
Theory of Computation:
Log-space



Languages in L

EVEN : The set of strings with an even number of 1s.

EVEN is in L: We basically need to keep a counter of the
number of 1s in the input string. And later check if this is
even by checking the last bit. The space required is O(log n).



Languages in NL

PATH: The set of all < G , s, t > such that G is a directed
graph which has a path from s to t.

PATH ∈ NL: First, if there is a path from s to t, then there is
one of length at most n.

Create a non-deterministic walk starting at s, making a
non-deterministic choice of a neighbour from the current
vertex and stopping after n steps. If the walk ends at t then
this is a desired path.

O(log n) space required: Only need to know the number of
steps so far and the index of the current vertex.



NL = L?

It is not known whether PATH belongs to L.This is an open
question.

It is quite possible that even 3-SAT could belong to L.

Consequence of 3− SAT ∈ L: Recall that
NSPACE (f (n)) ∈ DTIME (2f (n)) for space constructible f .
So, L ⊆ NL ⊆ P.
3− SAT ∈ L =⇒ NP = P. (Does not imply L = NL!)



NL-completeness

Polynomial time reductions are too expensive!

Logspace computable functions: A function
f : {0, 1}∗ → {0, 1}∗ that is polynomially bounded (there is a
c such that f (x) ≤ |x |c for all x) and the languages
Lf = {< x , i > |f (x)i = 1} and L′f = {< x , i > |i ≤ |f (x)|}
are in L. Eg. f (x) = |x |.



NL-completeness

Logspace reducibility: A language B is logspace reducible to
language C , denoted as B ≤l C , if there is a function
f : {0, 1}∗ → {0, 1}∗ that is logspace computable and x ∈ B
iff f (x) ∈ C for every x .

NL-completeness: C is NL-complete if it is in NL and for
every B in NL, B ≤l C .



NL-completeness

Log space reductions: For logspace computable functions, it is
possible to compute in O(log n) space whether the i th bit of
f (x) is 1, and whether all of f (x) has been computed or not.

So, log space reductions can also be thought of as reductions
where the output tape (whose space does not count towards
space bound of the machine) is a write-only tape: you can
write a bit or move to the right; you cannot move left to
reread a previous bit.

Actually, the two notions are equivalent.



Composition of logspace computable functions

For logspace computable functions f , g , h such that
h(x) = g(f (x)) is also logspace computable.

Proof: Let Mf and Mg be logspace machines computing f (x)i
and g(y)j respectively.

We will compute Mh to output g(f (x))j . Input tape of Mh

has < x , j > written.

Mh has to simulate Mg on f (x) and then read the j th bit from
the output. So it tries to maintain Mg ’s bit by bit simulation
on f (x) - cannot do the whole thing as it will require much
more than logspace.



Composition of logspace computable functions

Suppose Mg needs to know the bit at the i th cell of f (x) for
its simulation.

Mh stores the current worktape of Mg safely.

It invokes Mf on input < x , i > to get f (x)i .

Then it resumes simulation of Mg on this bit.

Total space required = (O(log(|g(f (x))|+ |x |+ |f (x)|))). As
|f (x)| ≤ poly(x) and similar properties for g , this becomes
O(log(|x |)).



Composition of logspace computable functions

Similar argument to show that L′h = {< x , i > |i ≤ h(x)} is in
L: Again the machine for h has to “pretend” that it also has
access to f (x) on its input tape and not just < x , j >.

This shows that h is logspace computable.



Transitivity of logspace reductions

If B ≤l C and C ≤l D then B ≤l D: B reduces to C by
logspace computable function f , and C to D by logspace
computable function g . We know that h such that
h(x) = g(f (x)) is also logspace computable.

If B ≤l C and C ∈ L then B ∈ L: Let f be the reduction from
B to C and g be the funtion such that g(y) = 1 iff y ∈ C .
Then h such that h(x) = g(f (x)) is such that h(y) = 1 iff
y ∈ B and it requires deterministic computation taking
logspace. So B is in L.

In particular if an NL-complete language is in L iff NL = L.



PATH is NL-complete

Note: If PATH is in L then NL = L.

We have seen that PATH is in NL.

PATH is NL-hard: Take L to be in NL that is decided by an
O(log n)-space nondeterministic machine M.

Need to define a logspace computable function f for the
reduction L ≤l PATH.

For input x , f (x) will be the configuration graph GM,x : each
configuration in a logspace machine can be described in
O(log n) bits; GM,x has 2O(log n) vertices.



PATH is NL-complete

Correctness of reduction: GM,x has a path from Cs to Ct iff
M accepts x .

How to compute f (x): The graph can be represented as an
adjacency matrix: contains 1 in position (C ,C ′) if there is an
edge from C to C ′ in GM,x .

We need to show that the adjacency matrix can be computed
by a logspace reduction: need to describe a logspace machine
that can compute any desired bit in it.

Given a C and C ′, a deterministic machine can in space
O(|C |+ |C ′|) = O(log(|x |)) examine if the two configurations
have valid form and if C can transition to C ′ according to the
transition function of M.



Immerman-Szelepcsenyi Theorem

Statement: For every space constructible S(n) ≥ log n,
NSPACE (S(n)) = coNSPACE (S(n)).

Corollary: NL = coNL.

Comment: Space complexity classes behave very differently
from time complexity classes:
Savitch’s Theorem has no analogue in time complexity.
I-S Theorem has no analogue in time complexity.



Proof of I-S Theorem

Take a problem Π in NL with a O(S(n))-space machine M.

Configurations are of size O(S(n)),; Configuration graph has
2O(S(n)) vertices.

An input x belongs to Π iff GM,x has a path from Cs to Ct .



Proof of I-S Theorem

If x ∈ L there is an algorithm to verify if GM,x has a path
from Cs to Ct : Starting from Cs , guess a path of length at
most 2O(S(n)) till Ct .

If x /∈ L we need an algorithm to verify if GM,x does not have
a path from Cs to Ct . (Then L ∈ NL)

Notation: Ci is the set of all vertices C in GM,x that are
reachable from Cs in exactly i steps.

Note that C0 only contains Cs .



Proof of I-S Theorem

Primer: Suppose I know that the number of vertices in Ci is
mi , can I check if a given vertex Cv is in Ci or not?

Each mi = 2O(S(n)), which can be stored in O(S(n)) space.

If Cv belongs to Ci then again we can guess an i-length path.
What if Cv does not belong?

Design a new algorithm: For each Cu, u 6= v , check if Cu

belongs to Ci .
If at the end the number of u for which it is verified that Cu

belongs to Ci is mi then it must be the case that Cv /∈ Ci .
If the number is < mi then it must be the case that Cv ∈ Ci .



Proof of I-S Theorem

So how do we find mi correctly: It must be correct in order
for the previous algorithm to work.

Algorithm to find mi if mi−1 is correctly known: First, let’s
design an algorithm that can check if a Cv belongs or not to
Ci if mi−1 is known.

Take a Cv . Check for each vertex Cw that has an edge to Cv

whether or not it belongs to Ci−1 (Previous algorithm can be
used each time). This can answer whether or not Cv belongs
to Ci .



Proof of I-S Theorem

Algorithm to find mi if mi−1 is correctly known:

Initially mi = mi−1.
Run through all Cu and check whether it belongs to Ci or not
from previous algorithms.
If there is an i-path from Cs , then increment mi .



Proof of I-S Theorem

Now we know C0 = {Cs} and m0 = 1.

Iteratively, find m2O(S(n)) , as the path from Cs to Ct can be of
length at most N = 2O(S(n)). Counter for i ≤ N can be stored
in O(S(n)) space.

Finally, check whether Ct belongs to CN or not.


