CS 60050 Machine Learning

An Introduction to Bias-Variance Tradeoff

Some slides taken from course materials of Andrew Ng and various sources available online

Overfitting

- How complex a hypothesis should we try to learn?
 - Complexity of a ML model ~ number of parameters
- Too simple hypothesis: the complexities in the data may not be captured \rightarrow UNDERFITTING
- Too complex hypothesis: the learned hypothesis may fit the training set very well, but fail to generalize to new examples → OVERFITTING

Bias vs. variance in linear regression

Bias vs. variance in logistic regression

Example: Logistic regression

Effect of noise

- Assume we have independent variables *x* that affect the value of a dependent variable *y*
- Let's denote the true dependence of y on x via function f
- Value of y can be affected by non-deterministic noise (e.g., due to measurement errors)

$$y = f(x) + \epsilon$$

Noise is modelled by the random variable ε (assumed zero mean)

 \[\mathbb{E}[\epsilon] = 0, var(\epsilon) = \mathbb{E}[\epsilon^2] = \sigma_\epsilon^2
 \]

Effect of the training data

- We will attempt to learn a function f̂ that is as close to f as possible
- Mean squared error (MSE) is the average squared difference of a prediction $\hat{f}(x)$ from its true value y

 $MSE = \mathbb{E}[(y - \hat{f}(x))^2]$

- The function \hat{f} that is learned depends upon the training data given
 - \hat{f} can be different for different training data, and $\hat{f}(x)$ can change even though x is *fixed*
 - $-\hat{f}$ is a random variable affected by the randomness in which we obtain training data

Bias and Variance

- Since *f(x)* is a random variable, we can talk of its expectation (over different realizations of training data)
- Bias: difference of the average prediction (*over* different realizations of training data) to the true function f(x), for a given unseen (test) point x $\operatorname{bias}[\hat{f}(x)] = \mathbb{E}[\hat{f}(x)] - f(x)$
- Variance: mean squared deviation of $\hat{f}(x)$ from its expected value $\mathbb{E}[\hat{f}(x)]$ over different realizations of training data

$$\operatorname{var}(\hat{f}(x)) = \mathbb{E}[(\hat{f}(x) - \mathbb{E}[\hat{f}(x)])^2]$$

Bias-Variance decomposition

• The formula that connects test MSE to bias, variance and irreducible error:

 $\mathbb{E}_x[\mathbb{E}_{\hat{f}}[(y - \hat{f}(x))^2]] = \mathbb{E}_x[\operatorname{bias}[\hat{f}(x)]^2] + \mathbb{E}_x[\operatorname{var}(\hat{f}(x))] + \sigma_{\epsilon}^2$

- First expectation is over the distribution of unseen (test) points x
- Second expectation is over the distribution of the training data, or over \hat{f} , since \hat{f} depends of the training data
- Total error = Bias² + Variance + Irreducible error
- See <u>https://towardsdatascience.com/the-bias-</u> variance-tradeoff-8818f41e39e9 for proof

Bias Variance Trade-off

- Model with high bias (underfitting)
 - Usually oversimplified, with too few parameters
 - Pays very little attention to the training data
 - Leads to high error on both training and test data
- Model with high variance (overfitting)
 - Usually too complex, with too many parameters
 - Pays a lot of attention to training data, but does not generalize well on unseen data
 - Can vary largely if different training data given

Crosses represent the function learned over different realizations of the training data

Practical implications

 Suppose your model is not performing as well as expected. Is it a bias problem or a variance problem?

High bias (underfit): Both training error and validation / test error are high

High variance (overfit): Low training error High validation / test error

Will more training data help?

- A learnt model is not performing as well as expected. Will having more training data help?
- Note that there can be substantial cost for getting more training data.

Will more training data help?

- A learnt model is not performing as well as expected. Will having more training data help?
- Note that there can be substantial cost for getting more training data.
- If model is suffering from high bias, getting more training data will not (by itself) help much.
- If model is suffering from high variance, getting more training data is likely to help

A small note

- Overfitting of ML models may not be always bad
- Many modern Deep Learning models have millions of parameters, and it is actually desired that these models overfit the training data
 - Some technique like Regularization is used to ensure good generalization of the model
 - Details out of scope of this course

THANK YOU

Questions can be mailed to Dr. S. Ghosh (saptarshi@cse.iitkgp.ac.in)