Binary) search for cardinality k* of min vertex cover.

 Find a vertex v such that G − { v } has a vertex cover of size ≤ k* - 1.

– any vertex in any min vertex cover will have this property

 Include v in the vertex cover.

 Recursively find a min vertex cover in G − { v }.

delete v and all incident edges
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Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a

simple cycle Γ that contains every node in V.

YES:  vertices and faces of a dodecahedron.
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Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a

simple cycle Γ that contains every node in V.

1

3

5

1'

3'

2

4

2'

4'

NO:  bipartite graph with odd number of nodes.
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Directed Hamiltonian Cycle

DIR-HAM-CYCLE:  given a digraph G = (V, E), does there exists a simple

directed cycle Γ that contains every node in V?

Claim.  DIR-HAM-CYCLE ≤ P HAM-CYCLE.

Pf.  Given a directed graph G = (V, E), construct an undirected graph G'

with 3n nodes.
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Directed Hamiltonian Cycle

Claim.  G has a Hamiltonian cycle iff G' does.

Pf.  ⇒

 Suppose G has a directed Hamiltonian cycle Γ.

 Then G' has an undirected Hamiltonian cycle (same order).

Pf.  ⇐

 Suppose G' has an undirected Hamiltonian cycle Γ'.

 Γ' must visit nodes in G' using one of following two orders:

   …, B, G, R, B, G, R, B, G, R, B, …

   …, B, R, G, B, R, G, B, R, G, B, …

 Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or

reverse of one.   ▪
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-SAT ≤ P DIR-HAM-CYCLE.

Pf.   Given an instance Φ of 3-SAT, we construct an instance of DIR-

HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.

Construction.  First, create graph that has 2n Hamiltonian cycles which

correspond in a natural way to 2n possible truth assignments.
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance Φ with n variables xi and k clauses.

 Construct G to have 2n Hamiltonian cycles.

 Intuition:  traverse path i from left to right  ⇔  set variable xi = 1.

s

t

3k + 3

x1

x2

x3
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance Φ with n variables xi and k clauses.

 For each clause:  add a node and 6 edges.

s

t

clause nodeclause node
3211

VV xxxC =
3212

VV xxxC =

x1

x2

x3
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim.   Φ is satisfiable iff G has a Hamiltonian cycle.

Pf.  ⇒

 Suppose 3-SAT instance has satisfying assignment x*.

 Then, define Hamiltonian cycle in G as follows:

– if x*i = 1, traverse row i  from left to right

– if x*i = 0, traverse row i from right to left

– for each clause Cj , there will be at least one row i in which we are

going in "correct" direction to splice node Cj into tour
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim.   Φ is satisfiable iff G has a Hamiltonian cycle.

Pf.  ⇐

 Suppose G has a Hamiltonian cycle Γ.

 If Γ enters clause node Cj , it must depart on mate edge.

– thus, nodes immediately before and after Cj are connected by an

edge e in G

– removing Cj from cycle, and replacing it with edge e yields

Hamiltonian cycle on G - { Cj  }

 Continuing in this way, we are left with Hamiltonian cycle Γ' in

G - { C1 , C2 ,  . . . , Ck }.

 Set x*i = 1 iff Γ' traverses row i left to right.

 Since Γ visits each clause node Cj , at least one of the paths is

traversed in "correct" direction, and each clause is satisfied.   ▪
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Longest Path

SHORTEST-PATH.  Given a digraph G = (V, E), does there exists a simple

path of length at most k edges?

LONGEST-PATH.  Given a digraph G = (V, E), does there exists a simple

path of length at least k edges?

Claim.  3-SAT ≤ P LONGEST-PATH.

Pf 1.  Redo proof for  DIR-HAM-CYCLE, ignoring back-edge from t to s.

Pf 2. Show HAM-CYCLE ≤ P LONGEST-PATH.
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3-Dimensional Matching

3D-MATCHING.  Given n instructors, n courses, and n times, and a list of

the possible courses and times each instructor is willing to teach, is it

possible to make an assignment so that all courses are taught at

different times?

Instructor Course Time

Wayne COS 423 MW 11-12:20

Wayne COS 423 TTh 11-12:20

Wayne COS 226 TTh 11-12:20

Wayne COS 126 TTh 11-12:20

Tardos COS 523 TTh 3-4:20

Tardos COS 423 TTh 11-12:20

Tardos COS 423 TTh 3-4:20

Kleinberg COS 226 TTh 3-4:20

Kleinberg COS 226 MW 11-12:20

Kleinberg COS 423 MW 11-12:20
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3-Dimensional Matching

3D-MATCHING.  Given disjoint sets X, Y, and Z, each of size n and a set

T ⊆ X × Y × Z of triples, does there exist a set of n triples in T such

that each element of X ∪ Y ∪ Z is in exactly one of these triples?

Claim.  3-SAT ≤ P INDEPENDENT-COVER.

Pf.  Given an instance Φ of 3-SAT, we construct an instance of 3D-

matching that has a perfect matching iff Φ is satisfiable.
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3-Dimensional Matching

Construction.  (part 1)

 Create gadget for each variable xi with 2k core and tip elements.

 No other triples will use core elements.

 In gadget i, 3D-matching must use either both grey triples or both

blue ones.

x1 x3x2

core

set xi = true set xi = false

number of clauses

k = 2 clauses
n = 3 variables

true

false

clause 1 tips
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3-Dimensional Matching

Construction.  (part 2)

 For each clause Cj create two elements and three triples.

 Exactly one of these triples will be used in any 3D-matching.

 Ensures any 3D-matching uses either (i) grey core of x1 or (ii) blue

core of x2 or (iii) grey core of x3.

x1 x3x2

clause 1 tips core

  C j  =  x
1
" x

2
" x

3each clause assigned
its own 2 adjacent tips

true

false

clause 1 gadget
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3-Dimensional Matching

Construction.  (part 3)

 For each tip, add a cleanup gadget.

x1 x3x2

core

cleanup gadget

true

false

clause 1 gadget

clause 1 tips
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3-Dimensional Matching

Claim.  Instance has a 3D-matching iff Φ is satisfiable.

Detail.  What are X, Y, and Z?  Does each triple contain one element
from each of X, Y, Z?

x1 x3x2

core

cleanup gadget

true

false

clause 1 gadget

clause 1 tips
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3-Dimensional Matching

Claim.  Instance has a 3D-matching iff Φ is satisfiable.

Detail.  What are X, Y, and Z?  Does each triple contain one element
from each of X, Y, Z?

x1 x3x2

core

cleanup gadget

clause 1 gadget

clause 1 tips
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3-Colorability

3-COLOR:  Given an undirected graph G does there exists a way to

color the nodes red, green, and blue so that no adjacent nodes have the

same color?

yes instance
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Register Allocation

Register allocation.  Assign program variables to machine register so

that no more than k registers are used and no two program variables

that are needed at the same time are assigned to the same register.

Interference graph.  Nodes are program variables names, edge

between u and v if there exists an operation where both u and

v are "live" at the same time.

Observation.  [Chaitin 1982]  Can solve register allocation problem iff

interference graph is k-colorable.

Fact.  3-COLOR ≤ P k-REGISTER-ALLOCATION for any constant k ≥ 3.
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3-Colorability

Claim.  3-SAT ≤ P 3-COLOR.

Pf.  Given 3-SAT instance Φ, we construct an instance of 3-COLOR that

is 3-colorable iff Φ is satisfiable.

Construction.

i. For each literal, create a node.

ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect

each literal to B.

iii. Connect each literal to its negation.

iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next



31

3-Colorability

Claim.  Graph is 3-colorable iff Φ is satisfiable.

Pf.  ⇒  Suppose graph is 3-colorable.

 Consider assignment that sets all T literals to true.

 (ii) ensures each literal is T or F.

 (iii) ensures a literal and its negation are opposites.

T

B

F

x1
x
1

x2
x
2

xn
x
n

x3
x
3

true false

base
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3-Colorability

Claim.  Graph is 3-colorable iff Φ is satisfiable.

Pf.  ⇒  Suppose graph is 3-colorable.

 Consider assignment that sets all T literals to true.

 (ii) ensures each literal is T or F.

 (iii) ensures a literal and its negation are opposites.

 (iv) ensures at least one literal in each clause is T.

T F

B

x1 x
2

x3
  Ci

= x
1
V x

2
V x

3

6-node gadget

true false
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3-Colorability

Claim.  Graph is 3-colorable iff Φ is satisfiable.

Pf.  ⇒  Suppose graph is 3-colorable.

 Consider assignment that sets all T literals to true.

 (ii) ensures each literal is T or F.

 (iii) ensures a literal and its negation are opposites.

 (iv) ensures at least one literal in each clause is T.

  Ci
= x

1
V x

2
V x

3

T F

B

x1 x
2

x3

not 3-colorable if all are red

true false

contradiction
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3-Colorability

Claim.  Graph is 3-colorable iff Φ is satisfiable.

Pf.  ⇐   Suppose 3-SAT formula Φ is satisfiable.

 Color all true literals T.

 Color node below green node F, and node below that B.

 Color remaining middle row nodes B.

 Color remaining bottom nodes T or F as forced.  ▪

T F

B

x1 x
2

x3

a literal set to true in 3-SAT assignment

  Ci
= x

1
V x

2
V x

3

true false
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Subset Sum

SUBSET-SUM.  Given natural numbers w1, …, wn and an integer W, is

there a subset that adds up to exactly W?

Ex:  { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 },  W = 3754.

Yes.  1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.

Remark.  With arithmetic problems, input integers are encoded in

binary. Polynomial reduction must be polynomial in binary encoding.

Claim.  3-SAT ≤ P SUBSET-SUM.

Pf.  Given an instance Φ of 3-SAT, we construct an instance of SUBSET-

SUM that has solution iff Φ is satisfiable.
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Subset Sum

Construction.  Given 3-SAT instance Φ with n variables and k clauses,

form 2n + 2k decimal integers, each of n+k digits, as illustrated below.

Claim.  Φ is satisfiable iff there exists a subset that sums to W.

Pf.  No carries possible.

C
1
= x " y " z

C
2
= x " y " z

C
3
= x " y " z

dummies to get clause
columns to sum to 4

y

x

z

0 0 0 0 1 0

0 0 0 2 0 0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 1

0 1 0 1 0 0

1 0 0 1 0 1

1 0 0 0 1 0

0 0 1 1 1 0

x y z C1 C2 C3

0 0 0 0 0 2

0 0 0 0 0 1

0 0 0 0 2 0

1 1 1 4 4 4

¬ x

¬ y

¬ z

W

     10

    200

    100

  1,001

 10,011

 10,100

100,101

100,010

  1,110

      2

      1

     20

111,444


