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ABSTRACT
Most of the modern processors perform out-of-order specula-
tive executions tomaximise system performance. Spectre and
Meltdown exploit these optimisations and execute certain
instructions leading to leakage of confidential information of
the victim. All the variants of this class of attacks necessarily
exploit branch prediction or speculative execution. Using
this insight, we develop a two step strategy to effectively
detect these attacks using performance counter statistics,
correlation coefficient model, deep neural network and fast
Fourier transform. Our approach is expected to provide re-
liable, fast and highly accurate results with no perceivable
loss in system performance or system overhead.

CCS CONCEPTS
• Security and privacy → Security in hardware; Hard-
ware attacks and countermeasures; Side-channel analysis and
countermeasures; • Computing methodologies → Ma-
chine learning; Machine learning approaches; Neural net-
works.
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1 INTRODUCTION
Modern processors use various optimisation techniques in
order to improve system performance. Several design tech-
niques have facilitated the increase in processor speed over
the past decades. One such advancement is speculative exe-
cution, which makes use of branch prediction and helps in
effective utilisation of time and resources.
Though manufacturers take measures to avoid security

defects due to such optimisations, such efforts prove to be
vulnerable at times. Recently, the vulnerabilities of Spectre
[8] and Meltdown [9] have been exposed in modern pro-
cessors. It makes use of observable side effects beyond the
computation’s nominal outputs to read data from areas of
memory outside the scope of user access. It is unknown
if these vulnerabilities have been put into practice to re-
trieve secret information since they do not leave any trace
post-execution. Research in this area has paced up consid-
erably since the methodology of Spectre and Meltdown is
now known to the entire world and is prone to be exploited.
We propose a practical detection strategy with no necessary
maintenance at the user end. It does not require any kernel
level modification and leaves scope for CPU optimisations
to take place and maintain healthy system performance in a
varied range of environments.

We propose usingHardware Performance Counters (HPCs)
to extract the features of a system during the occurrence of
speculative execution. Our detection strategy involves the
use of a long short term memory (LSTM) model, Savitzky
Golay filter [10], Input / Output Control and fast Fourier
transform analysis to record and analyse hardware perfor-
mance statistics of the system and thereby successfully detect
these attacks.

2 RELATEDWORKS
HPCs have been used extensively in the past to detect mali-
cious activities. For instance, Chiappetta et al. [7] proposed
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using HPCs to detect side channel attacks. HPCs to detect
malicious modification of firmware in embedded control sys-
tems and Signature-based ROP Detection to detect Return
Oriented Programming (ROP) attacks have also been popular.
However, these works have mainly focused on exposing the
vulnerability of the system, rather than providing a solution
to guard against speculative attacks in real time.

Detection of cache-based side channel attack has been long
studied. Machine learning based approaches on hardware
performance counters have also been discussed in previous
research [6]. Most other approaches lack experimentation
on deep learning methods and do not focus on time series
data.
Previous attempts have been made to safeguard systems

against Spectre and Meltdown vulnerabilities. These are
mostly kernel level patches which restrict specific optimi-
sation steps. It has been shown such patches (such as KPTI
[3] in Linux for Meltdown) can have up to 800% overhead
in CPUs without hardware pcid support [4]. Recent efforts
have been made to detect the exploitation of these specific
vulnerabilities using hardware performance counters, such
as the blog post by Check Point Research [2] or TrendMicro
[1]. However, these efforts mainly suggest measures to tackle
this problem, rather than being a full-fledged practical im-
plementation which can be used in large scale. In this paper,
we introduce an automated and robust detection strategy
which is divided into two stages in order to reduce overhead
and make the approach more objective.

3 OUR METHOD
We shall exploit the fact that a repetitive prime probe pro-
cess is essential for reading cache memory post specula-
tive execution to develop a detection strategy. A repetitive
training-and-fooling process makes it sufficient to conclude
the presence of the Spectre vulnerability, while its absence
suggests the presence of Meltdown.
By and large, our detection strategy proceeds into the

following phases, as shown in Figure 5. We present here a
detailed methodology for the detection of these anomalies
using the above strategy.
SET UP PHASE
1. Implementation of benign programs
To represent a prototype of a system being exploited by such
vulnerabilities, we design some programs that mimic the
activities of exploitative speculative attacks.

Namely, we implement the prime probe and training-and-
fooling processes because they are necessary for the respec-
tive exploitative attacks.

In the benign prime probe process, there is an attempt to
access the entire range of possible ASCII characters till the
character present in the cache (and subsequently, the whole

Figure 5: Flow of control in our detection strategy

string of characters or data) is discovered. Analogous to this,
we design a program in which we allocate a matrix with
some values and flush its contents. We then try to access
them repeatedly, leading to cache misses. A pseudo code of
the implementation is presented in Algorithm 1.

Algorithm 1 Benign prime probe
1: Input: num_iter , ArrayA[matr ix_size]
2: count ← 1
3: while count ≤ num_iter do
4: count ← count + 1
5: Flush cache from A[0] to A[matr ix_size − 1]
6: counter ← 0
7: while counter ≤ matr ix_size − 1 do
8: temp ← A[counter ]
9: counter ← counter + 1
10: end while
11: end while

Similarly, we design benign training-and-fooling module
where the decision taken by an i f statement is predicted to
be true for certain number of times. This trains the branch
predictor to predict true for successive instructions. We then
pass an argument which should be false. Along with this,
we keep a statement body inside the i f block, which would
access illegal memory only if the decision taken is negative.
We again collect hardware performance statistics for this
event. Pseudo code is presented in Algorithm 2.

2a. Observing the system behaviour using IOCTLs
and pre-defined modules
The mentioned vulnerabilities mostly work on the basis of
the hardware events of cache miss and branch miss. Hence
we chose these performance statistics to begin with. These
hardware counters do not introduce additional overheads
and typically consume minimal resources since they are al-
ready built into the processors. The counters are incremented
on an instruction-by-instruction basis, thus ensuring accu-
rate results. The HPCs are observed using the popular tool,
Input / Output Control (IOCTL) calls, available in Unix ver-
sion 7+ and most Unix-like systems.
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Algorithm 2 Benign training fooling
1: Input: num_iter_outer , num_iter_inner . ArrayA[array_size],

const_1, const_2
2: count ← 1
3: while count ≤ num_iter_outer do
4: Flush cache from A[0] to A[array_size − 1]
5: count ← count + 1
6: counter ← 1
7: while counter ≤ num_iter_inner do
8: if counter = num_iter_inner then
9: index = array_size + const_1 ▷ index ≥ array_size
10: else
11: index = const_2 ▷ index ≤ array_size − 1
12: end if
13: if index ≤ array_size − 1 then
14: temp = A[index ]
15: end if
16: end while
17: end while

Generally, there should be a decrease in branch misses as
the system goes through the training process of the Spec-
tre vulnerability. This is followed by a noticeable increase
in cache-misses as the prime probe event takes place, as
observed in Figure 1.
The optimal sampling period obtained by validation is

7,500 instruction counts and thus, we measure HPCs with
very high frequency. This makes our data susceptible to
arbitrary changes in values at some given instances of time.
Hence, we shall filter the data collected in order to eliminate
such errors and system noises present in the data.
If the value of sampling period is low (around 1000), we

notice remarkable system noise, as evident from Figure 6. The
HPCs obtained at 7500 instruction counts is shown in Figure
7 for comparison. Also, if the count is kept significantly high,
we obtain a very low number of samples (in the order of ten
thousand) which is not sufficient to train the LSTM model.

2b. Pre-processing acquired data using
Savitzky-Golay filter
Savitzky-Golay (Savgol) filter [10] is a digital filter that uses
the method of linear least squares. We chose Savgol filter
since it has less overhead andworks faster than other popular
filters (like the Kalman filter), which is essential for real
time measurements. We fit the hardware statistics data into
a polynomial of degree seven, which was experimentally
determined.

3. Calculation of the correlation coefficient between
our prime probe module and speculative attacks
In our strategy, we create a sliding window of 3,000 data
points of run time HPCs and slide it across the dummy cache
miss values obtained in Step 1. The correlation detection
model first takes an input sequence (X ) from i to i + 3, 000
time instants of cache miss values from the system and gener-
ates the Person correlation coefficient (PCC) corresponding
to that sliding window.

4. Learning Time-Series data using LSTM
The HPC data obtained is a time series data and is expected
to have a specific temporal pattern as shown in the above
Figure 2. Using the LSTM network, we try to input a window
of data points and predict the next expected value of a data
point.
Model description
Objective: To predict the 50th data point from 49 previous
data points of cache misses and branch misses.
Input X : HPC data (branch-misses and cache misses) col-
lected during execution of pre-defined modules using 7,500
instruction sampling count, divided into sliding windows
of length 50. The input feature vector is two-dimensional
owing to the presence of both branch miss and cache miss
values.

Training:Without loss of generality, we had chosen 50
trace points for our experiments. We then shift the window
by one-time interval repeatedly to consider the next con-
secutive 50 sample points for learning. Once the training is
completed, for an anomalous sequence, the LSTM attempts
to reconstruct the 50th data point from given 49 data points.

Table 1: Architecture of our LSTM Model:
Layer number Layer Type Input Shape Output Shape

1 LSTM (None,49,2) (None,49,32)
2 LSTM (None,49,32) (None,49,16)
3 LSTM (None,49,16) (None,1,2)

Inference: The model designed is expected to predict
50th value depending on 49 previous samples, if the system
is under execution of a training-and-fooling module.

DETECTION PHASE:
1. Detection of prime probe using correlation
coefficient analyser
We shall find the PCC value between the dummy prime probe
module and speculative attack modules using the model
designed in the setup phase. A prime probe process may be
under execution whenever the PCC value obtained is above
a particular threshold. Since the prime probe event keeps
happening periodically, we expect a plot as shown in Figure
1. In Spectre attacks, prime probe occurs after training-and-
fooling modules and hence, we expect system HPCs to have
high PCC values at such time instances, as shown in Figure
8 (the red lines mark the training-and-fooling periods).

2. FFT Analysis on correlation coefficient:
We use fast Fourier transform (FFT) which helps us analyse
if hardware performance statistics repeat at regular intervals,
thus confirming the presence of repetitive system processes.
We expect the correlation coefficient obtained in respective
windows to be periodic unless it is a false alarm. We then
proceed to the next step to determine the type of attack.
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Figure (1) Plot of Pearson Correlation Coefficient in a window vs window number during execution of Meltdown; (2) Plot of
cache misses vs data points during execution of spectre; (3) Plot of branch misses vs datapoint number during execution of
spectre branch misses before smoothing of data using Savistzky Golay filter; (4) Plot of branch misses vs datapoint during
execution of Spectre after smoothing of data using Savgol filter; (6) Plot of cache misses vs datapoint during execution of
Meltdown at 1000 instruction sampling rate; (7) Plot of cache misses vs datapoint during Meltdown at 7500 sampling rate;
(8) Plot of correlation coefficient vs time during execution of Spectre. The red lines mark the previously noted training-and-
fooling period; (9) Plot of reconstruction error obtained from LSTMwhile execution of Spectre versus datapoint. The red lines
mark previously noted training-and-fooling periods.

3. FFT analysis on reconstruction error:
Using the LSTM model trained in the setup phase, we find
the reconstruction error of HPCs obtained in real time. The
reconstruction error is the L2 norm between the true value of
50th and the value predicted by our model. The reconstruc-
tion error should be substantially low at the points where any
training-and-fooling processes are encountered, as shown
in Figure 9. These reconstruction errors are then analysed
by FFT analysis. training-and-fooling processes in Spectre
attacks are periodic, and hence, we expect the FFT Analysis
to have maxima at a particular frequency. We can thereby
conclude the presence of training-and-fooling modules, or a
Spectre attack, in the system.
4 EXPERIMENTATION AND RESULT
We first train our LSTM with the HPCs obtained by our
designed benign training-and-fooling process with IOCTL
calls. After this, we run samples of Spectre and Meltdown
programs and attempt to detect and differentiate between
them. We perform the experiments on a sandbox environ-
ment having the specification 64-bit Linux 3.16.0-77-generic,
with 7.7 GiB of memory and Intel Core i5, 1.6 GHz and 8
CPUs. Our experimentation is discussed in further details as
follows:

Detection of prime probe
The hardware performance statistics of the system are recorded
dynamically and restructured into samples of 3,000-time in-
stants and fed into the PCC model. If the correlation coeffi-
cient calculated is greater than a threshold, we feed the PCC

values into the FFT analyser. This threshold is determined
according to the 3σ rule of thumb which is used in other
similar experiments [5]. The value of +3σ obtained in our
research was 0.297. This value gave us a precision of 0.786
and recall of 0.932 for detection of prime probe event. We
shall confirm that a prime probe module is under execution
if two distinct peaks are observed, as in Figure 10 and Figure
11. Experimentally, we noticed that we could conclude the
presence of a prominent peak if the ratio between the highest
peak and the second highest peaks in the neighbourhood is
more than 1/4. In these figures, the frequency of one of the
observed peaks is due to the ongoing prime probe process,
in respective modules (17962.3 instruction counts for Spectre
and 1862.3 instruction counts for Meltdown attacks). How-
ever, the other average frequency with a peak in both the
plots is observed to be nearly the same, i.e., 7396.9 instruc-
tion counts and 7439.4 instruction counts for Spectre and
Meltdown attacks respectively. This common peak is due to
the usage of same sampling period in IOCTL calls, i.e. 7500
instruction counts for both Spectre and Meltdown. The in-
struction sampling results in cache events which is reflected
in the FFT analysis. Upon confirmation of the presence of
exploitative speculative attacks, we move to our next step of
experimentation to differentiate between the various kinds
of such attacks.
Detection of training-and-fooling process
The reconstruction error of the LSTMmodel discussed under
Section 5 is plotted as in Figure 9. As expected, the recon-
struction error has been observed to decrease during the
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Figure (10) Plot of ratio of data points vs frequency obtained by FFT analysis on correlation coefficient data during execution
of Meltdown; (11) Plot of ratio of datapoints versus frequency obtained by FFT analysis on correlation coefficient data during
execution of Spectre; (12) Plot of ratio of datapoints vs frequency obtained by FFT analysis on reconstruction error in LSTM
during execution of Spectre; (13) Plot of ratio of datapoints vs frequency obtained by FFT analysis on reconstruction error in
LSTM during execution of Meltdown.
ongoing training-and-fooling process. Experimentally, we
observe the average value of reconstruction error during
execution of training-and-fooling modules is 119.232, while
it significantly increases to an average value of 136.011 oth-
erwise. We shall use FFT analyser to determine the repetitive
nature of the reconstruction error values. HPCs recorded dur-
ing Spectre attack seemed to have a prominent peak (21542.7
instruction counts) as shown in Figure 12, confirming the
presence of a training-and-fooling process. The peaks are
obtained by simple thresholding as mentioned earlier.
In Figure 13, the FFT analysis lacks a prominent peak

due to the absence of a training-and-fooling process. If the
system is subjected to training-and-fooling processes along
with prime probe, we can conclude that the system had been
under a Spectre attack, while the presence of prime probe
alone shall indicate Meltdown attack. The results of the FFT
analysis have been presented in Table II.

Table 2: Observation on no of peaks:

Observation Expected no of Observed no of
type high peaks high peaks

Meltdown correlation 256 250
Spectre correlation 1000 1040

Spectre reconstruction 5000 5096
FFT on Meltdown correlation 2 2
FFT on Spectre correlation 2 2

FFT on Spectre LSTM reconstruction 1 1

5 CONCLUSION
In this paper, we explored the effects of execution of exploita-
tive speculative attacks such as Spectre and Meltdown on
HPCs in normal systems and used them to detect potential
threats. We take a two-level detection framework, the first
one being trained to detect prime probe modules, which
is necessary for all speculative attacks and is based on a
PCC model. As ascertained by the results, our models are
capable of detecting any exploitative speculative execution
attack during run-time, without any noticeable performance
overhead.

Acknowledgement. We thank Debdeep Mukhopadhyay (deb-
deep@iitkgp.ac.in) andManaar Alam (alam.manaar@iitkgp.ac.in)
for their continued support and guidance.

REFERENCES
[1] [n. d.]. Detecting Attacks that Exploit Meltdown and Spectre

with Performance Counters - TrendLabs Security Intelligence
Blog. https://blog.trendmicro.com/trendlabs-security-intelligence/
detecting-attacks-that-exploit-meltdown-and-spectre-with-performance-counters/.

[2] [n. d.]. Detection of the Meltdown and Spectre Vulnerabili-
ties - Check Point Research. https://research.checkpoint.com/
detection-meltdown-spectre-vulnerabilities-using-checkpoint-cpu-level-technology/.

[3] [n. d.]. KPTI - the new kernel feature to mitigate "melt-
down" - Fedora Magazine. https://fedoramagazine.org/
kpti-new-kernel-feature-mitigate-meltdown/.

[4] [n. d.]. Linux Meltdown patch: ’Up to 800 percent CPU over-
head’, Netflix tests show | ZDNet. https://www.zdnet.com/article/
linux-meltdown-patch-up-to-800-percent-cpu-overhead-netflix-tests-show/.

[5] Manaar Alam, Sarani Bhattacharya, Swastika Dutta, Sayan Sinha, Deb-
deep Mukhopadhyay, and Anupam Chattopadhyay. 2019. RATAFIA:
Ransomware Analysis using Time And Frequency Informed Autoen-
coders. In IEEE International Symposium on Hardware Oriented Security
and Trust (2019). (in press).

[6] Manaar Alam, Sarani Bhattacharya, Debdeep Mukhopadhyay, and
Sourangshu Bhattacharya. 2017. Performance Counters to Rescue: A
Machine Learning based safeguard against Micro-architectural Side-
Channel-Attacks. (2017).

[7] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. 2016. Real time
detection of cache-based side-channel attacks using hardware perfor-
mance counters. Applied Soft Computing 49 (2016), 1162–1174.

[8] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2018. Spectre attacks: Exploiting speculative execu-
tion. arXiv preprint arXiv:1801.01203 (2018).

[9] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, et al. 2018. Meltdown: Reading kernel memory from user
space. In 27th {USENIX} Security Symposium ({USENIX} Security 18).
973–990.

[10] Ronald W Schafer. 2011. What is a Savitzky-Golay filter?[lecture
notes]. IEEE Signal processing magazine 28, 4 (2011), 111–117.

mailto:debdeep@iitkgp.ac.in
mailto:debdeep@iitkgp.ac.in
mailto:alam.manaar@iitkgp.ac.in
https://blog.trendmicro.com/trendlabs-security-intelligence/detecting-attacks-that-exploit-meltdown-and-spectre-with-performance-counters/
https://blog.trendmicro.com/trendlabs-security-intelligence/detecting-attacks-that-exploit-meltdown-and-spectre-with-performance-counters/
https://research.checkpoint.com/detection-meltdown-spectre-vulnerabilities-using-checkpoint-cpu-level-technology/
https://research.checkpoint.com/detection-meltdown-spectre-vulnerabilities-using-checkpoint-cpu-level-technology/
https://fedoramagazine.org/kpti-new-kernel-feature-mitigate-meltdown/
https://fedoramagazine.org/kpti-new-kernel-feature-mitigate-meltdown/
https://www.zdnet.com/article/linux-meltdown-patch-up-to-800-percent-cpu-overhead-netflix-tests-show/
https://www.zdnet.com/article/linux-meltdown-patch-up-to-800-percent-cpu-overhead-netflix-tests-show/

	Abstract
	1 Introduction
	2 Related Works
	3 Our Method
	SET UP PHASE
	1. Implementation of benign programs
	2a. Observing the system behaviour using IOCTLs and pre-defined modules
	2b. Pre-processing acquired data using Savitzky-Golay filter
	3. Calculation of the correlation coefficient between our prime probe module and speculative attacks
	4. Learning Time-Series data using LSTM
	DETECTION PHASE:
	1. Detection of prime probe using correlation coefficient analyser
	2. FFT Analysis on correlation coefficient:
	3. FFT analysis on reconstruction error:

	4 Experimentation and Result
	Detection of prime probe
	Detection of training-and-fooling process

	5 Conclusion
	References

