Assignment No. 1

7th September 2020

Solutions:

1. Prove the following, giving justification for each step :

$$
\neg(\exists x P(x) \wedge \forall y \neg(M(x, y))) \wedge P(a) \rightarrow \exists z M(a, z)
$$

Sol.
$\rightarrow \neg(\exists x P(x) \wedge \forall y \neg(M(x, y))) \wedge P(a)$
$\rightarrow(\forall x P(x) \vee \exists y M(x, y)) \wedge P(a) \quad$ (taking the \neg sign inside)
$\rightarrow(\forall x P(x) \wedge P(a)) \vee(\exists y M(x, y) \wedge P(a)) \quad$ (distribute over \vee)
$\rightarrow \exists y M(a, y) \wedge P(a) \quad((\forall x P(x) \wedge P(a))$ is false for $\mathbf{x}=\mathrm{a})$
$\rightarrow \exists y M(a, y) \quad$ (since both the clauses are true)
$\rightarrow \exists y M(a, z) \quad$ (since y is a bound variable and hence dummy)
2. Use Peano's Axioms to prove the following, giving justification for each step :

$$
(2+2)=S(S(S(S(0))))
$$

Sol.
$\rightarrow(2+2)$
$\rightarrow S(S(0))+S(S(0)) \quad$ (By definition $2 \equiv S(S(0))$)
$\rightarrow S(S(S(0))+S(0)) \quad$ (since $a+S(b)=S(a+b))$
$\rightarrow S(S(S(S(0))+0))$
(since $a+S(b)=S(a+b)$)
(since $a+0=a$)

