
Theory of Computation:
Godel’s Incompleteness Theorem



Language of Number Theory

This is an example of First Order Logic that expresses properties of
the natural numbers N:

Variables: x , y , z , . . . ranging over N.

Operator symbols: +, .

Constant 0 is additive identity and 1 is multiplicative identity.



Language of Number Theory

Relation symbol: = (Others like <,>,≥,≤ are definable from
this)

Quantifiers: ∀, ∃
Propositional operations: ∨,∧,¬,→, ⇐⇒ .

Parentheses.



Important formulas

x ≤ y := ∃z (x + z = y)

x < y := ∃z (x + z = y ∧ ¬(z = 0))

INTDIV (x , y , q, r) := (x = qy + r) ∧ (r < y) - q is the
quotient and r the remainder when x is divided by y .

DIV (y , x) := ∃q INTDIV (x , y , q, 0) - x is divisible by y

EVEN(x) := DIV (2, x), ODD(x) := ¬EVEN(x)

PRIME (x) := (x ≥ 2) ∧ ∃y (DIV (y , x)→ (y = 1 ∨ y = x)).



Sentences

If there are no free (unquantified) variables in a formula, it is
called a sentence.

Example: ∀x∃y y = x + 1 - Every number has a successor

Not an example: ∀x x + z ≥ z as z is not quantified.

Sentences have a well-defined truth value under its natural
interpretation in N:
∀x∃y y = x + 1 - True.
∀x∃y x = y + 1 - False because this says that every number
has a predecessor when 0 does not.

First Order Number Theory: The set of true sentences,
denoted by Th(N).

Decision Problem for Number Theory: Given a sentence, is it
true?



Proof Systems: Peano Arithmetic

Any proof system (Eg. Peano Arithmetic or PA) consists of :
(1) a set of axioms which are some basic assumptions asserted to
be true,
(2) and a set of rules of inference, which are applied in a
mechanical way to derive further true sentences (theorems) from
the axioms



PA

Axioms of first order logic for manipulating:
propositional formulas, such as (φ ∧ ψ → φ)
quantifiers, such as (∀xφ(x))→ φ(100)
equality, such as ∀x∀y∀z((x = y) ∧ (y = z)→ x = z)



PA

Number Theoretic Axioms:

∀x¬(0 = x + 1) - 0 cannot be a successor

∀x∀y(x + 1 = y + 1→ x = y) - one-to-one mapping of
successors

∀xx + 0 = x - 0 is the additive identity

∀x∀yx + (y + 1) = (x + y) + 1 - + is associative

∀xx .0 = 0 - 0 is the multiplicative annihilator

∀x∀yx .(y + 1) = (x .y) + x - . distributes over +

(φ(0) ∧ ∀x(φ(x)→ φ(x + 1)))→ ∀xφ(x) - induction axiom
for a formula φ on a single free variable x



Rules of Inference

Modus Ponens: φ, φ→ ψ ⇒ ψ

Generalization: φ⇒ ∀x φ



Proofs in a Proof System

Proof for φn: Sequence φ0, φ1 . . . , φn of formulas such that
each φi is either an axiom or inferred from formulas appearing
earlier in the sequence.

Theorem: a sentence that has a proof in the system.



Soundness and Completeness

Proof Systems are:

Sound if all theorems are true. So a false sentence cannot be
proved to be true.
This holds for any reasonable proof system. In PA, this can be
shown by induction on the steps of inference to obtain the
proof.

Complete if all true sentences are theorems of the system.
Then the set of theorems would coincide with Th(N).



Godel’s Incompleteness Theorem

Theorem: For any reasonable proof system, including PA, a
sentence φ can be constructed that implies the following sentence:
φ is true ⇐⇒ φ is not provable.
In other words, no reasonable proof system for number theory can
be complete.



Godel’s Incompleteness Theorem

Some points about the proof:

The proof is constructive. The sentence φ constructed heavily
uses self-referencing.

The idea is to construct φ such that it asserts the truth of (φ
is true ⇐⇒ φ is not provable). What are the consequences
of the truth of (φ is true ⇐⇒ φ is not provable)?

Since any reasonable proof system is sound, for any sentence
ψ,
ψ is provable ⇒ ψ is true.

Now suppose φ is false
⇒ φ is provable
⇒ φ is true, which is a contradiction.
Thus φ must be true. This implies that φ is not provable and
the proof system is not complete!



Simpler version

If we look at PA alone, it is possible to show that:
(i) The set of theorems is r.e
(ii) The set Th(N) of true sentences is not.
Thus, PA cannot be complete



Set of Theorems

We can design a Turing machine that enumerates all theorems
by enumerating all the axioms on PA, and systematically
applying the rules of inference in all possible ways, and
printing every sentence that is derived.

Thus, the set of theorems for PA is r.e.



Th(N)

We can give a Turing reduction from ¬HP to Th(N).

Proof sketch: for an instance M#x of ¬HP,
VALCOMPS(M, x) can be encoded as a number theoretic
formula γM,x(y), where y represents the valid computations
history.
The reduction involves the construction of this formula
γM,x(y) corresponding to VALCOMPS(M, x) such that
M#x ∈ ¬HP ⇐⇒ ¬∃yγM,x(y) ∈ Th(N).

As ¬HP is not r.e, the set Th(N) of true sentences is also not
r.e.



Practice Problem

Prove that there exists a total computable function f : N→ N that
is not provably total in Peano arithmetic.
(Please try it yourself. Solution in next slide.)



Solution

Function f is total if and only if ∀x∃y f (x) = y .

By soundness of PA, if f is provably total, then f is total.

Assume that all total functions are provably total. Then there
is a TM M enumerating all functions f with proofs for ∀x∃y
f (x) = y . Let f (1), f (2), . . . be the enumeration.

Define a function g : N→ N as follows:
g(z) = f (z)(z) + 1 for all z .



Solution contd.

Since f (z) is total, so is g .

Our assumption now implies that there is some u ∈ N such
that g = f (u).

But g(u) = f (u)(u) + 1 6= f (u)(u) (→←).

Therefore, there must exist some total function that is not
provably total.


