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Intuition

• Consider a linearly separable dataset with 2 features
• Many possible separators. Each of the separators shown has 

100% accuracy

• Which is the best? 
– In terms of generalization to unseen data? 



Intuition

• Many possible separators. Which is the best? 
• That one is best which is farthest away from all training points

• Margin: distance from the nearest data point to the separator
• Bigger margin is better à better generalization to unknown data
• SVMs guarantee to find the separator with the biggest margin



Finding the decision boundary

• We want to find the decision boundary that not only 
classifies all the points correctly but also maximizes 
the margin

• Assume d-dimensional feature space
• Decision boundary in d-dimensional feature space: a 

(hyper)plane
• We assume data is linearly separable; the separating 

hyperplane will not touch any point



Notations
• Training set: ( x(j), y(j) ), j = 1, 2, …, N, 
– Each x(j) is a vector of d dimensions
– Each y(j) = +1 or -1

• Separating plane: wTx = 0 (vector notation) 
– Vector w = (w0, w1, …, wd)
– wj are the parameters to learn

• Question: Which w maximizes the margin? 



Two preliminary technicalities 
(to simplify the math)

• Let xn be the nearest data point to the plane wTx = 0

• (1) Multiplying all w’s by any constant factor still 
gives the same plane. Hence we normalize w such 
that | wTxn | = 1
– This normalization does not reduce generality – we are not 

missing any planes



• Let xn be the nearest data point to the plane wTx = 0  
• (1) Normalize w such that | wTxn | = 1

• (2) Pull out w0, so that w = (w1, …, wd). Insert constant 
b= w0 x0. 
– Remember: data points are of d dimensions x1, x2, …, xd.      

x0 is a dummy dimension added by us

• Plane is now wTx + b = 0, normalized such that | wTxn + b| = 1

Two preliminary technicalities 
(to simplify the math)



Computing the margin



Computing the margin

Proposition:
The vector w is orthogonal to 
the plane in the X space



Computing the margin

Proposition:
The vector w is orthogonal to 
the plane in the X space

Take any two points x’ and x’’ on 
the plane.

wTx’ + b = 0    and  wTx’’ + b = 0
=>  wT (x’ – x’’) = 0

Hence w is orthogonal to any vector that lies on the 
plane => w is orthogonal to the plane



Margin: distance between xn and the plane

(direction orthogonal to the plane)

Projection of the vector xn – x along w
computed by taking the vector 
product of xn – x with the unit vector 
in the direction of w 

||w|| is the norm of w



wTx + b is the equation of the plane at a 
point x on the plane. Hence 0.

| wTxn + b | = 1 for the nearest point xn
(due to our normalization)

Margin: distance between xn and the plane



The optimization problem



The optimization problem

This optimization problem is too complex, because of 
(i) the norm in the objective function, and 
(ii) the minimum term in the constraints

Can we find an equivalent optimization problem that is easier 
to tackle? 



Simplifying the optimization problem

Maximizing 1 / ||w||  

Equivalent to 

Minimizing (wT w) 



(assuming all points are classified correctly)

Simplifying the optimization problem



The geometry 
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corresponding to constraints that hold with equality, gi(w) = 0). Consider
the figure below, in which a maximum margin separating hyperplane is shown
by the solid line.

The points with the smallest margins are exactly the ones closest to the
decision boundary; here, these are the three points (one negative and two pos-
itive examples) that lie on the dashed lines parallel to the decision boundary.
Thus, only three of the αi’s—namely, the ones corresponding to these three
training examples—will be non-zero at the optimal solution to our optimiza-
tion problem. These three points are called the support vectors in this
problem. The fact that the number of support vectors can be much smaller
than the size the training set will be useful later.

Let’s move on. Looking ahead, as we develop the dual form of the prob-
lem, one key idea to watch out for is that we’ll try to write our algorithm
in terms of only the inner product ⟨x(i), x(j)⟩ (think of this as (x(i))Tx(j))
between points in the input feature space. The fact that we can express our
algorithm in terms of these inner products will be key when we apply the
kernel trick.

When we construct the Lagrangian for our optimization problem we have:

L(w, b,α) =
1

2
||w||2 −

m
∑

i=1

αi

[

y(i)(wTx(i) + b)− 1
]

. (8)

Note that there’re only “αi” but no “βi” Lagrange multipliers, since the
problem has only inequality constraints.

Let’s find the dual form of the problem. To do so, we need to first
minimize L(w, b,α) with respect to w and b (for fixed α), to get θD, which

For any point on this side of 
the separating plane:
yn = +1
wTxn + b > 0

For the two points nearest 
to the plane: wTxn + b = 1
For the further points: 
wTxn + b > 1

For any point on this side of 
the separating plane:
yn = -1
wTxn + b < 0

For the point nearest to the 
plane: wTxn + b = -1
For the further points: 
wTxn + b < -1
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Equivalent optimization problem



Final optimization problem



Solving the optimization problem



Solving the optimization

A way of solving constrained optimization problems: take the 
Lagrangian formulation of the problem

One issue: constraints are inequality constraints - handled by KKT 
conditions (due to Karush and Kuhn-Tucker)

Details out of scope of this course



Towards Lagrange formulation

For each constraint, consider a ‘slack’ quantity: difference 
between the left hand side and right hand side of the constraint

The slack quantities will be multiplied by ‘Lagrange multipliers’ ⍺n
and will be made part of the objective function

Details out of scope of this course



Lagrange formulation

Note: we have one Lagrange multiplier for each of the n data points

slack



Lagrange formulation

Let us consider the unconstrained case:

Vector differentiation

Scalar differentiation



Lagrange formulation

Substituting

We get



Explaining 
the 

Lagrange 
formulation



Final constrained optimization

Can be solved by Quadratic Programming, which gives us 

Details out of scope of this course



The solution

For each data point xn :
Either the slack is zero, or 
the Lagrange multiplier ⍺n
is zero

⍺’s for most points will be 
zero, only for few points ⍺
will be positive

slack



Support vectors

Hypothesis g(x) = sign( wTx + b )

Support 
Vectors



Advantage of SVM

• When we started, the number of parameters was the 
number of components of w vector

• Now, we see - the effective number of parameters is 
the number of SVs, which is much smaller (since 
most ⍺’s are zero)

• SVMs known to perform well over many types of 
data



Extension of SVMs

• Till now, we considered linearly separable data
– What we discussed is called “Hard margin SVM”

• What if the data is slightly non-linearly separable?
– A variant called “Soft margin SVM”
– Allows for few misclassifications (suitably penalized) in 

order to achieve large margin

• What if the data is highly non-linearly separable 
(complex decision boundary)?
– We go for non-linear transforms



Non-linear transforms

Used when the data is non-linearly 
separable in the feature space



Nonlinear transforms

Non-linearly separable in 
original feature space

Linearly separable in some 
other space (usually higher 
dimensional)



Nonlinear transforms
• Points transformed from X-space to Z-space
• Optimization problem formulated in Z-space

• SVs found in Z-space (different Z-spaces can give 
different SVs)

• Complexity of optimization problem is independent of 
dimension of Z-space, only depends on number of 
points (N)



What do we need from the Z-space?



What do we need from the Z-space?



What do we need from the Z-space?



What do we need from the Z-space?

Need only inner products of vectors in the Z-space



Inner products in Z-space

• Given two vectors x and x’ (in original feature space)

• Which is easier:
– Getting the transformed vectors z and z’ in Z-space
– Getting the inner product of z and z’

• Can we compute inner products in Z-space without 
transforming vectors to Z-space?



Kernel function

• A kernel function is a function of x and x’, such that 
the value K(x, x’) is an inner product of two vectors in 
some Z-space

• Given two points  x, x’ ε X,   zTz’ = K(x, x’)

• Allows computation of the inner product of 
transformed vectors in the Z-space, without needing 
to transform the vectors to the Z-space



Kernel function: an example
Assume original feature space X has two dimensions

x = (x1, x2)
x’ = ( x1’ , x2’ )

Consider the following function:

Is K a kernel function?



Yes, K is a kernel function

x à z = 

x’ à z’ = 



What functions are valid kernel functions?

• For a function to be a valid kernel function, it has to 
obey several properties
– Be continuous
– Be symmetric
– Obey Mercer’s condition

• You can design your own kernel, provided it satisfies 
the conditions

Details out of scope of this course



Several well-known kernels exist

• Polynomial kernel: K(x, z) = (1 + xTz)d

– d=1 gives linear kernel
– d=2 gives quadratic kernel

• Radial Basis Function (RBF) kernel
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x⃗T⃗z)d. The case of d = 1 is a linear kernel, which is what we had before the
start of this section (the constant 1 just changing the threshold). The case of
d = 2 gives a quadratic kernel, and is very commonly used. We illustrated
the quadratic kernel in Example 15.2.

The most common form of radial basis function is a Gaussian distribution,
calculated as:

K(x⃗, z⃗) = e−(x⃗−z⃗)2/(2σ2)(15.16)

A radial basis function (rbf) is equivalent to mapping the data into an infi-
nite dimensional Hilbert space, and so we cannot illustrate the radial basis
function concretely, as we did a quadratic kernel. Beyond these two families,
there has been interesting work developing other kernels, some of which is
promising for text applications. In particular, there has been investigation of
string kernels (see Section 15.5).

The world of SVMs comes with its own language, which is rather different
from the language otherwise used in machine learning. The terminology
does have deep roots in mathematics, but it’s important not to be too awed
by that terminology. Really, we are talking about some quite simple things. A
polynomial kernel allows us to model feature conjunctions (up to the order of
the polynomial). That is, if we want to be able to model occurrences of pairs
of words, which give distinctive information about topic classification, not
given by the individual words alone, like perhaps operating AND system or
ethnic AND cleansing, then we need to use a quadratic kernel. If occurrences
of triples of words give distinctive information, then we need to use a cubic
kernel. Simultaneously you also get the powers of the basic features – for
most text applications, that probably isn’t useful, but just comes along with
the math and hopefully doesn’t do harm. A radial basis function allows you
to have features that pick out circles (hyperspheres) – although the decision
boundaries become much more complex as multiple such features interact. A
string kernel lets you have features that are character subsequences of terms.
All of these are straightforward notions which have also been used in many
other places under different names.

15.2.4 Experimental results

We presented results in Section 13.6 showing that an SVM is a very effec-
tive text classifier. The results of Dumais et al. (1998) given in Table 13.9
show SVMs clearly performing the best. This was one of several pieces of
work from this time that established the strong reputation of SVMs for text
classification. Another pioneering work on scaling and evaluating SVMs
for text classification was (Joachims 1998). We present some of his results

Note: In this particular slide, x and z are vectors in the original feature space 
(this is different from the rest of the slides, where the symbol z has been used 
to denote the transformation of x to the Z-space)



Summary: The kernel trick
• Helps to perform the classification in a high-

dimensional space (as compared to original feature 
space)
– Advantage: data may be linearly separable (or at least, 

easier to separate) in a high-dimensional space 
– Need not pay much of a price in terms of computational 

complexity, since we do not have to actually transform the 
vectors to the high-dimensional space

• Z-space can be very high dimensional, even of 
infinite dimensions (e.g., for the RBF kernels)



THANK YOU

Questions can be mailed to Dr. S. Ghosh (saptarshi@cse.iitkgp.ac.in)


