
RATAFIA: Ransomware Analysis using Time And
Frequency Informed Autoencoders

Manaar Alam∗, Sarani Bhattacharya∗, Swastika Dutta∗, Sayan Sinha∗,
Debdeep Mukhopadhyay∗, and Anupam Chattopadhyay†

∗Department of Computer Science and Engineering, IIT Kharagpur, India
{alam.manaar, swastika, sayan.sinha}@iitkgp.ac.in, {sarani.bhattacharya, debdeep}@cse.iitkgp.ac.in

†School of Computer Science and Engineering, NTU, Singapore
anupam@ntu.edu.sg

Abstract—Ransomware can produce direct and controllable
economic loss making it one of the most prominent threats in
cybersecurity. According to the latest statistics, more than half
of the malwares reported in Q1 of 2017 are ransomwares, and
there is a potential threat of novice cybercriminals accessing
ransomware-as-a-service. The concept of public-key based data
kidnapping and subsequent extortion was first introduced in
1996. Since then, variants of ransomware emerged with different
cryptosystems and larger key sizes; however, the underlying
techniques remained the same. There are several works in the
literature which propose a generic framework to detect these
ransomwares; though, most of them target ransomwares having
specific classes of the encryption algorithm. In addition to it,
most of these methods either require Operating System (OS)
kernel modification or have high detection latency. In this work,
we present a generalized two-step unsupervised detection frame-
work: RATAFIA which uses a Deep Neural Network architecture
and Fast Fourier Transformation to develop a highly accurate,
fast and reliable solution to ransomware detection using minimal
tracepoints. The proposed method does not require any OS kernel
modification making it adaptable to most of the modern-day
system. We also introduce a special detection module for suc-
cessful identification of benign disk encryption processes having
similar characteristics like malicious ransomware programs but
having a different intention. We provide a comprehensive study
to evaluate the performance of RATAFIA in the presence of
standard benchmark programs, disk encryption and regular high
computational processes in the light of software security.

Index Terms—Ransomware, Hardware Performance Counters,
Fast Fourier Transformation, Long-Short-Term-Memory

I. INTRODUCTION

Ransomwares are one of the prime security threat in tra-
ditional cyber-physical entities. The number of medium to
large-scale enterprise falling prey to ransom payment and
extortion of their private databases have increased manifold
since its introduction in [1]. These malicious executables
infect victim machines and demand a ransom amount after
encrypting files and documents of the device. In May 2017,
WannaCry ransomware affected approximately 400,000 com-
puters across 150 countries [2]. Moreover, there were 4.3 times
new ransomware variants in Q1 2017 than in Q1 2016 [3].
Identification, blocking of these ransomwares at the earliest
along with recovering contents of already encrypted files is
already an open challenge.

Kharraz et al. [4] studied a range of ransomwares and identi-
fied different ransomware families. It is suggested that despite
advancing encryption systems, the prominent ransomwares

leave a trait in the access of I/O and file-systems. Accordingly,
Kharraz et al. [5] proposed a technique of correlating high file
system activities with the intrusion of ransomwares, which,
however, is susceptible to false positives and also can be de-
feated with a slow encryption process. Moreover, the technique
requires modification in the Operating System kernel, which
may not be practical in many real-life scenarios. Ransomware
detection using honeypot type fake folders is discussed in [6];
however, any ransomware can bypass the detection if it does
not invade the honeypot area in the system. Scaife et al. [7]
presented an approach to detect ransomwares by analyzing the
changes due to encryption of user data, but fails to distinguish
whether a malicious ransomware process or a benign user
process makes the change. Ransomware detection has also
been studied in the context of formal methods. Mercaldo et
al. [8] proposed a detection approach in Android platform
by constructing formal models of ransomware bytecodes con-
sidering temporal logic properties of different ransomware
families. However, the paper does not provide any insight
into the efficiency of the proposed model considering disk
encryption programs, which are benign user programs having
similar behavior as ransomwares. In a recent work, Kiraz et
al. [9] presented a method, where large integer multiplication
blocks are identified within an execution to deal with crypto-
ransomwares. Since public-key cryptosystems rely on large
integer multiplications, it can detect the threat at an early
stage. Similar approaches for detection of symmetric-key cryp-
tographic primitives via data flow graph isomorphism [10] or
by identifying characteristics of a cipher in a binary code [11]
are also presented. In this paper, neither we target a specific
family of ransomwares nor the properties corresponding to
a particular cipher implementation used by a ransomware.
Instead, we develop a generic anomaly-based approach relying
on the hardware activities of an unknown program obtained
from Hardware Performance Counter (HPC) statistics.

HPCs were first introduced by Malone et al. [12] for
checking static and dynamic integrity of programs to detect
any malicious modifications to them. There have been several
works [13]–[15] which utilize HPCs for detecting the presence
of malwares. Demme et al. [13] used HPCs to build a mal-
ware detector in hardware. Detecting malware which modifies
kernel control flow has been targeted in [14], [15]. These
works use HPCs to monitor a target system for identifying the



vulnerabilities. However, detection of ransomwares through
the HPCs, to the best of our knowledge, has not been attempted
so far. Though the underlying technique is similar [13],
ransomware detection requires far more accuracy and faster
response time to limit the damage.

A major difficulty in any ransomware detection approach
is to differentiate between a benign disk encryption process
and a ransomware executable, both of which serve the same
objective, but the latter being a malicious one. Most of
the popular disk encryption programs require administrative
privilege and use similar algorithms [16] in their encryption
operation. In this paper, we utilize this fact and try to address
a harder problem to differentiate between a disk encryption
program and a ransomware not only by checking the privilege
of a program but also by observing its behavior in terms
of HPCs. We also present a basic idea to recover the files
encrypted by a ransomware before its detection by utilizing the
Linux file locking mechanism using mlock() system call.

Motivation and Contribution: Our primary motivation
behind the work and the major contributions are listed below:

1) We propose a comprehensive ransomware detection
method using the HPCs, which have been shown to
be very efficient in detecting different categories of
malwares. However, existing methods for ransomware
detection, to the best of our knowledge, do not use
HPCs in their techniques. The use of HPCs helps us
to obtain valuable information with finer granularity and
thereby aids us to devise a method to detect ransomwares
with minimal detection latency.

2) The main objective of the proposed method: RATAFIA
is to learn the behavior of a system under observation
with the statistics obtained from a cluster of HPC events.
In this work, we propose an unsupervised learning
technique with the help of an Long-Short-Term-
Memory (LSTM)-based Autoencoder which, to the
best of our knowledge, has not been attempted so
far for detecting ransomware families. The advantage
of unsupervised technique is that the learning process
does not require a labeled dataset, which is often difficult
to obtain considering the occurrences of several newer
unknown varieties of ransomwares, and the detection
of unknown ransomware is a far greater challenge than
known ones. The Autoencoder is trained with abundant
data on normal system behavior of the target system,
which can be obtained without any difficulty.

3) The general operation of ransomwares involves access-
ing, opening, encrypting and closing files one after
another in a very high frequency, and this fast repetitive
sequence of file access is certainly impossible with
human intervention. Hence, ransomwares are compu-
tationally intensive programs, and to distinguish them
from other benign computationally intensive programs
we utilize the repetitive property of ransomwares in our
framework. Thus, we propose to use another LSTM-
based Autoencoder trained on the values obtained by
applying Fast Fourier Transformation (FFT) on the time-

domain HPC data for normal observation. The proposed
method in this paper, to the best of our knowledge,
is the first one to use FFT for the detection of
ransomware programs and differentiating it with
other computationally intensive processes to reduce
the false positive rates.

4) Most of the popular ransomware detection methods [5]–
[8] do not evaluate their detection framework in the
presence of Disk Encryption programs, which are benign
in nature having similar behavior as ransomwares. In
this paper, we also evaluate the performance of
RATAFIA in the presence of popular disk encryption
programs and devise a correlation-based approach to
differentiate between these two processes.

RATAFIA is a lightweight method, which does not require
any hardware or kernel level modification, thereby making it
practical to use in almost every environment.

II. BACKGROUND ON LSTM-BASED AUTOENCODER

In this section, we present a brief overview on the working
of an LSTM-based Autoencoder which is essential for under-
standing the proposed methodology. LSTM networks are deep
recurrent neural network models which have been recently
used for many sequence learning tasks [17], [18]. An LSTM-
based Autoencoder model consists of two modules: Encoder
and Decoder. The Encoder is an LSTM network which is
used to map an input sequence to a vector representation
of fixed dimensionality, and the Decoder is another LSTM
network which uses this fixed vector to reproduce the target
sequence. Thus, the primary goal of an Autoencoder is to
induce a representation for a set of sequence data by learning
an approximate identity function.

Let us consider a time-series sequence data X =
{x1, x2, . . . , xN} of length N , where each point xi ∈ Rm

is an m-dimensional vector obtained at time-instance ti. We
consider a scenario where we have a very large time-series
data of length L. A set of multiple short time-series data can
be obtained by taking a window of length N and sliding over
the larger time-series, where N � L. Let us denote the set
of such short time-series as ST , which we call the training
data. The Encoder and the Decoder is jointly trained for each
X ∈ ST to obtain a fixed length vector representation F ,
where F ∈ Rn is an n-dimensional vector which represents
the common characteristic existing in the training data.

Since, the Autoencoder learns an approximate identity func-
tion, it will incur some errors while reproducing the target
sequence for a given input. Let, for the input sequence X , the
reconstructed sequence is X ′ = {x′1, x′2 . . . x′N}. The error
while generating X ′ from X is termed as Reconstruction
Error. The reconstruction errors for all the sequences in ST :

L =
∑
X∈ST ‖X − X

′‖2 =
∑
X∈ST

∑N
i=1 ‖xi − x′i‖2

The learning goal of the Autoencoder is to minimize recon-
struction errors for all the input samples. In the next section,
we discuss the benefit provided by Autoencoder to detect the
presence of an anomaly using the data observed through HPCs.



(a) # Branch Instructions (b) # Branch Misses (c) # Cache Misses (d) # Cache References
Fig. 1. Variation of different Performance Counter Events: a) branches, b) branch-misses, c) cache-misses, and d) cache-references with
respect to the regular observation (blue) and also in the presence of Wannacry Ransomware (orange).

III. DETECTING ANOMALOUS SYSTEM BEHAVIOR

In this section, we first analyze the normal behavior1 of a
system by monitoring appropriately selected HPC events in
parallel. We then present a notion of anomalous activity in
the system and demonstrate a detailed method to detect those
anomalies using an Autoencoder.

A. Observing the System Behavior using HPCs: The HPCs
are a set of special purpose registers built into modern pro-
cessors to dynamically observe the hardware related activities
in a system. HPCs can be monitored dynamically using the
perf tool, available in Linux 2.6.31+ kernels. One interesting
property of this tool is that a user can observe the HPCs asso-
ciated with a system with some time interval, thereby giving
the benefit of observing the system behavior continuously in a
succession of time. The command to monitor a particular HPC
event for a specific executable in such a way is as follows:

perf stat -e <event> -I <time_interval> <executable>

The range of HPC events those can be monitored using the
perf tool is more than 1000. However, in most Linux based
systems, the perf tool is limited to observing a maximum of
6 to 8 events in parallel depending on the processor type.
Moreover, some of the events are not even supported by all
the processors. Our objective in this work is to detect the
presence of ransomwares, which mainly contain an encryption
program, typically involving both symmetric and asymmetric
key encryptions. Micro-architectures have been widely used
as a source of side-channel information to thwart both sym-
metric [19], [20] and asymmetric encryptions [21]. Secret
information leakages through cache and branch predictor units
of a processor are main contributors behind the success
of these attacks. Ransomware programs also use encryption
algorithms in their operation; hence, we selected events related
to cache and branch prediction and are supported in most
of the processors to utilize the well-established information
leakages for our proposed method. The HPC events selected
for our study are instruction, cache-references,
cache-misses, branches, and branch-misses. The
events are self-explanatory by their names. Generally, the
symmetric encryption affects the cache based events while the

1We term regular execution pattern of an uncompromised system as normal
behavior, which captures all the daily operations of benign executables. We
do not consider execution patterns of computationally intensive programs
within the normal behavior, as ransomwares, which are also computationally
intensive programs, may be missed by the detection framework by doing so.

(a) (b)

Fig. 2. Importance of windowed observation over single data-point for
decision making considering the event branch-misses. A single data point
is unable to detect the presence of WannaCry for a particular time-instance,
whereas, a window of observation with a specific length, helps to differentiate
between a WannaCry (orange) and Regular Observation (blue).

asymmetric encryptions affect the instruction and branching
events. We have measured the effects of ransomware programs
on other HPC events, and we found out that the events men-
tioned above are affected most, which supports our hypothesis.

In order to construct the prototype of normal system behav-
ior, we designed a watchdog program and collected the perf
stat values with 10ms time interval2 for that executable.
We collected these values at different points of time in the
target system and created a dataset of regular observations.
The effects of all other processes including the ransomwares
running in the system will have an impact on the HPC values.
We articulate that any behavior which is not close to this
dataset is unusual activity, but may not be a malicious one.

We show the effect of a Ransomware (for example, Wan-
naCry) on the HPC events in Fig. 1. Blue lines in the figure
represent the effect of normal system programs on the watch-
dog for different HPC events, whereas the orange lines show
the effect of ransomware. We can observe that the behavior
of ransomware with respect to the HPC event statistics are
significantly different from the normal observation.

An important point to be observed is that for some particular
time instances, the behavior of WannaCry does not change
much from normal system behavior. For example, around time
interval of 100, as shown in Fig. 2(a), the effect of WannaCry
on the event branch misses is same as normal system behavior.
However, if we consider a window of a specific length, as
shown in Fig. 2(b), the behavior of WannaCry is more distin-
guishable from normal observation. So, instead of considering
individual points for decision making, we select a window of
observations considering each of the five events collectively.

2The minimum interval of time after which perf is allowed to sample a
data point is 10ms. We have selected minimum time-interval to sample data
as fast as permitted, to enhance the mechanism regarding detection time.



(a) WannaCry (b) Vipasana (c) Locky (d) Petya
Fig. 3. The sequence of Reconstruction Errors for different Ransomwares (blue) in the Autoencoder. Reconstruction errors for WannaCry and Locky are
lower than the threshold Rt (red) for some time-instances; however, the errors are higher for most of the times, which is sufficient to detect them as anomalies.

Thus, we transform the problem into anomaly detection in
multivariate time-series data. In the next subsection, we use
the LSTM-based Autoencoder, as discussed in Section II, to
detect the anomalies with respect to the regular observation.

B. Detecting Anomaly Using an Autoencoder: LSTM-based
Autoencoder has recently become popular to detect anomalies
with multi-sensor inputs [22]. In this paper, to present a
generalized ransomware detection strategy, we avoid modeling
behavior of ransomwares as there can be a potential new one
whose behavior is unknown. Instead, we model normal system
behavior, as we can get a large number of such instances.
Another advantage of detecting anomalies by modeling normal
behavior is that we do not need labeled dataset since any ac-
tivity with unusual behavior crossing an empirically calculated
threshold can be detected as an anomaly. Thus, we propose
an unsupervised approach to detect these anomalies.

We have already seen in the previous subsection that HPC
values observed over the watchdog are considered as time-
series data. The LSTM-based Autoencoder, as discussed in
Section II, is trained to reconstruct instances of normal time-
series with the target time-series being the input itself. Intuition
behind the anomaly detection is that the Autoencoder is only
shown normal instances during the training phase and learned
to reconstruct them. However, when an anomalous sequence
is given as an input to the Autoencoder, it will not be able
to reconstruct it accurately, and hence would lead to higher
reconstruction errors in comparison to the normal sequences.

The training dataset is constructed from the observed data
for normal system behavior by taking a window of 100
tracepoints (i.e., a window of tracepoints collected over 1
second, since each interval data is collected after 10ms.
The window size of 100 is chosen empirically). We shift
the window by one time-interval (i.e., 10ms) repeatedly to
consider consecutive 100 sample point for learning. In order
to quantify the threshold for detecting anomalous activities,
we calculate reconstruction error distribution (R) for some
unknown samples of normal behavior, which are not used
in the training phase. Since the unknown samples belong to
normal behavior, according to the 3σ rule of thumb, all the
error values in R should lie within three standard deviations of
the mean. Hence, we set the threshold (Rt) for reconstruction
error as Rt = µR + 3 ∗ σR, where µR and σR are mean
and standard deviation of distribution R. In our experimental
setup Rt came out to be 5.38× 10−6. Thus, for an unknown
sequence, if the reconstruction error is greater than Rt, we

state that the sequence belongs to an anomalous observation.
In the next subsection, we present experimental validations of
the claim considering different ransomwares.

C. Anomalous Behaviors of Ransomwares: In our study,
we considered four ransomware programs: namely WannaCry,
Vipasana, Locky, and Petya to show the impact of selecting
threshold Rt in detecting them as anomalies. Fig. 3 shows the
sequence of reconstruction errors for these ransomwares. Blue
lines indicate reconstruction errors of each window, whereas
red lines signify threshold Rt as calculated before. First point
on each error plot represents the reconstruction error of the
first window of 100 time-interval (equivalently 1 second). The
successive points come after each interval of 10ms as we slide
by one time-interval for calculating next reconstruction error.

We can observe in Fig. 3(a)3, the execution of WannaCry
starts behaving like a regular program (since the reconstruction
errors lie well below the threshold), but the error shoots over
the threshold at 432nd observation. Thus, the WannaCry is
detected as anomaly (1000+431∗10) = 5310 ms after the start
of execution. Whereas, from Fig. 3(b), Fig. 3(c), and Fig. 3(d),
we can observe that the ransomwares Vipasana, Locky, and
Petya are detected as an anomaly at the first window itself, i.e.,
1 second after the start of execution. In all these cases there is
an extra overhead of time due to the processing time associated
with the Autoencoder, which we discuss in Section VIII.

IV. IS RECONSTRUCTION ERROR GOOD AS DECIDER?

In the previous section, we suggested that a threshold as
high as Rt can be used to decide whether a process behavior
significantly deviates from the normal system behavior. Next,
we explain why a single decision step is not enough to claim
that the anomaly observed is from a malicious process.

False Positives due to Heavy Computation Processes: In
order to test the robustness of our scheme, we incorporate an
analysis in the presence of computationally expensive SPEC
benchmarks. We consider the Gshare predictor implementation
as provided in [23] and observe the HPC statistics exactly like
our previous setting. Fig. 4 presents the variation of different
HPC events in the presence of both SPEC benchmarks and
WannaCry ransomware. We can observe that the execution
behaviors for both the programs are significantly different from
normal observations. Thus, the sequences of time-series data

3The embedded image in the box is the zoomed version of the same image
for the first 1500 window data.



(a) # Branch Instructions (b) # Branch Misses (c) # Cache Misses (d) # Cache References
Fig. 4. Comparison of the effects on different HPC events in the presence of Wannacry Ransomware (orange) and also the SPEC Benchmark Programs (blue).

Fig. 5. The sequence of Reconstruction Errors for the SPEC Benchmark
(blue) in the Autoencoder. As the errors are higher than the threshold (red)
for most of the times, it is detected as an anomaly producing a false positive.

for SPEC programs may also create significant reconstruction
errors. Fig. 5 clearly shows that the sequence of reconstruc-
tion errors in the presence of SPEC benchmark programs is
above the predetermined threshold for most of the times. It
substantially raises an alarm to RATAFIA that the benchmark
program is a potentially malicious program which deviates to
an extent from the normal system behavior. But surely, in this
case, it is a false alarm, since the benchmark is composed
of server and multimedia programs and can be considered as
the representative of high computational processes which may
deviate highly from the normal running processes in a system.

Next, we perform a transformation of the values obtained
through HPC statistics from time domain to frequency domain
to differentiate actual malicious processes from false positives.

Eliminate False Positives using FFT: In the second phase
of detection using RATAFIA, we transform the values from
time domain to frequency domain using FFT, which is the most
efficient way to implement Discrete Fourier Transformation.
The primary reason to convert the analysis from the time
domain to frequency domain is to understand the repetitive
pattern within the values. The ransomware executable runs
encryption repeatedly on multiple files; thus it repeats the same
set of operations of opening, encrypting and closing followed
by deleting a file for multiple files one after another.

We have applied FFT on time domain values for different
HPC events as mentioned in Section III-A, to obtain frequency
domain values. Fig. 6 presents FFT plots for the normal system
behavior in blue lines, the SPEC Observations in green lines
and WannaCry in orange lines for different HPC events, which
typically indicates that the amplitudes for each frequency bins
are constantly higher for the ransomware in contrary to SPEC
benchmark. Fig. 6 also shows that for most HPC events (apart
from the cache misses), the FFT plot of the SPEC benchmark
overlaps exactly with the FFT of the normal system behavior.
Also, it is quite clear from Fig. 6(a), Fig. 6(b), and Fig. 6(d)

that the amplitudes of almost all the frequency bins are higher
for WannaCry than the SPEC observation, which is eminent
as the WannaCry program repeatedly encrypts multiple files.

The variations of amplitudes for different frequency bins
can again be considered as a multivariate time-series data,
and an LSTM-based Autoencoder can be used to detect the
anomalies, as discussed in Section III-B. The amplitudes for
SPEC benchmark are very close to that of regular observations
for most of the HPC events. Thus, modeling the FFT data
for regular sequences using an Autoencoder will result in
reconstruction errors close to the threshold (say R′t) for SPEC
benchmarks, and the error will be much higher in case of
ransomwares because of the higher frequency amplitude values
due to repeated encryptions. We modeled another Autoencoder
following the procedure mentioned before with the FFT trans-
formed data and calculated the threshold R′t to be 0.002829
for our experimental setup. Fig. 7 presents the sequence of
reconstruction errors for both SPEC and different ransomwares
in the second Autoencoder. We can easily verify that the
reconstruction errors of SPEC programs always lie below the
threshold, whereas the errors of all the ransomwares always
remain higher to the threshold4. Thus, the use of Autoencoder
on FFT data helps to remove false positives (i.e., heavy
computation programs) from the detection framework.

Need of Both the Autoencoders: One interesting point that
may arise in this framework is that what is the requirement
of both the autoencoders, when it is evident from the fact
that the second Autoencoder is sufficient enough to discard
ransomwares. The second Autoencoder takes FFT converted
values of window data, and the FFT conversion requires some
computational effort for the conversion. Hence, to reduce the
computational complexity of the framework, we apply a first
level filter in terms of the first Autoencoder to remove the
less computational heavy programs in the first stage itself and
apply FFT on the sequence data detected as an anomaly in the
first stage before sending it to the second Autoencoder.

V. EXPERIMENTS ON STANDARD LINUX BENCHMARK

In this section, we consider a standard Linux benchmark
CHStone to analyze the efficiency of both the Autoencoders.
CHStone is a Linux benchmark suite which represents various
application domains such as arithmetic, media processing, and
security. Hence, it would be intriguing to evaluate the perfor-
mance of RATAFIA in the presence of this benchmark. The

4The reconstruction error for Petya Ransomware on the first window is
lower than the threshold, but for subsequent windows, errors are always higher.



(a) # Branch Instructions (b) # Branch Misses (c) # Cache Misses (d) # Cache References
Fig. 6. Variation of Amplitudes in frequency domain in comparison to regular observation (blue) for different HPC events in the presence of SPEC Benchmark
(green) and Wannacry Ransomware (orange) after the Fast Fourier Transformation.

(a) SPEC (b) WannaCry (c) Vipasana

(d) Locky (e) Petya
Fig. 7. Sequence of Reconstruction Errors (blue) for a) SPEC Benchmark and different b)-e) Ransomwares in the second Autoencoder. The errors are
constantly higher than the threshold R′

t (red) for all the ransomwares, and thus easily detected as anomalies.

sequence of reconstruction errors for both the Autoencoders
for the execution of CHStone programs is shown in Fig. 8. We
can observe from Fig. 8(a) that in most cases the error value in
the first Autoencoder is lower than the threshold Rt. However,
in some of the cases, the error is higher (i.e., it is detected as an
anomaly), but the reconstruction error, as shown in Fig. 8(b),
in the second Autoencoder is always lower than the threshold
R′t (except at some specific time interval). We can hypothesize
that, if the reconstruction error in both the Autoencoders are
constantly higher for some specific time we conclude that
behavior as anomaly instead of considering a single spike5.
We also experimented with two other benchmarks such as
Unix-Bench and LMBench, and presented the results in Fig. 9,
which shows that the results are similar in nature.

VI. IDENTIFYING DISK ENCRYPTION PROGRAMS

The Disk Encryption processes are very similar in oper-
ation to the malicious ransomware processes. Both of these
processes access files frequently and encrypt them one after
another, though the intentions of the processes are entirely
different. While designing RATAFIA, one of the most signifi-
cant challenges is to differentiate the disk encryption processes
from malicious ones. Also, there are some ransomwares having

5The spikes in reconstruction error plots occur when the execution behavior
of a program is significantly dissimilar from the benign execution template.

(a) First Autoencoder (b) Second Autoencoder
Fig. 8. The sequence of Reconstruction Errors (blue) for the CHStone
benchmark programs in both the Autoencoders.

disk encryption program as their encryption engine, which
typically puts the security engineers in a very delicate state.
In this section, we discuss how the disk encryption programs
differ from the ransomware processes which does not use disk
encryption as their intermediate software routine. The detec-
tion module proposed in this section helps us to differentiate
disk encryption modules from the general set of ransomware
programs. Later we use this detection module to demonstrate a
reasonable solution to this problem of ransomware detection.

In order to manifest the problem, we consider two popular
disk encryption processes in our study, namely TrueCrypt,
and VeraCrypt. The behavior of both the processes in both
the Autoencoders are shown in Fig. 10. We can see from the
figure that, both the disk encryption processes are detected as
ransomwares by RATAFIA, as the reconstruction errors in both



(a) (b) (c) (d)

Fig. 9. Sequence of Reconstruction Errors (blue) for Benchmark Programs in both the Autoencoders. (a) Unix-Bench in First Autoencoder, (b) Unix-Bench
in Second Autoencoder, (c) LMBench in First Autoencoder, (d) LMBench in Second Autoencoder.

(a) (b) (c) (d)

Fig. 10. Sequence of Reconstruction Errors (blue) for Disk Encryption Programs in both the Autoencoders. (a) TrueCrypt in First Autoencoder, (b) TrueCrypt
in Second Autoencoder, (c) VeraCrypt in First Autoencoder, (d) VeraCrypt in Second Autoencoder.

the Autoencoders are constantly higher than the thresholds for
a significant interval of time. One naı̈ve solution is to check
the privilege of the current process under suspicion. Since
disk encryption processes can only be run by an administrator
with highest privilege, checking the privilege of the running
application can be a quick check to determine whether the
target process is malicious or not.

In this paper, however, we also delved into a harder problem
of differentiating these two sets of processes by looking at
the nature of HPC values. All the popular disk encryption
processes use AES-XTS [16] mode of encryption for their op-
erations. We utilize this characteristic to template the operation
of a disk encryption, and in the online phase, we check for
whether the suspicious program is a disk encryption or not. In
order to find similarity with the stored template, we calculate
a cumulative correlation of it with the suspicious process. If
the correlation is high for a successive interval of time, we
conclude that the process is a disk encryption process.

The watchdog program generates continuous windows of
multivariate data with significantly different magnitudes for
various processes. Instead of using complex multivariate cor-
relation, we use the univariate reconstruction error from first
Autoencoder for a simpler Pearson’s Correlation to make the
computation less expensive and with fewer storage require-
ments. We store a template of reconstruction errors from first
Autoencoder for a disk encryption process instead of multi-
variate window data and correlate it with the reconstruction
errors from first Autoencoder of the unknown process.

In order to demonstrate the approach we use reconstruction
errors of TrueCrypt as our template, and present the cumulative
correlation values with VeraCrypt and previously mentioned
ransomwares in Fig. 11. We can easily observe that the cor-
relation values of VeraCrypt are high for a successive interval
of time, whereas, correlation values for all the ransomwares

Fig. 11. Cumulative Correlation of Veracrypt and different Ransomware
programs with another disk encryption process TrueCrypt.

converges to a very low value. Hence, we conclude that it
is feasible for RATAFIA to differentiate the behavior of disk
encryption programs from ransomwares with the hypothesis
that most of the popular disk encryption programs use the
same mode of encryptions in their operations.

Comprehensive Detection and Temporary Suspension of
Disk Encryption Processes: The discussion in the previous
section shows that a particular mode of encryption can be
differentiated with high confidence if the HPC events are mon-
itored in an efficient manner. This identification specifically
means that all disk encryption algorithms running AES in XTS
mode can be differentiated from the general genre of malicious
ransomware programs which have no disk encryption sub-
routine in them. Though as mentioned earlier, their exists
some ransomware like MAMBA, which uses disk encryption
modules in its subroutine to maliciously encrypt files [24]. Our
detection module, as described previously, can successfully
identify that whether a disk encryption module is running in
the background; however, it turns out that the disk encryption
could also be a part of ransomware operation. In this paper,
we propose a solution to this problem by temporary suspend-
ing the suspected disk encryption program, which raises an
alarm and waits for a confirmation from the user whether



Watchdog
Program Autoencoder_1

Error 
> 

Threshold_1 
FFT

Converter

Autoencoder_2

Error 
> 

Threshold_2 

Correlation 
Module 

Sandbox 
Environment 

Monitors 
HPCs 

Window of raw
HPC values

Reconstruction 
Error 

If TRUE, then
the window is
anomalous

Window of raw
HPC values

Transformed
FFT values

Reconstruction 
Error 

If TRUE, then the window
belongs to repeated
encryption process

Check the correlation
of the process with

disk encryption

If LOW Correlation
value, the window

belong to Ransomware

RANSOMWARE
Detected

Ransomware 
Detection Method 

Flow of Operations

Reconstruction
Error of Disk
Encryption

Process

Both Offline and
Online Phase

Online Phase

Offline Phase

If HIGH Correlation
value, wait for user

authentication

Does not
Authenticate 

Fig. 12. Detection Methodology of RATAFIA: In the offline phase, two Autoencoders are trained based on the normal observation, and the correlation
module is prepared using the template of popular disk encryption process with AES-XTS mode operation. In the online phase, an unknown program is
considered as a Ransomware if and only if all the following three cases are satisfied. a) It is detected as an anomaly in Autoencoder 1, b) It is detected as an
anomaly in Autoencoder 2, c) It has low correlation value or it has high correlation value but user does not confirm it as authentic disk encryption process.

the suspected program is actually launched by the user. The
confirmation will automatically resume the disk encryption
module intended to run from the user’s end but prevents the
unintended ones which gets launched by the ransomwares.

VII. ARCHITECTURE OF RATAFIA

In this section, we present a detailed architecture of the
proposed methodology. Basic diagram of the system is shown
in Fig. 12. The architecture contains five modules: Watchdog
Program, Autoencoder 1, FFT Converter, Autoencoder 2, and
Correlation Module. The methodology works in two phases,
namely Offline Phase and Online Phase. The functioning of
each module in both the phases are described below:

Offline Phase: In the offline phase, the detection methodol-
ogy is trained with the normal behavior of the target system,
such that any unusual activity of a ransomware is detected
correctly in the real-time scenario. The functioning of each of
the modules in this phase is described below.

1) Watchdog Program: Monitors HPCs of the target envi-
ronment continuously and forwards a window of data to
Autoencoder 1 and FFT Converter in parallel.

2) Autoencoder 1: Trains an Autoencoder with the dataset
forwarded by watchdog program and also forwards the
reconstruction error corresponding to a disk encryption
process to the correlation module directly6.

3) FFT Converter: Computes Fast Fourier Transformation
of each window forwarded by the watchdog program
and passes the results to the Autoencoder 2.

4) Autoencoder 2: Collects data passed by FFT Converter
and trains another Autoencoder based on the dataset.

6The behavior of disk encryption is not included in the training as this may
produce false negatives for ransomwares since both are repeated encryption
process. However, the inclusion of other encryption programs in the training
dataset will not create any difficulties, as long as they are not repeated file
encryption programs. The reconstruction errors due to the disk encryption
program are calculated after the training is completed.

5) Correlation Module: Stores reconstruction errors related
to a disk encryption for analysis in the Online Phase.

Online Phase: In the online phase, the detection module
is deployed in the target system for real-time monitoring to
detect ransomwares. The functioning of each module for an
unknown process in this phase is discussed below.

1) Watchdog Program: Continuously monitors the system
and forwards a window data to Autoencoder 1. Watch-
dog program does not forward data to FFT converter for
monitoring the system with lower computational cost.

2) Autoencoder 1: Calculates reconstruction error of the
data received from the watchdog program. If the error is
higher than the predefined thresholdRt, it sends a signal
to watchdog program to transmit the same window to
FFT Converter. Otherwise, the process is allowed to
execute in the system. This module also forwards the
data to correlation module directly, irrespective of it
being lower or more than the threshold value.

3) FFT Converter: Converts the data received from the
watchdog program into the frequency domain, and for-
wards the transformed data to the Autoencoder 2, but
with a condition imposed by the Autoencoder 1 module.

4) Autoencoder 2: Calculates the reconstruction error of
the received FFT data, and if the error is higher than
the predefined threshold, R′t, it sends a signal to the
correlation module to check for its correlation with
the template of disk encryption process. Otherwise, the
process is considered as simply a high computational
process and is allowed to execute in the system.

5) Correlation Module: Calculates cumulative correlation
of the unknown process with known disk encryption pro-
cess. If the correlation is low for a considerable duration
of time, the process is considered as a Ransomware and
is terminated from the system, else it is forwarded to user
for confirmation as a legitimate disk encryption process.



TABLE I
MODEL ARCHITECTURE FOR AUTOENCODERS

Layer
Number

Layer
Type

Input
Shape

Output
Shape

Autoencoder 1
1 LSTM (None, 100, 5) (None, 100, 32)
2 LSTM (None, 100, 32) (None, 100, 5)

Autoencoder 2
1 LSTM (None, 100, 5) (None, 100, 64)
2 LSTM (None, 100, 64) (None, 100, 5)

VIII. EVALUATING THE PERFORMANCE OF RATAFIA

We performed all the experiments in a desktop system hav-
ing Intel Core i5 7500 processor with 2.6GHz clock
frequency running Linux 4.10.0-38-generic kernel. We used
popular open source Python-based neural network library
Keras for the implementation of both the Autoencoders. The
architecture used to model the Autoencoders are mentioned
in Table I. The thresholds, as mentioned previously, came
out to be 5.38 × 10−6 and 0.002829 respectively from these
distributions following 3σ rule of thumb.

The FFT converter usually takes 0.0003 milliseconds to
convert a sequence within a window into the frequency
domain. The model building times for Autoencoder 1 and
Autoencoder 2 are on average 10 and 14 minutes respectively.
Testing time to calculate whether a single window is an
anomaly or not is 1.321 milliseconds for Autoencoder 1 and
1.699 milliseconds for Autoencoder 2 respectively. As shown
in the architecture of RATAFIA in Fig. 12, the testing of a
regular observation only passes through the Autoencoder 1,
thereby taking only 1.699 milliseconds, and an anomalous
observation passes through all the three modules: Autoen-
coder 1, FFT Converter, and Autoencoder 2, thus taking
1.321+0.0003+1.699 = 3.0203 milliseconds to be detected.
The time to correlate two reconstruction errors from Autoen-
coder 1 and the stored error trace is on an average 0.0001
milliseconds, which will be calculated only for either disk
encryption or ransomwares. In both the cases of regular and
anomalous observation, detection time is less than sampling
interval, which is 10 msec. Hence, the detection is performed
seamlessly, without the need for any storage buffer, as a new
window of data will be created after 10 msec.

Without loss of generality, we first present the calculation
of detection time for most recent WannaCry ransomware by
RATAFIA. As shown in Fig. 3(a), the WannaCry is detected
as an anomaly at the 432nd window and instantly detected
as repeated encryption process at the same time because it’s
reconstruction error is always higher than the threshold of
Autoencoder 2. Hence, total time taken to detect WannaCry
as a repeated encryption process is equal to (Time taken to
generate the first window) + 431 * (time interval for each
sample) + (Autoencoder 1 testing time) + (Time for single
FFT Conversion) + (Autoencoder 2 testing time) = 1000 +
431 ∗ 10 + 1.321 + 0.0003 + 1.699 millisecond = 5313.0203
milliseconds. Thus, WannaCry is detected by RATAFIA as a
repeated encryption process in approximately 5.313 seconds.
We can check privilege of the program and terminate it

Fig. 13. Notion of File Recovery using Linux mlock(). (a) Let there are 4
files which are opened within a specific time quantum. (b) Backup these
files with Linux mlock() command (marked with green color). (c) Let
ransomware encrypts 3 files before being detected by RATAFIA (marked with
red color). (d) We can easily retrieve the encrypted files from the backup.

instantly as ransomware does not have any administrative
privilege. However, if we assume that any ransomware gets
temporary access to the administrative privilege, its execution
can still be prevented by the correlation module, though with
a small increase in detection latency. For example, the correla-
tion module discriminates WannaCry from the disk encryption
process starting at 1002nd window, as shown in Fig. 11. So,
for confirming it as a ransomware program, by correlation, it
takes almost extra 5 seconds of execution time. Since at this
stage we check for a potential ransomware, we always pause
the execution of the suspicious process before sending it to the
correlation module and resume it after the verification from the
user. Similarly, the detection time for the other ransomwares
Vipasana, Locky, and Petya are 1.003, 3.123, and 1.203
seconds respectively. We would like to mention that none of
the recent state-of-the-art ransomware prevention methods, as
discussed in Section I, considered detection latency as a pa-
rameter of performance, which is indeed crucial in the context
of ransomware detection. Hence, we are unable to provide any
comparison related to the detection latency. As a sample run
with the WannaCry, out of 10000 files of approximately 21
bytes each, when RATAFIA stops its execution, 68 files are
encrypted. It may be noted that the size of a typical file is
much larger than 21 bytes, and hence, a lesser number of
files will be encrypted in the contemporary systems before
RATAFIA prevents the execution of WannaCry. We provide a
comparative study with state-of-the-art techniques in Table II
considering the efficiency to deal with false positives in terms
of computationally intensive programs and disk encryptions.

IX. A BASIC IDEA OF FILE RECOVERY

RATAFIA is thus capable of detecting the presence of
ransomwares very quickly. Depending on the detection latency,
ransomware can encrypt few files (say n). We conclude with
a suggested approach for data retrieval. A practical solution
would be to take backups of n-recently opened files, and after
the lapse of time quantum required to encrypt these files, we
delete the copies if RATAFIA raises no ransomware alarm,
which also minimizes storage requirement for the backup files.
In order to further ensure that the backup files are not en-
crypted we perform locking operation using Linux mlock().
A basic idea of this approach is presented in Fig. 13, which



TABLE II
PERFORMANCE COMPARISON OF RATAFIA WITH STATE-OF-THE-ART METHODS

Kharraz et al. [5] Mercaldo et al. [8] C. Moore [6] Scaife et al. [7] RATAFIA
Computationally

Intensive Programs
Did not consider evaluation on computationally

intensive benchmark programs explicitly Can differentiate from ransomwares

Disk Encryption
Programs

Not considered
false +ve evaluation

Not considered
false +ve evaluation

Not considered
false +ve evaluation

Needs kernel modification
for the detection

Can detect as false positives without
any kernel modification

shows the operation of Linux mlock() command in order to
recover the files which were encrypted by the ransomware.

X. CONCLUSION AND FUTURE WORKS

In this paper, we provided a detailed understanding of the
effect of ransomwares on normal system behaviors. We take
the aid of Deep Neural Network to detect the presence of
ransomwares by a two-step framework using LSTM-based Au-
toencoders. The entire detection procedure does not need any
template of the malicious process from beforehand. Instead, it
thrives on an anomaly detection procedure to detect infectious
ransomwares in as less as 5 seconds with almost zero false
positives, using frequency analysis. The proposed detection
method will work on any platform having HPCs. However, the
tunable hyper-parameters (like thresholds, window size etc.)
will be different for different systems. The determination of
values for these parameters is a one-time process, which will
be accomplished during the training of autoencoders.

We also explored the opportunity of applying side channel
techniques to recover the secret key used to encrypt the
files from the performance counter statistics. We found for
ransomwares like WannaCry; each file is encrypted using
AES-128 CBC (Cipher Block Chaining) with a randomly
generated distinct key. These keys are in turn encrypted using
an infection specific RSA public key and stored in the memory.
It would be indeed a challenging exercise to recover the AES
key by targeting the AES CBC operation. However, we leave
that as a future scope of work.

RATAFIA uses a template of the normal system behavior in
terms of HPC values to train the autoencoders. The advantage
of using HPCs is that they are difficult to tamper. In particular,
while one may increase some HPC values by a program, it is
difficult to reduce the HPC values without explicitly targeting
the HPC registers. There is a provision that the HPC values can
be forcefully reset to zero using PERF_EVENT_IOC_RESET
ioctl() system call. However, in order to do that one requires
administrative privilege. Hence, even if an adversary has the
knowledge of the template used to train the autoencoders, it
does not have the privilege to change the execution footprint
of its own program and bypass the detection scheme. It is
expected that a black box attack on the DNN used in RATAFIA
would be more challenging given the fact that the HPC values
are robust against modifications or poisoning. Thus it would
be difficult for the attacker to make small changes in the input
(HPC values) to fool the target model. However, it would be
an interesting future direction of research.

REFERENCES

[1] A. Young et al., “Cryptovirology: Extortion-based security threats and
countermeasures,” in IEEE Symposium on Security and Privacy, 1996,
pp. 129–140.

[2] J. Crowe, “Wannacry ransomware statistics: The numbers
behind the outbreak,” May 2017. [Online]. Available:
https://blog.barkly.com/wannacry-ransomware-statistics-2017

[3] ——, “Must-know ransomware statistics 2017,” Jun 2017. [Online].
Available: https://blog.barkly.com/ransomware-statistics-2017

[4] A. Kharraz et al., “Cutting the gordian knot: A look under the hood
of ransomware attacks,” in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, 2015, pp. 3–24.

[5] ——, “Unveil: A large-scale, automated approach to detecting ran-
somware.” in USENIX Security Symposium, 2016, pp. 757–772.

[6] C. Moore, “Detecting ransomware with honeypot techniques,” in IEEE
Cybersecurity and Cyberforensics Conference, 2016, pp. 77–81.

[7] N. Scaife et al., “Cryptolock (and drop it): stopping ransomware
attacks on user data,” in IEEE International Conference on Distributed
Computing Systems, 2016, pp. 303–312.

[8] F. Mercaldo et al., “Ransomware steals your phone. formal methods
rescue it,” in Springer International Conference on Formal Techniques
for Distributed Objects, Components, and Systems, 2016, pp. 212–221.

[9] M. S. Kiraz et al., “Detecting large integer arithmetic for de-
fense against crypto ransomware,” Cryptology ePrint Archive.
http://eprint.iacr.org/2017/558, Tech. Rep., 2017.

[10] P. Lestringant et al., “Automated identification of cryptographic prim-
itives in binary code with data flow graph isomorphism,” in ACM
Symposium on Information, Computer and Communications Security,
2015, pp. 203–214.

[11] F. Gröbert et al., “Automated identification of cryptographic primitives
in binary programs,” in Springer International Workshop on Recent
Advances in Intrusion Detection, 2011, pp. 41–60.

[12] C. Malone et al., “Are hardware performance counters a cost effective
way for integrity checking of programs,” in ACM workshop on Scalable
trusted computing, 2011, pp. 71–76.

[13] J. Demme et al., “On the feasibility of online malware detection with
performance counters,” in ACM SIGARCH Computer Architecture News,
vol. 41, no. 3, 2013, pp. 559–570.

[14] X. Wang et al., “Numchecker: Detecting kernel control-flow modifying
rootkits by using hardware performance counters,” in ACM/EDAC/IEEE
Design Automation Conference, 2013, pp. 1–7.

[15] ——, “Reusing hardware performance counters to detect and iden-
tify kernel control-flow modifying rootkits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 3, pp. 485–498, 2016.

[16] M. V. Ball et al., “The xts-aes disk encryption algorithm and the security
of ciphertext stealing,” Cryptologia, vol. 36, no. 1, pp. 70–79, 2012.

[17] K. Cho et al., “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[18] I. Sutskever et al., “Sequence to sequence learning with neural net-
works,” in Advances in neural information processing systems, 2014,
pp. 3104–3112.

[19] D. J. Bernstein, “Cache-timing attacks on aes,” 2005.
[20] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache

side-channel attacks are practical,” in 2015 IEEE Symposium on Security
and Privacy. IEEE, 2015, pp. 605–622.

[21] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert, “Predicting secret keys via
branch prediction,” in Cryptographers’ Track at the RSA Conference.
Springer, 2007, pp. 225–242.

[22] P. Malhotra et al., “Long short term memory networks for anomaly
detection in time series,” in Proceedings. Presses universitaires de
Louvain, 2015.

[23] “How to use the championship branch prediction evaluation
framework,” Feb 2011. [Online]. Available: https://www.jilp.org/jwac-
2/cbp3 framework instructions.html

[24] A. Ivanov et al., “The return of mamba ransomware,” Aug
2017. [Online]. Available: https://securelist.com/the-return-of-mamba-
ransomware/79403/


