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CENTRALITY IN LARGE DIRECTED 
GRAPHS (WEB GRAPH)



Requirements for Web search
n Results of Web search need to consider

q Relevance to query
q Importance / authoritativeness
q Location / time of query
q Recency of page
q … and many others

n Initial days of the Web: only relevance to query was 
used to rank webpages
q Ranking algorithms easily spammed by manipulating the 

text on spam webpages



Need to consider authoritativeness
n Importance / authoritativeness – centrality on the 

Web graph (webpages are nodes, hyperlinks are 
directed edges)

n An edge from node p to node q denotes endorsement
q Node p endorses/recommends/confirms the 

authority/centrality/importance of node q
q May not be always true (e.g., all pages on a website linking 

to the Copyright page) but mostly true
q Use the graph of recommendations to assign an authority 

value to every node



The Web as a Directed Graph

Hypothesis 1: A hyperlink between pages denotes a 
conferral of authority (quality signal)

Hypothesis 2: The text in the anchor of the hyperlink 
on page A describes the target page B

Page A
hyperlink Page BAnchor

Sec. 21.1



How to compute node centrality on 
Web?

n First attempt: indegree of webpages used to rank 
pages according to importance
q Easily gamed by spammers creating their own webpages

n Subsequent better algorithms: HITS and PageRank



HITS ALGORITHM



HITS algorithm
n Hyperlink-Induced Topic Search, by Kleinberg

n Two types of important pages on the Web
q Authority: has authoritative content on a topic
q Hub: pages which link to many authoritative pages, e.g., a 

directory or catalog
q A good hub is one which links to many good authorities
q A good authority node is one which is pointed to by many 

good hubs
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HITS
n HITS computes two scores for each page p

q Authority score: sum of hub scores of all pages which 
point to p

q Hub score: sum of authority scores of all pages which p
points to

n Iterative algorithm
q The definitions of hubs and authorities are “circular” in 

nature
q A series of iterations run, until the scores of all pages 

converge



HITS run on a query-dependent sub-graph
n Meant to run on a (sub)set of pages that are relevant to a 

given query
q Top N pages relevant to query retrieved based on content à called 

the root set
q Add to the root set all pages that are linked from it or that links to it 

à base set
q Sub-graph of all nodes in base set à focused sub-graph

Root
set

Base set



HITS run on a query-dependent sub-graph

n Why is the root set not sufficient? 

n Motivation of building base set
q A good authority page may not contain the query term
q Hubs describe authorities through the anchor text / text 

surrounding hyperlinks



Visualization: hubs & authorities

hubs authorities



HITS Algorithm 
Find focused sub-graph G of pages relevant to given query 
for each page p in G:  

p.auth ß 1,  p.hub ß 1
do until convergence

for each page p in G
p.hub ß Σ r.auth  for all pages r which p links to 
p.auth ß Σ q.hub  for all pages q which link to p

Normalize hub and auth scores for all pages
Check convergence of scores

Output pages with highest authority scores and hub scores

p

p



Normalization of scores
n Scores need to be normalized after each iteration

n Different normalization schemes proposed
q Normalize so that score vectors sum to 1

q Normalization factor F: square root of sum of squares of  
current scores of all pages; divide score of each page by F 
at the end of each iteration



Checking for convergence
n Various convergence criteria used

q Fixed number of iterations

q Iterate until scores do not change appreciably from one 
iteration to the next (compute difference of score vectors 
from previous and current iterations)

q Iterate until rankings of pages do not change



HITS Algorithm (again) 
Find focused sub-graph G of pages relevant to given query 
for each page p in G:  

p.auth ß 1,  p.hub ß 1
do until convergence

for each page p in G
p.hub ß Σ r.auth  for all pages r which p links to 
p.auth ß Σ q.hub  for all pages q which link to p

Normalize hub and auth scores for all pages
Check convergence of scores

Output pages with highest authority scores and hub scores

p

p



Matrix version of HITS
n Matrices / vectors

q A: adjacency matrix of web graph. (u, v)-th element is 1 if 
page u links to page v

q h: vector of hub scores of all pages
q a: vector of authority scores of all pages

n h ß A.a
n a ß AT .h



HITS – summary
n HITS is guaranteed to converge

n Reasonably efficient for large Web-scale graphs, 
since updates involve local operations only

n Still, not very popularly used. Why?



HITS – summary
n HITS is guaranteed to converge

n Reasonably efficient for large Web-scale graphs, 
since updates involve local operations only

n Still, not very popularly used. Why?
q Easy for a spam page to obtain high hub score (just by 

following many authorities)
q Hubs often transit to authorities
q Search engines themselves become hubs



PAGERANK ALGORITHM



PageRank
n By Larry Page and Sergey Brin

n Problem in measuring importance by indegree
q Not all in-links are same
q How important are those pages which link to page p?

n PageRank of a page 
q A measure of the ‘authority value’ of the page
q Independent of query
q One of many factors used by Google to rank pages



Idea of PageRank
n Good authorities should be pointed to by other good 

authorities
q PRv of page (node) v is a function of the sum of PRs of all 

those pages which point to v
n Each node u distributes its authority value equally 

among all those nodes to which u points
q If page u links to 4 pages, u contributes PRu /4 to the PR 

of each of those 4 pages



Equations for PR (here wv ~ PRv)

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2 

Iterative algorithm used to 
solve such a system of 
equations (multiple iterations 
until convergence)



PageRank computation
/* initialization */
for all nodes u in G: d(u) ß 1/N, where N = #nodes
for all nodes u in G: PR(u) ß d(u)
/* iteration */
do until PR vector converges

for all nodes u in G
for all nodes v that links to u

t = Σ PR(v) / out-degree(v)
PR(u) ß α * t  + (1 – α) * d(u)

normalize scores
check for convergence

end

α to be 
explained later



Theoretical basis of PageRank
n



Example
n Step 0



Example
n Step 0



Example
n Step 1



Example
n Step 1



Example
n Step 2



Example
n Step 2



Example
n Step 3



Example
n Step 3



Example
n Step 4…



Equations for Random Walk
n

The equations are the same as those for 
the PageRank computation



Equations for PR (again)

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2 

Iterative algorithm used to 
solve such a system of 
equations (multiple iterations 
until convergence)



Theoretical basis of PageRank
n The random walk defines a Markov chain

q A discrete time stochastic process following Markov 
property (next state depends only on current state)

q N states corresponding to the N nodes; chain is at one of 
the states at any given time-step

q N x N transition probability matrix P : Pij is the probability 
that state at next time-step is j, given current state is i



An example



An example

n P is a stochastic matrix
q Every element is in [0, 1]
q Sum of every row is 1
q Largest eigenvalue is 1
q Has a principal left eigenvector corresponding to its 

largest eigenvalue



Another example
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Transition matrix for random surfer
n How to derive the transition matrix for the random 

surfer on the Web graph?

n Adjacency matrix of Web graph
q Aij = 1 if there is a hyperlink from page i to page j
q Aij = 0 otherwise

n Derive transition matrix P of Markov chain from A



Some practical challenges
n Web graph (or any graph) can have

q Dead-ends or sink nodes – nodes with no out-edges
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Some practical challenges
n Web graph (or any graph) can have

q Loops



Transition matrix for random surfer
n Derive transition matrix P of Markov chain from A

q If a row of A has no 1’s, replace each element by 1/N
q For all other rows: divide each 1 by the number of 1’s in 

the row
q Multiply the resulting matrix by α
q Add (1-α)/N to every entry of the resulting matrix



Dealing with sink nodes
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Dealing with sink nodes
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As if synthetic edges are inserted from the sink node to 
every other node in the graph



Dealing with loops
n As if synthetic edges are inserted to enable jump from any 

node to any other node in the graph
n Teleportation: jump to any random node with probability 1/N
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Why teleportation?
n Convergence of PageRank is guaranteed only if 

q The transition probability matrix P is irreducible, i.e., all 
transitions have a non-zero probability

q In other words, if the graph (on which random surfing is 
taking place) is strongly connected

n To ensure convergence
q To nodes with out-degree 0, add an outgoing edge to 

every node
q Damp the walk by factor α, by adding a complete set of 

outgoing edges, with weight (1-α)/N, to all nodes 



Transition matrix for random surfer: Recap

n Derive transition matrix P of Markov chain from A
q If a row of A has no 1’s, replace each element by 1/N
q For all other rows: divide each 1 by the number of 1’s in 

the row
q Multiply the resulting matrix by α
q Add (1-α)/N to every entry of the resulting matrix



Given P, how to compute PageRank?
n Vector x (dimension N): probability distribution of 

surfer’s position at any time 
q At t = 0: one entry in x is 1, rest are 0
q At t = 1: xP
q At t = 2: (xP)P = xP2

q …

n Steady-state x = П gives the PageRank scores
q At steady-state: ПP = П
q In other words, at steady state: ПP = 1.П



Given P, how to compute PageRank?
n Vector x (dimension N): probability distribution of 

surfer’s position at any time
q At t = 0: one entry in x is 1, rest are 0
q At t = 1: xP
q At t = 2: (xP)P = xP2

q …

n Steady-state x = П gives the PageRank scores
n PageRank scores obtained as the principal left 

eigenvector of P (corresponding to eigenvalue 1)



PageRank computation
n Need to compute principal left eigenvector of a 

stochastic matrix 

n Several numerical methods, e.g., power iteration

n Difficult to compute for matrices of the size of the 
Web graph; iterative method (already discussed) 
can be more efficient



Theoretical basis of PageRank: Recap

n Random surfer model
q Start at a node, execute a random walk on Web graph

q At each step, proceed from current node u to a randomly 
chosen node that u links to

q Teleport: jump to any random node with probability 1/N

q At a node with no outgoing links, teleport

q At a node that has outgoing links 
n Follow standard random walk with probability α where 0<α<1

n Teleport with probability (1-α)

n Nodes visited more frequently in this random walk 
are web-pages with higher PR



PageRank computation: Recap
/* initialization */
for all nodes u in G: d(u) ß 1/N, where N = #nodes
for all nodes u in G: PR(u) ß d(u)
/* iteration */
do until PR vector converges

for all nodes u in G
for all nodes v that links to u

t = Σ PR(v) / out-degree(v)
PR(u) ß α * t  + (1 – α) * d(u)

normalize scores
check for convergence

end



Practical challenges
n All links uàv do not signify a vote for v

q E.g., links to a copyright page from all pages in a website

n Attempts to spam PageRank: link spam farms or 
link farms
q A target page (whose PR the spammer wants to boost)
q A number of boosting pages, which link to the target 

page, link to each other and also to external pages
q Hijacked links – links accumulated from pages outside the 

link farm



Example link farm



VARIATIONS  OF  PAGERANK



PageRank computation
/* initialization */
for all nodes u in G: d(u) ß 1/N, where N = #nodes
for all nodes u in G: PR(u) ß d(u)
/* iteration */
do until PR vector converges

for all nodes u in G
for all nodes v that links to u

t = Σ PR(v) / out-degree(v)
PR(u) ß α * t  + (1 – α) * d(u)

normalize scores
check for convergence

end



Biased PageRank
n Instead of using the uniform vector d(u) ß 1/N for 

all nodes u, use a non-uniform preference vector:
d(u)  =  1 / |S|, for all u ε S

=  0 otherwise
n Implication for random surfer:

q With probability α, follow standard random walk
q With probability (1-α), teleport to a node in S, where the 

particular node in S is chosen randomly 



Biased PageRank
n Instead of using the uniform vector d(u) ß 1/N for 

all nodes u, use a non-uniform preference vector:
d(u)  =  1 / |S|, for all u ε S

=  0 otherwise
n Implication for random surfer:

q With probability α, follow standard random walk
q With probability (1-α), teleport to a node in S, where the 

particular node in S is chosen randomly 
n Bias the ranks towards nodes that are closer to 

nodes with a larger value in the preference vector



Topic-sensitive PageRank [Haveliwala, WWW 2002]

n Webpages are classified into various topics (16 
Open Directory Project high-level categories)

n Computes PageRank for a particular topic of 
interest

n For category cj
q Tj is the set of websites for category cj
q Modified teleportation function



TrustRank [Gyongyi, VLDB 2004]

n Aims to rank trusted pages higher, and push 
untrusted pages down in the rankings

n Assumes
q A way of knowing trusted nodes: oracle
q Trusted (good) nodes will only link to other good nodes 

but this assumption is violated in the real Web
q Bad nodes will link to other bad nodes and good nodes

n Run PageRank by biasing the preference vector 
towards a set of trusted nodes



TrustRank vs. PageRank


