Social Networks: Introduction

Saptarshi Ghosh Department of CSE, IIT Kharagpur Social Computing course, CS60017

Social networks in off-line world

- Social networks studied for several decades
 - Friendship networks among students of a school, members of a club, ...
 - □ Collaboration networks among scientists, movie actors, ...
 - Citation networks: scientists / papers referring to other scientists / papers

Sociological theories

- Several sociological theories developed
 - Homophily birds of a feather flock together
 - □ Six degrees of separation Milgram's experiments (1967)
 - Strength of weak ties (1973)
 - Spread of epidemics / conventions / news / rumors

Milgram's experiment in 1967

- Sent packets to people in Omaha, Nebraska and Wichita, Kansas
 - □ You need to get the packets to a specific person in Boston
 - □ If you know the recipient, send the packet directly to him
 - If not, think of a friend you know, who is likely to be closer to the recipient in Boston; sign your name to a roster, and send the packet to your friend
- Boston recipient examined the roster and saw how many steps it took for the letter to arrive
- 64 letters reached recipient, average number of links: between 5 and 6

Strength of ties

Group/Network

Group members, because of their frequent interaction, tend to think alike over time. This reduces the diversity of ideas, and in worst-case scenarios leads to "groupthink"

Weak Ties

Weak ties are relationships between members of different groups. They are utilized infrequently and therefore don't need a lot of management to stay healthy. They lead to a diversity of ideas, as they tie together disparate modes of thought.

Strong Ties

Strong ties are relationships between people who work, live, or play together. They are utilized frequently and need a lot of management to stay healthy. Over time, people with strong ties tend to think alike, as they share their ideas all the time.

Advent of online social networks

Online social networks (also called social media)

Among the most popular sites on today's Web

Billions of users world-wide

- Celebrities, media houses, politicians, commoners, ...
- □ Spammers, cyber-bullies, hatemongers, ...

Huge impact

Advertisers reach large population at minimal cost

OSN and researchers

Huge data readily available

- Volume networks of billions of users, petabytes of usergenerated content every day
- Variety text, image, speech, video, …
- Velocity thousands of posts / minute during major events

Automated data collection rather than surveys

Multi-disciplinary research on OSNs

- Computer networks & distributed systems
- Sociology, social psychology, linguistics, …
- Network science, complex network theory
- Data mining, machine learning, information retrieval, natural language processing, ...

Multi-disciplinary research on OSNs

Computer networks & distributed systems

Sociology, social psychology, linguistics, …

Network science, complex network theory

 Data mining, machine learning, information retrieval, natural language processing, ... THIS COURSE Two important aspects in a social network / social media

The network structure

The content

This course

- First part network structure we will consider only simple networks
- Second part content we will focus on only textual content

Social networks vs. Social media

"What is Twitter, a Social Network or a News Media?", Kwak et al., WWW 2010

What is the difference between social network and social media?

- Social network interpersonal links, interactions in focus
- Social media information exchange in focus

Research issues on OSNs

How to model / represent OSNs?

- Most common representation: a graph
 - Nodes: users, edges: social links
- Undirected networks: Facebook
- Directed networks: Twitter
- Weighted networks
 - Edge-weights usually measure "strength" of social link, e.g., number of interactions

Graph models of OSNs

Other varieties of networks

- Networks among blogs, videos, …
- □ Bipartite networks, e.g., viewer-video model of Youtube
- Folksonomy: Users annotate resources with tags, modeled as tri-partite hypergraphs [Cattuto, AI Communications 2007]

Bipartite networks and projections

Tri-partite model for folksonomies

Sociological issues

- Sociological theories investigated on OSNs
 - □ Homophily, strength of weak ties [Grabowicz, Plos ONE, 2012]
 - Emergence and spread of conventions [кооті, ICWSM 2012]
- OSNs different from offline SNs in some aspects
 - Offline social networks an individual can maintain only a certain number of meaningful social links – Dunbar number (~130); OSNs – almost zero cost of maintaining social links - many more links can be maintained
 - Important users readily connect to many ordinary ones
 - Geographical distance does not matter

Locality of friendship in Facebook

http://www.techprone.com/facebook-displays-visually-its-impact-and-spread

Network properties of OSNs [Mislove, IMC 2007]

- Most users have few links, few have many links
 Degree distributions: power-law, exponential, ...
- Presence of numerous triangles (transitivity)
- Small-world, e.g., 6 degrees of separation
- Assortativity, homophily

Explaining the network properties

- What nature of link-creation dynamics explain the empirically observed properties of OSNs?
- Several evolution models proposed
 - Global rules, e.g., Preferential Attachment [Barabasi, Science 1999]
 - Local rules, e.g., triangle closure [Кleinberg, ICWSM 2010], random walk starting from a node [Vasquez, PRE 2003]
 - Biased PA, based on different types of users: inactive, linkers, inviters [Kumar, KDD06]
 - Co-evolution of social and content networks [Singer, Making Sense of Microposts, 2012]

Dynamic network properties

- Dynamic nature: how do properties of OSNs change with time?
 - Network density varies non-monotonically [Китаг, КОДО6]
 - Assortativity varies non-monotonically [Ни, Physics Letters A, 2009]
- Models to explain temporal variation of properties

Link analysis

Classification of social links

- Strong and weak links (e.g. based on level of interaction) [Wilson, EuroSys09][Valafar, WOSN09] [Xiang, WWW10]
- Some OSNs allow positive and negative links (friends and enemies)

Variation of strength of links with time [Viswanath, WOSN09]

Centrality (importance) of nodes

- How important is a node in a network?
 - □ How influential is a person in a social network?
 - □ How important is a website on the Web?
- Many proposed centrality metrics
 - Degree centrality
 - Closeness centrality
 - Betweenness centrality
 - Eigenvector centrality, PageRank

Community detection / clustering

- Identifying communities of `similar' users
 - Traditionally, only rely on network structure: several algorithms [Fortunato, Physics Reports 2010] [Leskovec, WWW10]
 - Content can also be leveraged in case of OSNs
- Dynamic communities: how do communities change with time? [Mitra, Computer Networks, 2012]

Friendship network among students in a US school

Information spread / diffusion

- Understanding information spread / diffusion in OSNs [Cha, WWW 2009] [Lerman, ICWSM 2010] [Bakshy, WWW 2012]
 - □ To what extent does information (news) spread?
 - How fast? Along which links?
 - Who are the most influential in spreading information?
 - □ How does a topic / video become viral?

Spread of viral images in Facebook

http://www.gizmodo.com.au/2012/10/how-viral-images-spread-on-facebook-visualised/

Utilizing information content in OSNs

- Recommendation and search
- Information diffusion
- Misinformation detection
- Authority identification
- Identifying news on recent events

Search and Recommendation

Help users discover interesting content, friends, groups

- Motivation: The amount of information has become so large that it is impossible for an individual user to find out on her own interesting content / friends / groups
- Recommend friends, groups to join [Chen, wwwo9], resources [Konstas, SIGIR09], tags [Sen, www09][Song, SIGIR08]

Personalized answers to queries [Xu, SIGIR08] [Bao, WWW07] [Mislove, HotNets06]

Recommendation

- Two broad ways
 - Content-based, e.g., based on your profile information (e.g., you study in IITKGP), or some keywords given by you while creating account
 - Collaborative filtering identify "similar" users or items how to find "similar" users or items?

Recommendation of books in Amazon

C Programming Language (2nd Edi

Brian W. Kernighan (Author), Dennis M. Ritchie (Author)

Buy New \$52.49 & FREE Shipping. Details

In Stock. Ships from and sold by Amazon.com. Gift-wrap available.

Want it Tuesday, June 4? Order within 55 hrs 50 mins and choose One-Day Shipping at checkout. Details

Customers Who Bought This Item Also Bought

Computer Systems: A Programmer's ... > Randal E. Bryant

Programming in C (3rd Edition) > Stephen G. Kochan

Social recommendations

Basis: friends likely to have similar tastes

Identify influential users / experts

- Several metric of influence: #followers or #friends, PageRank, number of times retweeted [Cha, ICWSM10]
- Identifying topical experts [weng, WSDM10] [Pal, WSDM11] [Ghosh, SIGIR12]
- How to measure topic-specific expertise / interests of users?

Emotion / opinion mining

- Identify user's emotion / opinion from posts
 - □ Identify opinion on movies / political issues [Fang, WSDM12]
 - Comparison among different methods[Goncalves, COSN13]
 - Summarization of opinions [Ganesan, www12]
 - Twitter used to predict election results [титазјан, ICWSM10]

Various types misinformation on social media

Spam, phishing, ...

 Hate speech (against a particular social / religious / ethnic group), cyberbullying, ...

Fake news, rumors, ...

Spam detection

- Identify spam / users with malicious intentions [Heymann, IEEE Internet Computing 2007]
 - Identify spam in Facebook [Gao, IMC10], Twitter [Lee, SIGIR10], Youtube [Benevenuto, SIGIR09], blogs [Shin, Infocom11], ...
 - □ Sybil detection [Yu, SIGCOMM 2006][Viswanath, SIGCOMM10]
- Identifying trustworthy entities, e.g., reviews, ratings [Chandra, Trustcom 2012]

Fake news – some ideas

 First step – identify claims / factual statements that need to be verified – NLP features used

Second step – verify the claims

How to verify?

- From trustworthy information sources, e.g., claims about COVID19 can be verified from medical research papers
- Crowdsourcing from trusted people, e.g., relief workers present in the region of a disaster

Mining information on recent events

 OSNs are valuable sources of information on events happening `now'

Mining information on recent events

 OSNs are valuable sources of information on events happening `now'

Sakaki et. al., "Earthquake shakes Twitter users: real-time event detection by social sensors", WWW 2010

Mining information on recent events

- OSNs are valuable sources of information on events happening `now'
 - Disasters (floods, earthquakes, hurricanes, terror attacks)
 - Socio-political events
- Research challenges
 - Identify / extract / classify important information
 - Identify sub-events
 - Summarize information streams
 - Identify event-specific influential users (community leaders)
 - Rumor detection

Thank You

http://cse.iitkgp.ac.in/~saptarshi/