
Grammars for R.e sets

Video Lecture “Unrestricted grammars and Turing Machines”, re-
lated practice problems and their solutions are on http://cse.iitkgp.ac.in/ ab-
hij/course/theory/FLAT/Spring20/

1 Revisiting Chomsky hierarchy

In the beginning of this course, we had had a brief look at the Chomsky hier-
archy. At that point of time, we only intuitively understood grammars. Now,
we have a far better understanding and so it is time to revisit the Chomsky
hierarchy to formalise definitions. For a tuple (Γ,Σ, P, S) that usually denotes
a grammar, we obtain the following classification depending on the nature of
the set P of productions:

1. Type 3 grammars: These are regular sets, which are known to have left-
linear grammars (Every production is of the type A → Bw or A → w
where A,B are non-terminals and w ∈ Σ∗) as well as right-linear grammars
(Every production is of the type A→ wB or A→ b where A,B are non-
terminals and w ∈ Σ∗). Type 3 grammars have an equivalence with finite
automata: A set has a Type 3 grammar if and only if it is accepted by a
finite automaton.

2. Type 2 grammars: These are CFGs. Due to Chomsky Normal form we
can assume that each production is of the form A→ b or A→ B1B2 with
A,B1, B2 being nonterminals and b ∈ Σ ∪ {ε}. Type 2 grammars have an
equivalence with PDAs: A set has a Type 2 grammar if and only if it is
accepted by a nondeterministic PDA.

3. Type 1 grammars: These are called context sensitive grammars. We have
not covered this type in this course. Productions for this type of grammar
are of the form uXw → uvw where u, v, w are arbitrary strings of (Σ∪Γ)∗,
with v non-null, and X a single nonterminal. In other words, X may
be replaced by v but only when it is surrounded by u and w; i.e., in
a particular context. There is an equivalent machine model for these
grammars called linear bounded automata. This is just for your general
knowledge and to complete the picture.

4. Type 0 grammars: Here the productions are of the form α → β, where
α, β ∈ (Σ ∪ Γ)∗ and α 6= ε. We will see in this Lecture that Type 0

1

grammars are equivalent to recursively enumerable sets and they have
equivalent Turing machines accepting them.

There is a reason why the numbering is done from 3 to 0. It is mainly to
denote that the Type 0 grammars are unrestricted, or have zero restrictions! As
we move towards Type 3, more and more restrictions are included on the form
of the productions.

Recall that {anbn|n ≥ 0} cannot have a Type 3 grammar but has a Type
2 grammar as it is a CFL. Similarly, we have seen that {anbncn|n ≥ 0} cannot
have a Type 2 grammar but by the end of this Lecture we will be convinced
that this language has a Type 0 grammar as it is a r.e set.

2 A Type 0 Grammar has a Turing Machine ac-
cepting it

For a Type 0 grammar G = (Γ,Σ, P, S) we construct a nondeterministic 2-tape
Turing machine M . This is equivalent to a deterministic 1-tape Turing machine.
On the first tape, M writes down the input string w from Σ∗. In the second
tape, the intermediate sentential form α will be stored. Initially, the second
tape of M contains the start symbol S. Then M does the following:

1. Nondeterministically guess a position i between 1 and |α| - this can be
done by nondeterministically choosing to either move right or stay in the
same place (which involves a consecutive right-left move combination).

2. Nondeterministically select a production β → γ from P .

3. If β is a string that starts at the ith position of α then α is transformed
so that β is replaced by γ. Depending on the comparison between the
lengths of β and γ, some parts of the string may need to shift to the left
or right in order to complete this task.

4. when α is a sentence, then M compares α to w and accepts if the two are
the same.

On one hand, using induction, it is possible to show that if w belongs to L(G)
then there is a sequence of guesses that will mimic the derivation of w from S.

On the other hand, if w is in L(M) then there is a sequence of guesses that
imply a derivation from S to w (Use induction to formally prove this). Thus,
w ∈ L(G) as well.

Therefore, L(G) = L(M).

3 The language of a Turing Machine has a Type
0 Grammar

Now, given a Turing machineM = (Q,Σ,Γ, ”left−endmarker” =`, δ, s, ”blank−
space” = B, t, r), we design a Type 0 grammar G = (Γ′,Σ, P, S) deriving ex-

2

actly L(M). Notice that M takes an input x and has the ability to overwrite
on x. If we wish to kind of mimic M ’s operations when building G we must
ultimately derive x from S. One way of doing this is to make two copies of x.
One copy stays intact no matter what production we apply, while on the other
copy the productions try to simulate transitions applied by M . At some point
M accepts the string by entering the state t. At this point, there should be
productions in G that forget the second copy and produce the original x as the
final sentence.

We also need to remember the current state and tape head position for
M while deriving the input x in the grammar G. It is possible to do this
by somehow modifying the copy of x on which the grammar is simulating M .
For example if at some point the tape contents in γ = a1a2 . . . a`, the state
is q and the tape head is at ai then we can remember all this in the string
γ′ = a1a2 . . . ai−1qai . . . a`. The exact formulation will be similar to this idea.

Now let us formalise this idea.
We take Γ′ = ((Σ ∪ {ε})× Γ) ∪ {S,A2, A3}.
The productions in P are:

1. S → sA2

2. A2 → [a, a]A2 for each a ∈ Σ

3. A2 → A3

4. A3 → [ε, B]A3

5. A3 → ε

6. q[a,X] → [a, Y]p for each a ∈ Σ ∪ {ε}, q, p ∈ Q, X,Y ∈ Γ, and such that
δ(q,X) = (p, Y,R) is a transition for M .

7. [b, Z]q[a,X]→ p[b, Z][a, Y]p for each a, b ∈ Σ ∪ {ε}, q, p ∈ Q, X,Y, Z ∈ Γ,
and such that δ(q,X) = (p, Y, L) is a transition for M .

8. [a,X]t→ tat, t[a,X]→ tat, t→ ε for each a ∈ Σ ∪ {ε}, X ∈ Γ.

Now let us see how this works.
For the input x, using productions 1 and 2 we can derive

S =⇒ ∗s[x1, x1][x2, x2] . . . [xn, xn]A2

.
Now, if M accepts x then there is a constant c such that M does not go

beyond c cells on its tape. If we use production 3, then production 4 c times,
and finally production 5 once we derive

S =⇒ ∗s[x1, x1][x2, x2] . . . [xn, xn][ε, B]c

.

3

Note that after this only productions 6, 7 can be used until the accepting
state t is generated. Note that production 6 aims at simulating a right tape-
head move while production 7 aims at simulating a left tape-head move by M .
As the first component of the variables in (Σ ∪ {ε} × Γ) never changes, we are
preserving a copy of the input x throughout all these productions.

Using induction on the number of moves, it can be shown that in M if
(s, x, 0)→∗M (q,X1X2 . . . Xr−1Xr . . . X`, r) then

s[x1, x1][x2, x2] . . . [xn, xn][ε, B]c =⇒ ∗
G[x1, X1][x2, X2] . . . [xr−1, Xr−1]q[xr, Xr] . . . [xn+c, Xn+c]

Here, for all j > n, xj = ε and for all j > `,Xj = B.
Finally, if the following has been derived:

s[x1, x1][x2, x2] . . . [xn, xn][ε, B]c =⇒ ∗
G[x1, X1][x2, X2] . . . [xr−1, Xr−1]t[xr, Xr] . . . [xn+c, Xn+c]

then we apply production 8 multiple times to get the following:

[x1, X1][x2, X2] . . . [xr−1, Xr−1]t[xr, Xr] . . . [xn+c, Xn+c] =⇒ ∗
Gx1x2 . . . xn

.
This means that if x ∈ L(M) then x ∈ L(G).
Lastly, we need to show that any sentence generated by G must be accepted

by M . Use the definitions of productions of G as well as an induction on
the number of steps of derivation to formally show that G must simulate an
accepting computation of M if it derives a sentence from S.

Thus, we have shown that L(G) = L(M).
This Section and the previous one completes the proof that a set has a Type

0 grammar if and only if it is an r.e set, and has a Turing machine accepting it.

4 Example

In the previous section, we have seen an algorithm to convert a Turing machine
into a Type 0 grammar. The aim was to mimic the Turing machine as produc-
tions. Sometimes, depending on the problem, this mimicking can be done with
a smaller/more intuitive set of productions. This is the case in the following
example.

Consider {a2n |n ≥ 0}. We have seen that this is recursively enumerable.
Now we see a Type 0 grammar for this language.

The set of productions are the following:

1. S → ACaB,

2. Ca→ aaC,

3. CB → DB,

4

4. CB → E,

5. aD → Da,

6. AD → AC,

7. aE → Ea,

8. AE → ε.

The nonterminals A,B will behave as left and right endmarkers for the
sentential form a2

n

. C can be thought of as the tape head that moves through
the current string of a’s generated between A and B and doubling their numbers
by using production 2. When the right endmarker is reached then C changes
to D or E through productions 3 or 4. If D is chosen, then using production
5, it moves left till left endmarker A is reached. At this point, production 6 is
used to change D to C and repeat the doubling of the current string. Suppose
E is chosen, then in production 4 the right endmarker B is removed and then
by production 7 E moves to the left. When it hits the left endmarker A, it
removes A. The sentential form this obtained is a2

n

. You can use induction on
the number of steps of derivation to give a formal proof.

5

