CS 60050
Machine Learning

Support Vector Machines

Some slides taken from course materials of Abu Mostafa



Intuition

Consider a linearly separable dataset with 2 features

Many possible separators. Each of the separators shown has
100% accuracy

Which is the best?

— In terms of generalization to unseen data?



Intuition

Many possible separators. Which is the best?
That one is best which is farthest away from all training points

Margin: distance from the nearest data point to the separator

Bigger margin is better = better generalization to unknown data
SVMs guarantee to find the separator with the biggest margin



Finding the decision boundary

We want to find the decision boundary that not only
classifies all the points correctly but also maximizes
the margin

Assume d-dimensional feature space

Decision boundary in d-dimensional feature space: a
(hyper)plane

We assume data is linearly separable; the separating
hyperplane will not touch any point



Notations

* Training set: (xU, y) j=1,2, ..., N,
— Each xU) is a vector of d dimensions
— Each y) =+1 or -1

* Separating plane: w'x = 0 (vector notation)
— Vector w = (wg, Wy, ..., Wy)

— w; are the parameters to learn

* Question: Which w maximizes the margin?



Two preliminary technicalities
(to simplify the math)

* Let x, be the nearest data point to the plane w'x =0

e (1) Multiplying all w’s by any constant factor still
gives the same plane. Hence we normalize w such
that | wix, | =1

— This normalization does not reduce generality — we are not
missing any planes



Two preliminary technicalities
(to simplify the math)

* Let x, be the nearest data point to the plane w'x =0
* (1) Normalize w such that | w'x, | =1

* (2) Pull out wy, so that w = (wy, ..., wy). Insert constant
b= wj X,.
— Remember: data points are of d dimensions x4, X, ..., Xg.
Xo IS @ dummy dimension added by us

* Planeis now w'x + b =0, normalized such that | w'x, +b| =1



Computing the margin

The distance between x,, and the plane w'x+b =10

where [W'x,, +b| = 1



Computing the margin

Proposition:

the plane in the X space

The vector w is orthogonal to J/X’



Computing the margin

Proposition:
The vector w is orthogonal to )
the plane in the X space

Take any two points x” and x”’ on
the plane.

wix'+b=0 and wix”"+b=0
=> w'(x’—x")=0

Hence w is orthogonal to any vector that lies on the
plane => w is orthogonal to the plane



Margin: distance between x, and the plane

Take any point X on the plane

Projection of Xn — X ON W (direction orthogonal to the plane)

W= — distance = }WT(xn — x)’
lwl]

Projection of the vector x, —x along w
computed by taking the vector
product of x, — x with the unit vector
in the direction of w

| [w] | is the norm of w



Margin: distance between x, and the plane

1
distance = —}WTxn—WTx} —
|w|
1 T
—}W X, +b—wW
4l

w'x + b is the equation of the plane at a
point x on the plane. Hence 0.

| wix, + b | =1 for the nearest point x,
(due to our normalization)



The optimization problem

1

lw

Maximize

subject to min |w'x, +b| = 1
n=12.,....N



The optimization problem
1

|w

Maximize

subject to min |w'x, +b] = 1
n=1.2,....N

This optimization problem is too complex, because of
(i) the norm in the objective function, and
(i) the minimum term in the constraints

Can we find an equivalent optimization problem that is easier
to tackle?



Simplifying the optimization problem

1

|w

Maximize

subject to min |w'x, +b] = 1
n=1.2,....N

Maximizing 1/ | |w] |
Equivalent to

Minimizing (w' w)



Simplifying the optimization problem

1
Maximize
lw
subject to min |w'x, +b| = 1
n=1.2,....N
Notice: |[w'x, +b| = yn (W'x,, + b)

(assuming all points are classified correctly)



The geometry

For any point on this side of

A the separating plane:
Y, =+1
. w'x, +b >0
. " |
\ L XX For the two points nearest
X to the plane: w'x, + b =1
>< * . x Forthefurther points:
wix,+b>1
o X
For any point on this side of X
the separating plane: O SN
yn=_1 O \\\\\ e .
w'x, +b <0 © O o .
O O \\\\
For the point nearest to the O
plane: w'x, + b =-1 R

For the further points:
wix, +b<-1



The geometry

For any point on this side of

A the separating plane:
Y, =+1
. w'x, +b>0
A X
\ . XX For the two points nearest
el . . to the plane: w'x, +b =1
IR Kl X . x Forthefurther points:
g wix, +b>1
For any point on this side of N ><
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For the point nearest to the O T~
plane: w'x, + b =-1 >

For the further points:
wix, +b<-1

Notice: |[W'x, + b| = yn (WX, + b)



Equivalent optimization problem

1
Maximize
Il
subject to min |w'x,+b] = 1
n=1,2,....N
Notice: |W'x, + b = yn (W'x, + D)
@ ) B

Minimize 5 wW'w

subject to yp (W'x,+0)>1 for n=12,...,N
_ 4




Final optimization problem

Minimize

subject to

Yn (WX, +0) > 1

weRL beER

for

n=1,2,....N



Solving the optimization problem



Solving the optimization

1
Minimize — W' W
2
subject to Yn (Wx,+b)>1 for n=1,2,...,N

weRY beR

A way of solving constrained optimization problems: take the
Lagrangian formulation of the problem

One issue: constraints are inequality constraints - handled by KKT
conditions (due to Karush and Kuhn-Tucker)

Details out of scope of this course



Towards Lagrange formulation

1
Minimize — W' W
2
subject to Yn (Wx,+b)>1 for n=1,2,...,N

weRY beR

For each constraint, consider a ‘slack” quantity: difference
between the left hand side and right hand side of the constraint

The slack quantities will be multiplied by ‘Lagrange multipliers” a,
and will be made part of the objective function

Details out of scope of this course



Lagrange formulation
1

Minimize — WW
2
subject to Yn (WX, +b)>1 for n=1,2,...,N
weR beR
1 N < >
Minimize L(w,b,a) =—-w'w — Z o (Yn (WX, +0) —1)
- n=1

w.rt. w and b and maximize w.r.t. each o, > 0

Note: we have one Lagrange multiplier for each of the n data points



Lagrange formulation

N
1
Minimize L(w,b,a) =5 W'W — Y (Yo (Wxp +b) —1)
n=1

w.rt. w and b and maximize w.r.t. each o, > 0

Let us consider the unconstrained case:

N
Vwl=w — E ApUnXy, = 0 Vector differentiation
n=1
N
oL
Ol - Za""-yn = 0 Scalar differentiation
10

n=1



Lagrange formulation

N
1
Minimize L(w,b,a) = 5 WWw — Z (Y (WX, +b) —1)

n=1

w.rt. w and b and maximize w.r.t. each o, > 0

Substituting

N N
W = E Oy UnXn and E nYp = 0
Tl-:l lel
We get
N N N
]. N\ N\ T
L (a) — E Xy — 5 /. YnlYm Oy XnXm




Explaining
the
Lagrange
formulation




Final constrained optimization

N N N
TR o PP
[’ (CX) — Ay, — 5 » » UYnYm iy XnXm
n=1 ~ n=1 m=1

Maximize w.r.t. to & subject to

:
a, >0 for n=1,--- N and ZQZI Y, = 0

Can be solved by Quadratic Programming, which gives us

x—0o1, " QN

Details out of scope of this course



The solution

Solution: @@ = vy, - -+ , an

N
— W = E X YnXpy
n=1

For each data point x,, :

KKT condition: Form=1.--- . N Either the slack is zero, or
’ ' the Lagrange multiplier a,

0 IS zero

y (Y (WX, +0) —1) =

% a’s for most points will be
zero, only for few points a

will be positive

a, >0 = X, I1s a |support vector




Support vectors

Closest x;,'s to the plane: achieve the margin

— Yo (W'x,+0)=1

Solve for b using any SV:

Yn (WX, +b) =1

Hypothesis g(x) = sigh( w'x + b )



Advantage of SVM

* When we started, the number of parameters was the
number of components of w vector

* Now, we see - the effective number of parameters is
the number of SVs, which is much smaller (since
most a’s are zero)

* SVMs known to perform well over many types of
data



Extension of SVMs

* Till now, we considered linearly separable data
— What we discussed is called “Hard margin SVM”

 What if the data is slightly non-linearly separable?
— A variant called “Soft margin SVM”

— Allows for few misclassifications (suitably penalized) in
order to achieve large margin

 What if the data is highly non-linearly separable
(complex decision boundary)?

— We go for non-linear transforms



Non-linear transforms

Used when the data is non-linearly
separable in the feature space



Nonlinear transforms

X2

Linearly separable in some
other space (usually higher
dimensional)

Non-linearly separable in
original feature space



Nonlinear transforms

Points transformed from X-space to Z-space
Optimization problem formulated in Z-space

) 1 )
‘C(a) — Z Xy — § S: S: YnlYm Oy Z'Tnzm
- m=1

SVs found in Z-space (different Z-spaces can give
different SVs)

Complexity of optimization problem is independent of
dimension of Z-space, only depends on number of
points (N)



What do we need from the Z-space?

N 1 N N
‘C(a) — Z Qn — 5 y: Y YnYm Cnm ZnZm
=1

-~
TL:l n m:l

Constraints: «a, >0 for n=1,--- N and Zle Y, = 0

g(x) =sign (w'z + b)

where w = E U YnZn
Zn 15 SV

and b Yy, (W'z,,+b)=1



What do we need from the Z-space?

N 1 N N
‘C(a) — Z Qn — 5 y: y YnYm Cnm ZnZm
=l

-~
n=1 n m:l

Constraints: a, >0 for n=1,--- N and Zgzlanyn =0

g(x) =sign (W'z + b) [ need Z,7Z }

where w = E Ol YnZy,
Zn 15 SV

and b Yy, (W'z,,+b)=1



What do we need from the Z-space?

N 1 N N
‘C(a) — Z Qn — 5 y: y YnYm Cnm ZnZm
=l

-~
n=1 n m:l

Constraints: a, >0 for n=1,--- N and Zgzlanyn =0

g(x) =sign (W'z + b) [ need Z,7Z }

where w = E Ol YnZy,
Zn 15 SV

and b: YUm (WTZm + b) =01 Lneed Z;Z‘m.}




What do we need from the Z-space?

N N
5 4 5 YnYm Cnm ZTnZ-m.
=

)
m=1

N
Lla) =) an —

n=1 n

b | =

Constraints: a, >0 for n=1,--- N and Zleanyn =0

g(x) =sign (w'z + b) [ need Z,7Z }

and b: Ym (WTZ.,-,-I. + b) =01 Lneed Z;r-lz'm.}

Need only inner products of vectors in the Z-space



Inner products in Z-space

e Given two vectors x and x’ (in original feature space)

* Which is easier:
— Getting the transformed vectors z and z’ in Z-space

— Getting the inner product of zand 7’

 Can we compute inner products in Z-space without
transforming vectors to Z-space?



Kernel function

A kernel function is a function of x and x’, such that
the value K(x, x’) is an inner product of two vectors in
some Z-space

* Given two points x, x’ e X, z'z’=K(x, x’)

* Allows computation of the inner product of
transformed vectors in the Z-space, without needing
to transform the vectors to the Z-space



Kernel function: an example

Assume original feature space X has two dimensions
X = (Xll XZ)
XI=(X11’X21)

Consider the following function:
Consider K(x,x') = (14+xx')? = (1 + 212’1 + 297'9)?

2 2 . . ¢
=1 + ;17%;17’ 1 + 1’%:17’2 + 212"y + 2397’9 + 271211979

Is K a kernel function?



Yes, K is a kernel function

Consider K(x,x) = (14+xx/)?2 = (1 + 212’1 + T97'9)?

2 2 .- .- ¢
= 1 + 222 + 2225 + 23021 + 2307’y + 22171797

This is an inner product!
X—>z7= (1, :l’% - :l’% o '\/51,‘1 ] \/§$2 ] '\/§$1$2 )

x>7= (1,27, 25, V2a'i , V22's, V22'12's)



What functions are valid kernel functions?

 For a function to be a valid kernel function, it has to
obey several properties
— Be continuous
— Be symmetric
— Obey Mercer’s condition

* You can design your own kernel, provided it satisfies
the conditions

Details out of scope of this course



Several well-known kernels exist

* Polynomial kernel: K(x, z) = (1 + x'z)d
— d=1 gives linear kernel
— d=2 gives quadratic kernel

e Radial Basis Function (RBF) kernel
K(Z,7) = e (2220
Note: In this particular slide, x and z are vectors in the original feature space

(this is different from the rest of the slides, where the symbol z has been used
to denote the transformation of x to the Z-space)



Summary: The kernel trick

* Helps to perform the classification in a high-
dimensional space (as compared to original feature
space)

— Advantage: data may be linearly separable (or at least,
easier to separate) in a high-dimensional space

— Need not pay much of a price in terms of computational
complexity, since we do not have to actually transform the
vectors to the high-dimensional space

e 7/-space can be very high dimensional, even of
infinite dimensions (e.g., for the RBF kernels)



THANK YOU

Questions can be mailed to Dr. S. Ghosh (saptarshi@cse.iitkgp.ac.in)



