Theory of Computation: Log-space

(ロ)、(型)、(E)、(E)、 E) の(()

Languages in L

- EVEN : The set of strings with an even number of 1s.
- EVEN is in L: We basically need to keep a counter of the number of 1s in the input string. And later check if this is even by checking the last bit. The space required is $O(\log n)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Languages in NL

- PATH: The set of all < G, s, t > such that G is a directed graph which has a path from s to t.
- PATH ∈ NL: First, if there is a path from s to t, then there is one of length at most n.
- Create a non-deterministic walk starting at *s*, making a non-deterministic choice of a neighbour from the current vertex and stopping after *n* steps. If the walk ends at *t* then this is a desired path.
- O(log n) space required: Only need to know the number of steps so far and the index of the current vertex.

NL = L?

- It is not known whether PATH belongs to L.This is an open question.
- It is quite possible that even 3-SAT could belong to L.
- Consequence of 3 SAT ∈ L: Recall that NSPACE(f(n)) ∈ DTIME(2^{f(n)}) for space constructible f. So, L ⊆ NL ⊆ P.
 2. CAT ∈ L = ADD = D. (D = 10 + L = N(L))

 $3 - SAT \in L \implies NP = P$. (Does not imply L = NL!)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

NL-completeness

- Polynomial time reductions are too expensive!
- Logspace computable functions: A function $f: \{0,1\}^* \rightarrow \{0,1\}^*$ that is polynomially bounded (there is a c such that $f(x) \le |x|^c$ for all x) and the languages $L_f = \{< x, i > |f(x)_i = 1\}$ and $L'_f = \{< x, i > |i \le |f(x)|\}$ are in L. Eg. f(x) = |x|.

NL-completeness

- Logspace reducibility: A language B is logspace reducible to language C, denoted as B ≤_l C, if there is a function f: {0,1}* → {0,1}* that is logspace computable and x ∈ B iff f(x) ∈ C for every x.
- NL-completeness: C is NL-complete if it is in NL and for every B in NL, $B \leq_I C$.

NL-completeness

- Log space reductions: For logspace computable functions, it is possible to compute in O(log n) space whether the ith bit of f(x) is 1, and whether all of f(x) has been computed or not.
- So, log space reductions can also be thought of as reductions where the output tape (whose space does not count towards space bound of the machine) is a write-only tape: you can write a bit or move to the right; you cannot move left to reread a previous bit.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Actually, the two notions are equivalent.

Composition of logspace computable functions

- For logspace computable functions f, g, h such that h(x) = g(f(x)) is also logspace computable.
- Proof: Let M_f and M_g be logspace machines computing f(x)_i and g(y)_j respectively.
- We will compute M_h to output g(f(x))_j. Input tape of M_h has < x, j > written.
- M_h has to simulate M_g on f(x) and then read the j^{th} bit from the output. So it tries to maintain M_g 's bit by bit simulation on f(x) cannot do the whole thing as it will require much more than logspace.

Composition of logspace computable functions

- Suppose M_g needs to know the bit at the i^{th} cell of f(x) for its simulation.
- M_h stores the current worktape of M_g safely.
- It invokes M_f on input $\langle x, i \rangle$ to get $f(x)_i$.
- Then it resumes simulation of M_g on this bit.
- Total space required = $(O(\log(|g(f(x))| + |x| + |f(x)|)))$. As $|f(x)| \le \operatorname{poly}(x)$ and similar properties for g, this becomes $O(\log(|x|))$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Composition of logspace computable functions

Similar argument to show that L'_h = {< x, i > |i ≤ h(x)} is in L: Again the machine for h has to "pretend" that it also has access to f(x) on its input tape and not just < x, j >.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• This shows that *h* is logspace computable.

Transitivity of logspace reductions

- If B ≤₁ C and C ≤₁ D then B ≤₁ D: B reduces to C by logspace computable function f, and C to D by logspace computable function g. We know that h such that h(x) = g(f(x)) is also logspace computable.
- If $B \leq_l C$ and $C \in L$ then $B \in L$: Let f be the reduction from B to C and g be the function such that g(y) = 1 iff $y \in C$. Then h such that h(x) = g(f(x)) is such that h(y) = 1 iff $y \in B$ and it requires deterministic computation taking logspace. So B is in L.
- In particular if an NL-complete language is in L iff NL = L.

PATH is NL-complete

- Note: If PATH is in L then NL = L.
- We have seen that PATH is in NL.
- PATH is NL-hard: Take *L* to be in NL that is decided by an *O*(log *n*)-space nondeterministic machine *M*.
- Need to define a logspace computable function f for the reduction $L \leq_I PATH$.
- For input x, f(x) will be the configuration graph G_{M,x}: each configuration in a logspace machine can be described in O(log n) bits; G_{M,x} has 2^{O(log n)} vertices.

PATH is NL-complete

- Correctness of reduction: G_{M,x} has a path from C_s to C_t iff M accepts x.
- How to compute f(x): The graph can be represented as an adjacency matrix: contains 1 in position (C, C') if there is an edge from C to C' in $G_{M,x}$.
- We need to show that the adjacency matrix can be computed by a logspace reduction: need to describe a logspace machine that can compute any desired bit in it.
- Given a C and C', a deterministic machine can in space $O(|C| + |C'|) = O(\log(|x|))$ examine if the two configurations have valid form and if C can transition to C' according to the transition function of M.

Immerman-Szelepcsenyi Theorem

- Statement: For every space constructible S(n) ≥ log n, NSPACE(S(n)) = coNSPACE(S(n)).
- Corollary: NL = coNL.
- Comment: Space complexity classes behave very differently from time complexity classes:

Savitch's Theorem has no analogue in time complexity.

I-S Theorem has no analogue in time complexity.

- Take a problem Π in NL with a O(S(n))-space machine M.
- Configurations are of size O(S(n)),; Configuration graph has $2^{O(S(n))}$ vertices.
- An input x belongs to Π iff $G_{M,x}$ has a path from C_s to C_t .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- If x ∈ L there is an algorithm to verify if G_{M,x} has a path from C_s to C_t: Starting from C_s, guess a path of length at most 2^{O(S(n))} till C_t.
- If $x \notin L$ we need an algorithm to verify if $G_{M,x}$ does not have a path from C_s to C_t . (Then $\overline{L} \in NL$)

- Notation: C_i is the set of all vertices C in G_{M,x} that are reachable from C_s in exactly i steps.
- Note that C_0 only contains C_s .

- Primer: Suppose I know that the number of vertices in C_i is m_i, can I check if a given vertex C_v is in C_i or not?
- Each $m_i = 2^{O(S(n))}$, which can be stored in O(S(n)) space.
- If C_v belongs to C_i then again we can guess an *i*-length path.
 What if C_v does not belong?
- Design a new algorithm: For each C_u, u ≠ v, check if C_u belongs to C_i.

If at the end the number of u for which it is verified that C_u belongs to C_i is m_i then it must be the case that $C_v \notin C_i$. If the number is $< m_i$ then it must be the case that $C_v \notin C_i$.

- So how do we find *m_i* correctly: It must be correct in order for the previous algorithm to work.
- Algorithm to find m_i if m_{i-1} is correctly known: First, let's design an algorithm that can check if a C_v belongs or not to C_i if m_{i-1} is known.
- Take a C_v. Check for each vertex C_w that has an edge to C_v whether or not it belongs to C_{i-1} (Previous algorithm can be used each time). This can answer whether or not C_v belongs to C_i.

- Algorithm to find m_i if m_{i-1} is correctly known:
- Initially m_i = m_{i-1}. Run through all C_u and check whether it belongs to C_i or not from previous algorithms. If there is an *i*-path from C_s, then increment m_i.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Now we know $C_0 = \{C_s\}$ and $m_0 = 1$.
- Iteratively, find $m_{2^{O(S(n))}}$, as the path from C_s to C_t can be of length at most $N = 2^{O(S(n))}$. Counter for $i \leq N$ can be stored in O(S(n)) space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Finally, check whether C_t belongs to C_N or not.