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Abstract We present a supervised video decaptioning algorithm driven by an
encoder-decoder pixel prediction. By analogy with auto-encoders, we propose U-Net
with stacked dilated Convolution layer a convolutional neural network trained to
generate the decaptioned version of an arbitrary video with subtitles of any size,
colour or background. Also, our method doesn’t require mask of the region with text
to be removed. In order to succeed at this task, our model needs to both understand
the content of the entire frames of video, as well as produce a visually appealing
hypothesis for the missing part behind text overlay. When training with our model,
we have experimented with both a standard pixel-wise reconstruction loss, as well as
total variation loss. The latter produces much sharper results because it enforces local
inherent nature in generated image. We found that our model learns a representation
that captures not just appearance but also the semantics of visual structures. We quan-
titatively demonstrate the effectiveness of including dilated convolution layers and
residual connections in bottleneck layer in reconstruction of videos without captions.
Furthermore, our model be used for semantic inpainting tasks, either stand-alone or
as initialization for non-parametric methods.
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1 Introduction

Video decaptioning refers to the task of replacing the text overlays in frames with
semantic coherent regions. In this work, we explore the application of state-of-the-art
computer vision algorithms to address the challenge in an automated fashion. The
task requires first finding the region with captions and then predicting the high level
context, hence making it significantly more difficult when compared to classical
image or video inpainting methods. However, decaptioning becomes increasingly
more difficult, when the subtitles cover most of the parts of the frame and are of
different size, font and colours.

Videos often have captions embedded into them such that one is unable to turn
them off when not required. Therefore, even if it is more comfortable viewing
the video without the captions, there is hardly any way out. We extend the fully
convolutional network [1] and modify its architecture such that when it is fed with
videos having captions, it tries to predict what they would look like had the captions
not been there. The main idea lies in the fact that we propose an encoder-decoder
model which supplements the usual contracting network by successive layers, where
pooling operators are replaced by up-sampling operators. Hence, these layers help
in increasing the resolution.

2 Related Work

Initially, major works of inpainting could be categorised into three groups of works.
In the works of Hirani and Totsuka [2], frequency and spatial domain information
is blended to fill in a given region with a selected texture. Disocclusion was another
popular method introduced by M. Nitzberg et al. [3]. Thus it can be seen that non-
learning approaches to image inpainting rely on propagating appearance information
from neighboring pixels to the target region. They are specific to image sets and can
be used to fill in only small regions of gaps.

Computer vision has made tremendous progress on semantic image understanding
tasks such as classification, object detection, and segmentation in the past decade.
Conventional Sparse coding methods [4] were sensitive to image orientation and
environment and couldn’t be generalized into cross domain works. Recently, Con-
volutional Neural Networks (CNNs) [5], have greatly advanced the performance
in these tasks. The success of such models on image classification paved the way
to tackle harder problems, including unsupervised understanding and generation of
natural images.

Deep learning based methods typically initialise the gaps with values such as
a constant or mean pixel value after which the resultant is passed through a deep
convolutional network. In our paper, such an effort is not required as the captions
are atop the image and are to be fed directly. D Pathak et. al[6] first introduced the
concept of image inpainting using an encoder decoder netowork , adapting concepts
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from autoencoders. In this paper we extend this concept to build an innovative model
for the same.

We briefly review the related work in each of the sub-fields pertaining to this
paper.

2.1 GAN based inpainting methods

Some recent work [7] [8] have shown convincing results in patch based inpainting.
They used Generative Adversarial Networks (GANs) [9] in two contexts, one global
discriminator and the other one is local discriminator. But GAN based methods often
fail when it comes to inpainting on data set with diverse classes. Hence these methods
couldn’t be directly applied in the task of decaptioning. However, [10] showed that
GAN are able to produce more visually sharper and pleasing images and leading to
the use of loss of Discriminator in addition to the normal losses to produce sharper
results.

2.2 AutoEncoder based inpainting methods

Works like [11] has shown that Auto Encoder-Decoder based methods have produced
good results in image denoising and image inpainting tasks. Also, this work has
shown that the shape of the mask (region that needs to inpainted) is not required to
be given as input to the model. They directly take the corrupted frame and output
the reconstructed images. We also use an auto-encoder in our case, since the region
with subtitles can occupy different areas in frames.

2.3 Unsupervised methods for Inpainting

Feature Learning methods such as [6] have shown good results on high resolution
images where a large section of an image was needed to be inpainted. They have
trained on reconstruction and adversarial losses which resulted in real looking images
and closer to manually inpainted image. One good advantage of learning features
of the image is to understand it’s semantics which is important for unsupervised
inpainting.
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3 Methodology

We propose an end-to-end training method for the purpose of video decaptioning.
Our purpose of video decaptioning has been broken down such that we try to focus
on regeneration of the entire image from the input, sans the captions. An encoder-
decoder network suits our case the most. We focus more on learning representations
than on feature based learning. The input is mapped to a set of feature representations
which remain hidden as a part of the neural network black box model. These fea-
tures are processed further to obtain image representation which have successfully
overwritten the captions. We have an Auto-Encoder model for this task.
Residual networks [12] have been shown to be easy to train. We make use of this

Fig. 1 Training Workflow

concept to build a more robust model. Also, since we are making use of the model
for a translation, there is a need to preserve features from earlier layers. The output
mostly preserves the original image frame just replacing the captions, hence pre-
serving certain features of the earlier layers is intuitively helpful.

We chose U-Net as the basic model on top of which we improvised. We tried
incorporating certain elements from other deep learning frameworks into our model.
These include the following:

• Dilation: The idea is to improve the receptive fields of the convolutions so that
more learning can be involved in less number of layers. This is easily achieved using
pooling which is a part of the original U-Net model. But, dilated convolutions help
have a greater receptive field without compromising on resolution. Hence, incorpo-
ration of dilation was deemed important. [13]

• Residual Skip Connections: Deep networks are often difficult to train. In
fact, a deeper network might not perform better than its shallower counterpart. Gra-
dients get stalled and the error is larger. In order to make it easy to train such networks
and to get over the issue of vanishing gradient, residual skip connections are often a
good choice [14]. In order to enable it to learn the deviations, this acted as a great
booster to our model
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4 Model

We now introduce our solution architecture model U-Net with variants: CNNs that
replace text overlay in frame of video to semantically coherent patch such that the
scene is consistent spatially. We first give an overview of the general architecture,
then provide details on the learning procedure and finally present various strategies
for text region removal.

4.1 U-Net: Encoder-Decoder Pipeline

The overall architecture is a simple encoder decoder structure. Encoder takes cap-
tioned image frame as input and produces a latent representation while preserving
semantic representation at each down-sampling layer which will be later used in de-
coder part. Decoder takes latent representation after it get convoluted from residual
layers and up-sample the latent representation to reconstruct the frame without cap-
tions/text overlay. Decoder also incorporates different feature representations from
encoder part while down-sampling because it content semantic information about
original frame.

Encoder Our encoder is derived from pix2pix [15] which is also state of the
art model in the context of image-to-image translation. We used five convolutional
layers, each reducing width and height by a factor of 2 and increasing channel length
by same factor. We used stride factor as 2 for above transformation. After each above
operation, we used convolutional layer with stride 1 to connect feature maps together.
These convolutional layers resulted to "bottleneck" layer with dimensions 4*4*512
= 8,192.

As this is not autoencoder, we need sufficiently large parametric representation
of encoded image. However, if the encoder architecture is limited only to regular
convolutional layers, there is no way for information to directly propagate from one
corner of the feature map to another. This is so because convolutional layers connect
all the feature maps together, but never directly connect all locations within a specific
feature map.

So, we introduce stack of dilated Convolutional Layer in encoder part with dilation
factor as (2,4,8,16). Dilated convolutional layers helps in generating more visually
appealing outputs.
Decoder We now discuss the second half of our pipeline, the decoder, which

generates pixels of the image using the encoder features. The channel-wise fully-
connected layer is followed by a series of five up-convolutional layers [16] [17] [18]
with learned filters, each with a rectified linear unit (ReLU) activation function. A
up-convolutional is simply a convolution that results in a higher resolution image.
It can be understood as upsampling followed by convolution (as described in [16]),
or convolution with fractional stride (as described in [17]). We have introduced skip
connections between symmetrical layers of encoder decoder so as to add feature
semantic information in decoder in the reconstruction process. The intuition behind
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Fig. 2 Model Architecture

this is straightforward: Unlike auto encoder, here we need to remove text overlay
from a scene. Encoder just compresses the frame into a low-dimensional encoding
while ignoring finer textures in its features. So we need to incorporate encoded
feature representation. This is like feeding VGG feature representation to decoder.
The series of up-convolutions and non-linearities comprises a non-linear weighted
upsampling of the feature produced by the encoder until we roughly reach the original
target size. The architecture of the U-Net adopted in this work is shown. However,
U-Net based architecture is consistent with the poor performance of CNN-based
inpainting in recovering fine textures. [19]

4.2 Dilated Convolutions

Unfortunately, these CNN-based methods often create boundary artifacts, distorted
structures and blurry textures inconsistent with surrounding areas. We found that
this is likely due to ineffectiveness of convolutional neural networks in modeling
long-term correlations between distant contextual information and the hole regions.
For example, to allow a pixel being influenced by the content of 64 pixels away, it
requires at least 6 layers of 3 Œ 3 convolutions with dilation factor 2 or equivalent
[17, 42]. So to recover complex image semantics and structures, we introduce a stack
collections of dilated convolutions layer in the encoder part. Our architecture uses
dilated convolutions to systematically aggregate multi-scale contextual information
without losing resolution(which is already less in the given dataset). The architecture
is based on the fact that dilated convolutions support exponential expansion of the
receptive field without loss of resolution or coverage. [20] The encoder part is a
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simple CNN with dilated convolutional layer trained with decoder part optimized on
reconstruction loss to inpaint out the missing contents behind text overlays.

4.3 Residual Connections in bottleneck layer

After we incorporated U-Net and dilated Convolutions in our model architecture,
we got convincing results but resolution was poor compared to ground truth. This
was intuitively expected as simple Encoder-Decoder architecture trained on MSE
loss generalize to give blurred output. The transposed convolutional (deconvolution)
layer can learn up-sampling kernels, however, the process is similar to the usual
convolutional layer and the reconstruction ability is limited. To obtain a better re-
construction performance, the transposed convolutional layers need to be stacked
deeply, which means the process needs heavy computation. So, we propose skip
connections as in bottleneck layer of encoder decoder architecture. As with typical
Residual learning networks, the model is made to focus on learning residual output
and this greatly helps learning performances in direction of increasing resolution,
even in cases of shallow models. [21]

5 Results

As you can see in above images from test case, there is very little difference visible
between images generated by adding dilated convolution layers because resolution of
the data set provided in the challenge but we can see difference in the losses computed.
We have kept residual connections in both the part of our experimentation. In our
testing pipeline, we used a pre-trained model provided by organizers as a part of
the baseline. First image was divided into 16 equal parts and each part was feeded
to pretrained model to check if their was text overlay in the corresponding image.
If there was text overlay in the part, it was replaced by similar part from predicted
image from model. If score of text classification was below a threshold score, it was
replaced by the corresponding part from the input image. This process was similar
to Poisson Blending [22]. Our method took lesser time too reach optimal minimal
compared to GAN based methods as there were no generator and discriminator
trying to optimize simultaneously by min-max strategy. Also, our solution doesn’t
require binary mask for inpainting hence decreasing inference time. Our method
took approximately 5 seconds to generate a decaptioned video.

As this was the first attempt in the field of video decaptioning, there weren’t many
baselines we could refer to. Hence we had shown comparison with Baseline and
our model without dilated convolution. With this approach we came 2nd in training
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Fig. 3 Left: Test Case 1, Right: Test Case 2

phase and 4th in test phase of Chalearn Video Decaptioning Challenge.

Table 1 Results
Method MSE Loss PSNR Loss DSSIM Loss
Baseline 0.0022 30.1856 0.0613
U-Net without dilation 0.014 32.850 0.0511
U-Net with dilations 0.0012 32.1713 0.0482
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Fig. 4 MSE Loss vs Iterations

6 Conclusion

From our experience in this competition, we came to following conclusion in the
task of Video Decaptioning and related problem statements:

• Simple Auto Encoder-Decoder based solution are not good when it comes to noise
removal from a large section as model is generating image from just encoded latent
representation.

• Hence we need a model which have incorporated image semantics in the part
of encoding and can be used while generating decaptioned image. U-Net based
model was proven a good choice in the related field as it included skip connections
between symmetric layers in the encoder-decoder part.

• As we needed to capture end to end semantics in the image to get global feature,
we used stacked dilated convolution layer to incorporate global semantics in the
encoding part. Here noise removal was to be done considering generated image
was supposed to look real and dilated convolution layers were useful to that.

• resolutionencodericoder generally decrease the sharpness and resolution in the
image generated, residual connections were added to improve sharpness. Al-
though advantage of adding residual connection was not adding significant differ-
ence but it could increase resolution and visual appearance by significant margin
when it comes to high resolution data set.

• We did not extract explicit mask for the region of text removal as it is implicitly
learned by the encoder-decoder model.

• We didn’t explore effect of temporal dimension in the process of video denoising
but incorporating temporal dimension should help.
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