
FLAT recap

1 Introduction

In this course we learnt about languages, both finite and infinite. Given an
alphabet Σ, a language L is a subset of strings where each element belongs to
Σ - in other words L ⊆ Σ∗. We primarily learnt three ways in which some
(possibly infinite) languages can have finite representations:

1. Finite automata/ regular expressions

2. Pushdown Automata/ Context free grammars

3. Turing Machine / Unrestricted grammars

We also learnt that not every language can have a finite encoding. In fact,
for each of the above 3 representations we saw examples of languages that could
not have that representation.

2 Finite Automata/regular expressions

Languages that are accepted by Finite Automata are called regular languages.
A language is accepted by a Finite Automaton if and only if it can be expressed
as a regular expression. We learnt an algorithm to convert an automaton to a
regular expression and vice versa. Thus, in order to show that a language is
regular we learnt the following tools:

1. Design a deterministic/non-deterministic Finite Automaton for the lan-
guage. For every non-deterministic finite automaton we can design a de-
terministic finite automaton (subset construction algorithm).

2. Find out a regular expression for the language.

3. Use closure properties. For example, if the given language is the union
of two regular languages, then since regular languages are closed under
union we can derive that the given language is also regular. We learnt a
set of operations under which regular languages are closed.

4. If L is a finite language, it has finitely many strings. For each string
we can design a finite automaton accepting only that string - as regular
languages are closed under finite unions, we can take the union of these
finite automata.

1



5. The pumping Lemma CANNOT be used to show that a language is reg-
ular!

Not all languages are regular. Tools for showing that a language is not
regular:

1. Pumping Lemma. The idea behind using the pumping lemma to show
that a language L is not regular is to assume by contradiction that a
deterministic finite automaton N with k states exists and start with a
string s of length much larger than k (L cannot be finite as otherwise it is
definitely regular). It must be the case that at least one state p in N will
be repeated in the path in N that accepts s. Let v be the substring of s
that appears between consecutive occurrences of the state p on the path
of acceptance for s. Even if we create a new string s′ by either throwing
v out, or by pumping in multiple copies of v, N should accept the new
string s′. So if there is a pumping constant i such that pumping v i times
creates a new string s′ that does not belong to the language L, then we
have arrived at a contradiction.
The strategy to show that a language L is not regular using the Pumping
Lemma is an adversarial game.
(a) The adversary gives an integer k ≥ 0,
(b) you pick an n-length string s = xyz such that s ∈ L and |y| ≥ k,
(c) The adversary gives you substrings u, v, w such that y = uvw and
v 6= ε
(d) You pick i ≥ 0
(e) You win if xuviwz /∈ L.

2. We also learnt about ultimate periodicity as a tool for showing that a
language is not regular.

3. Closure properties can be used here as well. For example, suppose you
know that the given language and another regular language in union forms
a language that is known not to be regular, then the given language cannot
be regular - otherwise the language created in union should also be regular.

3 Pushdown Automata/Context-free grammars

Languages that are accepted by nondeterministic Pushdown Automata are called
context=free languages. A language is accepted by a nondeterministic Push-
down Automaton if and only if it has a context-free grammar. We learnt an
algorithm to convert a nondeterministic pushdown automaton to a context-free
grammar and vice versa.

A regular language is also a context-free language. We learnt that a regular
language can be expressed as a right-linear/left-linear grammer. So a regular
language is a special case of context-free languages.

Thus, in order to show that a language is context-free we learnt the following
tools:
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1. Design a non-deterministic Pushdown Automaton for the language.
A strict subset of context-free languages are accepted by deterministic
pushdown automata. We saw examples of context-free languages that do
not have deterministic pushdown automata.

2. Find out a context-free grammar for the language.

3. Use closure properties. For example, if the given language is the union
of two context-free languages, then since context-free languages are closed
under union we can derive that the given language is also context-free. We
learnt a set of operations under which context-free languages are closed.

4. The pumping Lemma for CFLs CANNOT be used to show that a language
is context-free!

Not all languages are context-free. Tools for showing that a language is not
context-free:

1. Pumping Lemma for CFLs. Briefly, the idea behind this pumping lemma is
to show that if there are < logk nonterminals in the context-free grammar
of a language, then in order to derive a k-length string s we are forced
to use at least one non-terminal twice (could be in different steps of the
the derivation). Then, in the later appearance of the non-terminal, we
can repeat the intermediate derivation pattern or delete the intermediate
derivation pattern completely. The formal argument can be understood
using parse trees/derivation trees.
The strategy to show that a language L is not context-free using the
Pumping Lemma for CFLs is an adversarial game.
(a) The adversary gives an integer k ≥ 0,
(b) you pick a string s such that s ∈ L and |s| ≥ k,
(c) The adversary gives you substrings u, v, w, x, y such that s = uvwxy,
|vx| > 0, and |vwx| ≤ k,
(d) You pick i ≥ 0
(e) You win if uviwxiz /∈ L.

2. Closure properties can be used here as well. For example, suppose you
know that the given language and another context-free language in union
forms a language that is known not to be context-free, then the given
language cannot be context-free - otherwise the language created in union
should also be context-free.

4 Turing Machines/unrestricted grammars

Languages that are accepted by Turing machines are called semidecidable lan-
guages/recursively enumerable sets. A language is accepted by a Turing ma-
chine if and only if it has an unrestricted grammar. Towards the last part of the
course, we learnt an algorithm to convert a Turing Machine to an unrestricted
grammar and vice versa.
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Context-free languages are also recursively enumerable, because CFGs are
a special case of unrestricted grammar. Similarly, regular languages with their
linear grammars are recursively enumerable.

In order to show that a language is context-free we learnt the following tools:

1. If we want to show that a language is recursively enumerable then we de-
sign a non-deterministic/deterministic Turing machine for the language.
Non-determinism does not add any power to Turing machines, although
the number of steps required by a nondeterministic TM can be exponen-
tially less than that of a corresponding deterministic TM.
A strict subset of recursively enumerable languages are recursive lan-
guages/decidable languages. These are accepted by Turing machines with
the following property: given any input string either it is accepted by the
TM or it is rejected by the TM. Thus the TM halts on each input string;
it does not loop on any input string.

2. For recursively enumerable languages, find out an unrestricted grammar
for the language.

3. Use closure properties. For example, if the given language is the union of
two recursively enumerable languages, then since recursively enumerable
languages are closed under union we can derive that the given language
is also recursively enumerable. We learnt a set of operations under which
recursively enumerable/recursive languages are closed.

Not all languages are recursive or recursively enumerable. Tools for showing
that a language is not recursive/ recursively enumerable:

1. Diagonalization technique, similar to Cantor’s Diagonalization argument.

2. Reductions. Suppose we are given two sets A ⊆ Σ∗ and B ⊆ Σ∗. A re-
duction is a (possibly many-one) computable function σ : Σ∗ → ∆∗ such
that for all x ∈ Σ∗, x ∈ A ⇐⇒ σ(x) ∈ B.
Things to remember: a function f is said to be computable if there is a
TM that takes an input x and at the end of computation writes down f(x)
on its work-tape.
Thus, We are essentially using a Turing machine that converts a string x
in Σ into a string σ(x) ∈ Σ such that x ∈ A if and only if σ(x) ∈ B.
Now, if B is a recursively enumerable set then so is A. On the other hand,
if A is not a r.e set then B cannot be.
Similarly, if B is a recursive set, then so is A. On the other hand, if A is
not recursive then B cannot be.
To show that a language B is not recursive, give a reduction from a lan-
guage A like the Halting Problem HP , which is known to not be recursive.
IF you want to show that B is not r.e, give a reduction from a language
A like HP , which is known to be not r.e.

3. Rice’s Theorems.
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