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Abstract— The rapid progress in the ease of creating and
spreading ultra-realistic media over social platforms calls for
an urgent need to develop a generalizable deepfake detec-
tion technique. It has been observed that current deepfake
generation methods leave discriminative artifacts in the fre-
quency spectrum of fake images and videos. Inspired by
this observation, in this paper, we present a novel approach,
termed as MD-CSDNetwork, for combining the features in the
spatial and frequency domains to mine a shared discriminative
representation for classifying deepfakes. MD-CSDNetwork is
a novel cross-stitched network with two parallel branches
carrying the spatial and frequency information, respectively. We
hypothesize that these multi-domain input data streams can be
considered as related supervisory signals. The supervision from
both branches ensures better performance and generalization.
Further, the concept of cross-stitch connections is utilized where
they are inserted between the two branches to learn an optimal
combination of domain-specific and shared representations
from other domains automatically. Extensive experiments are
conducted on the popular benchmark dataset namely Face-
Foreniscs++ for forgery classification. We report improvements
over all the manipulation types in FaceForensics++ dataset
and comparable results with state-of-the-art methods for cross-
database evaluation on the Celeb-DF dataset and the Deepfake
Detection Dataset.

I. INTRODUCTION

Manipulating videos or images is not new; earlier seamless
manipulation used to be a skillful task requiring a lot
of resources, time, and dexterous artists. However, recent
growth in the deep learning technology has given anyone
the ability to make a convincing fake video, which can also
be misused by some people to “weaponize” it for political
or other malicious purposes. A Reddit user by the name of
‘deepfakes’ using deep learning to make pornographic videos
and posting them online, President Obama using an expletive
to describe President Trump and Mark Zuckerberg admitting
that Facebook’s true goal is to manipulate and exploit its
users are some notable examples of such misuse [4], [5].
Audios can be deepfaked as well to create “voice skins” or
“voice clones” of public figures. A recent example where
audio deepfakes have been exploited was a phone call by
a fraudster mimicking the voice of a German energy firm’s
CEO. The chief of a UK subsidiary of the firm was tricked,
and they paid nearly £200,000 into a Hungarian bank account
[5]. Similar scams have reportedly used recorded WhatsApp
voice messages. All these instances suggest that developing
robust and efficient methods of deepfake detection is of
paramount importance.

Most of the existing deepfakes alter facial content, and
these manipulations can be categorized in four broad groups
depending upon the levels of face manipulation [48]:

• identity swap where a face from a source video replaces
a face in the target video usually employing computer-
graphics or deep learning based methods,

• facial expression reenactment where the expressions in
the source video are transferred to the target video while
maintaining the identity of the target person,

• complete synthesis of high-quality and realistic new
faces using generative adversarial networks (GANs).
This is different from manipulating only a certain part
(mostly facial region) in the image, and

• attribute manipulation where various attributes such as
skin color and hair color are edited.

A. Literature Review

A wide variety of approaches have been proposed for ver-
ifying the authenticity of images and videos in the vast area
of digital media forensics. Previous research directions have
used physiological signals like eye blinking [29], inconsistent
head poses [54], and biological signals not preserved in fake
videos [15] as well as phoneme-viseme mismatches in videos
[8] as the basis for detecting deepfake content. Various deep
learning based detection methods [6], [9], [17], [23], [30],
[50], [53], [58] have been proposed to mitigate the risks
of deepfakes. Some notable examples include [7], where
the combination of a static biometric for face recognition
along with a temporal behavioral biometric is used for face-
swap deepfakes. Also, Face X-Ray [28] uses a more generic
approach for detection by identifying whether the input
image can be decomposed into a blending of different images
or not. [39] uses a capsule network to detect various kinds of
deepfake attacks created using deep learning. Further, [57]
uses a face classification stream and a patch triplet stream
for leveraging features capturing local noise residuals and
camera characteristics. A two-stream network is proposed for
detecting image manipulations where one of the streams uses
RGB image for identifying high-level tampering artifacts
like contrast difference and unnatural boundaries [59]. More
recently, SSTNet [52] uses a detection framework to detect
tampered faces through spatial, steganalysis, and temporal
features. Some methods have also used the artifacts produced
in the frequency spectrum to mine better discriminative
feature representations. F 3-Net [40] have proposed a two-
stream collaborative learning framework that makes use of



Fig. 1: Comparison of DCT-based frequency spectrum between a real video and a manipulated video. From left to right,
row 1 shows the images obtained for a video by averaging the pixel values of all the frames for a Real, Neural Textures [46]
and Face2Face [47] videos. There are no observable differences seen in all the three images. From left to right, row 2 shows
the heatmaps for the frequency spectrum obtained after averaging the log-scaled DCT coefficients of all the frames for a
Real, Neural Textures (NT), and Face2Face (F2F) video. We clearly see the differences in color variations as we move from
the low-frequency (top-left) to the high-frequency (bottom-right) region between real vs manipulated videos. Best viewed
in color.

frequency-aware decomposed image components and local
frequency statistics to mine better forgery patterns. Masi et
al. [35] have presented a two-branched network structure
with one branch propagating the original information in the
color domain while the other suppressing the face content
and amplifying multi-band frequencies using a Laplacian of
Gaussian (LoG). Some recent works [34], [51], [55] focus
on identifying special artificial fingerprints common across
all GAN synthesized images to detect fake images from their
real counterparts. [25], [35], [43], [49] have also exploited
the temporal information between the frames in a video to
isolate deepfakes through sequence-based models.

Most of the current deepfake creation methods, especially
the ones which use generative models (e.g. GANs) to create
manipulated faces or completely new synthetic images, rely
on convolution based upsampling methods due to which they
fail to reproduce the spectral distributions of natural images
[19]. This creates artifacts in the frequency spectrum of fake
images, which can be used as discriminatory evidence against
the real ones. The frequency artifacts are more common
and generic across a variety of manipulations, including
compression scenarios, where the information in the spatial
domain is severely affected.

Recent approaches [20], [21], [56] specifically focus on
identifying images synthesized through GANs by using the
frequency-related features as inputs to a classifier. In par-
ticular, [20], [21] have proposed spectrum-based classifiers
that input the frequency features rather than pixel input for

detecting synthetically generated images. However, such a
classifier may not be suitable for detecting other kinds of
facial manipulations, for example, the manipulations in the
widely used FaceForensics++ (FF++) [42] dataset. Here, the
artifacts in the spatial domain are also essential and cannot
be neglected completely. On the other hand, Face X-Ray
[28] proposed a novel image representation to identify any
blending boundary artifacts introduced during the manipula-
tion process but uses only spatial domain information. This
may not be sufficient for detecting GAN-based manipula-
tions or highly realistic synthetic images that might leave
comparatively much fewer artifacts in the spatial domain.
Therefore, a combination of features from both the domains
is more useful to detect various kinds of manipulation types.

B. Research Contributions
In this paper, we propose a novel approach, termed as

MD-CSDNetwork, of combining information from the two
domains, spatial and frequency, by learning a shared rep-
resentation at both low-level and high-level feature maps.
We draw an analogy that features from spatial and fre-
quency domains can act as two related supervisory signals
similar to related tasks in a multi-task learning problem.
We jointly learn the multi-domain feature representation via
the proposed cross-stitched network architecture for learning
discriminative features. Specifically, each cross-stitch unit
learns an optimal linear combination of domain-specific and
shared representations from other domains at various levels
in the network. Depending upon the input manipulation type,



the network learns the weights of the activation maps from
both the domains as required. In other words, the proposed
approach enables learning the contribution of features from
both the domains, and the training signals from the two
domains help each other to enhance the performance and
generalizability. The major contributions of this paper are:

We propose a cross-stitched network architecture for
jointly learning features from both spatial and frequency
domain information. It gives the network the flexibility to
combine features from both the domains at various levels
depending upon the input data. We hypothesize that the pro-
cess of learning a shared representation from two different
domain features of the same image can be considered similar
to learning a shared representation from multiple related
tasks in a multi-task learning setting. Such a representation
enables supervision from both feature domains, which helps
the model to learn better discriminative representations. We
have experimentally evaluated the use of Discrete Cosine
Transform (DCT) spectrum over Discrete Wavelet Transform
(DWT) or Fast Fourier Transform (FFT) for extracting the
frequency-related features in the proposed network. Through
extensive experimentation, we show that the proposed model
with DCT achieves a considerable improvement in the de-
tection performance.

II. PROPOSED APPROACH

A. Motivation

To understand deepfake artifacts in the frequency domain,
Fig. 1 shows plots of the DCT coefficient spectrum of real
and fake images for two manipulation types namely Neural
Textures (NT) & Face2Face (F2F) in FF++. The horizontal
direction corresponds to frequencies in the x-direction, and
the vertical direction corresponds to frequencies in the y-
direction. The frequencies increase as we move from left to
right and top to bottom for x and y directions, respectively.
We observe clear distinguishability between the spectrums
of real and fake images, especially in the high-frequency
regions, which implies that deepfakes are unable to mimic
the real spectrum variations.

We further draw the motivation for combining information
from spatial and frequency domains by formulating the
learning procedure similar to a multi-task learning problem.
In multi-task learning, related tasks share the representa-
tions learned from multiple supervisory tasks with direct
supervision from the primary task and indirect supervision
from auxiliary related tasks. This improves generalization by
leveraging the domain specific information contained in the
training signals of the related tasks. Misra et al. [37] explains
that deciding how much sharing one needs to enforce among
multiple tasks is very cumbersome and highly dependent on
the tasks at hand as well as the input data. There can be
a spectrum of possible network architectures ranging from
all the layers (except the last layers) being shared to no
sharing at all. They provide a principled approach to mitigate
this problem with the use of cross-stitch units which learn
an optimal combination of both task-specific and shared

representations automatically. Hence, the tasks supervise how
much sharing is needed for improved classification.

Inspired by the work done in [37], we hypothesize that
two input streams, one carrying the spatial information of an
image and the other carrying the frequency information of
the same image, can be considered as two related supervisory
signals. We devise a cross-stitched network that jointly
learns a feature representation from both the domains with
parallel branches carrying the two input data streams and
connected with multiple cross-stitch units at various levels.
These units enable direct supervision from themselves and
indirect supervision from the other branch and inadvertently
allow information flow between both the domains. The cross-
stitch units learn an optimal combination of domain-specific
and shared representations from other domains for better
classification depending upon the input data.

B. Proposed MD-CSDNetwork Architecture

As shown in Fig. 2, the architecture of the proposed
method consists of two parallel branches with cross-stitch
units inserted after the max-pooling layers. These cross-
connections applied at various levels in the network allow
sharing between both the domains for both low and high-
level semantics. We utilise four cross-stitch units in the
proposed MD-CSDNetwork. XceptionNet [14] is used as a
backbone for both the branches. The last fully connected
layers are concatenated and connected to a classifier. The
first branch inputs pixel features in the RGB domain, and the
second inputs the DCT spectrum coefficients in the frequency
domain. Both the branches are separately normalized. We
next present the two ingredients of the proposed network:
cross-stitch unit and DCT spectrum.

1) Cross-Stitch Unit: Given two activation maps xR and
xD obtained at a certain layer from the RGB and DCT
branches respectively, we learn the linear combinations x
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αRR, αDD provides the weights to the activations of the
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αDR provides the weights to the activations of the other
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Fig. 2: Network Architecture for the proposed method. The two parallel branches carry the spatial and frequency information,
respectively. The top branch inputs the pixel values, and the bottom branch inputs the log-scaled DCT spectrum coefficients.
The cross-stitch [37] units are applied after the pooling layers in the backbone XceptionNet [14]. Multiple such units have
been represented as dotted lines. In MD-CSDNetwork, four cross-stitch units have been used.
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2) DCT Spectrum: The magnitude of the DCT
coefficients signifies the contribution of a certain frequency
in the image. We specifically compute a 2-D DCT as a
product of 1-D DCTs across the rows and then across
the columns separately for all the channels in the input
image. DCT [10] has been widely used in image processing
applications, especially in lossy compression, due to its
excellent energy compaction properties. Due to this, the
coefficients for high frequencies are much lower than low
frequencies for natural images, and therefore we apply a
natural logarithm to bring the coefficients at the same scale.
The formula for 2-dimensional DCT is:

DCT (i, j) =
1√
2N

C(i)C(j)

N−1X
a=0

N−1X
b=0

pixel(a, b)

× cos[ (2a+ 1)iπ

2N
]cos[

(2b+ 1)iπ

2N
]

C(x) =
1√
2
if x = 0, else 1 if x > 0

(4)

C. Implementation Details

We initialize the spatial branch with ImageNet [18]
weights and the frequency branch with random weights. For
all the cross stitches, the same branch parameters (αRR,
αDD) are initialized with 0.9 and different branch parameters
(αRD, αDR) with 0.1 to ensure a convex linear combination

of the parameter values and to make output activation maps
of the same order in magnitude as the input activation maps.
We train with a base learning rate of 2e-4 and use a slightly
higher learning rate of 1e-3 for the cross-stitches. The
learning rate is reduced by a factor of 0.2 every time when
the validation loss does not decrease for three consecutive
epochs. The batch size used is 32, and the model with the
highest validation accuracy is used for testing. We use Adam
optimizer [27] with default values for the moments (β1 = 0.9,
β2 = 0.999, ε = 10−8) and the whole model is trained end-
to-end with a cross-entropy loss for binary classification. The
network is trained with three V100 GPUs in DGX2 Server
under TensorFlow programming environment. At an average,
using this computational environment, a single training epoch
on FF++ database takes about 4000 seconds.

III. EXPERIMENTS

A. Datasets and Protocol

For performance evaluation, we use three benchmark
datasets, namely FaceForensics++ (FF++) [42], Celeb-DF
[31], and Deepfake Detection (DFD) [1].

(a) FF++ consists of 1000 real videos collected from
YouTube and 1000 fake videos for each of the four manip-
ulation types, i.e. FaceSwap [3], Face2Face [47], Deepfakes
[2] and Neural Textures [46]. To better simulate real-world
scenarios, these videos are also compressed using the H.264
codec to light compression (c23) and high compression (c40)
levels. All the videos contain full frontal faces without any
occlusions. We used the freely available face detector dlib
[26] to extract the largest face in a frame and used an




