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Naïve Bayes Classifier

Some slides taken from course materials of Tan, Steinbach, Kumar



Bayes Classifier

● A probabilistic framework for solving classification 
problems

● Approach for modeling probabilistic relationships
between the attribute set and the class variable
– May not be possible to certainly predict class label of a 

test record even if it has identical attributes to some 
training records

– Reason: noisy data or presence of certain factors that 
are not included in the analysis



Probability Basics

● P(A = a, C = c): joint probability that random 
variables A and C will take values a and c 
respectively

● P(A = a | C = c): conditional probability that A will 
take the value a, given that C has taken value c

)(
),()|(

)(
),()|(

CP
CAPCAP

AP
CAPACP

=

=



Bayes Theorem

● Bayes theorem:

● P(C) known as the prior probability
● P(C | A) known as the posterior probability
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Example of Bayes Theorem

● Given: 
– A doctor knows that meningitis causes stiff neck 50% of the 

time
– Prior probability of any patient having meningitis is 1/50,000
– Prior probability of any patient having stiff neck is 1/20

● If a patient has stiff neck, what’s the probability 
he/she has meningitis?
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Bayesian Classifiers

● Consider each attribute and class label as random 
variables

● Given a record with attributes (A1, A2,…,An) 
– Goal is to predict class C
– Specifically, we want to find the value of C that 

maximizes P(C| A1, A2,…,An )



Bayesian Classifiers

● Approach:
– compute the posterior probability P(C | A1, A2, …, An) for 

all values of C using the Bayes theorem
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Bayesian Classifiers

● Approach:
– compute the posterior probability P(C | A1, A2, …, An) for 

all values of C using the Bayes theorem
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Evidence

Class-conditional 
probability



Bayesian Classifiers

● Approach:
– compute the posterior probability P(C | A1, A2, …, An) for 

all values of C using the Bayes theorem

– Choose value of C that maximizes 
P(C | A1, A2, …, An)

– Equivalent to choosing value of C that maximizes
P(A1, A2, …, An|C) P(C)

● How to estimate P(A1, A2, …, An | C )?
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Naïve Bayes Classifier

● Assumes all attributes Ai are conditionally independent, 
when class C is given:    
– P(A1, A2, …, An |C) = P(A1| C) P(A2| C)… P(An| C)

– Can estimate P(Ai | Cj) for all Ai and Cj.

– New point is classified to Cj if  P(Cj) P P(Ai | Cj)  is 
maximal.



Conditional independence: basics

● Let X, Y, Z denote three sets of random variables
● The variables in X are said to be conditionally 

independent of variables in Y, given Z if
P( X | Y, Z ) = P( X | Z )

● An example
– Level of reading skills of people tends to increase with 

length of the arm
– Explanation: both increase with age of a person
– If age is given, arm length and reading skills are 

(conditionally) independent



Conditional independence: basics

● If X and Y are conditionally independent, given Z

P( X, Y | Z ) =  P(X, Y, Z) / P(Z)
= P(X, Y, Z) / P(Y, Z) * P(Y, Z) / P(Z)
= P(X | Y, Z) * P(Y | Z)
= P(X | Z) * P(Y | Z)

P( X, Y | Z ) = P(X | Z) * P(Y | Z)
NB assumption:
P(A1, A2, …, An |C) = P(A1| C) P(A2| C)… P(An| C)



How to Estimate Probabilities from Data?

● Class:  P(C) = Nc/N
– e.g.,  P(No) = 7/10, 

P(Yes) = 3/10

● For discrete attributes:
P(Ai | Ck) = |Aik|/ Nc 

– where |Aik| is number of 
instances having attribute 
Ai and belongs to class Ck

– Examples:
P(Status=Married|No) = 4/7
P(Refund=Yes|Yes)=0

k

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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How to Estimate Probabilities from Data?

● For continuous attributes, two options: 
– Discretize the range into bins 

u one ordinal attribute per bin
– Probability density estimation:

u Assume attribute follows a Gaussian / normal 
distribution
u Use data to estimate parameters of distribution 

(e.g., mean and standard deviation)
u Once probability distribution is known, can use it to 
estimate the conditional probability P(Ai|c)



How to Estimate Probabilities from Data?

● Normal distribution:

– One for each (Ai, cj) pair

● For (Income, Class=No):
– If Class=No

u sample mean = 110
u sample variance = 2975

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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A complete example



Example of Naïve Bayes Classifier

120K)IncomeMarried,No,Refund( ===X
Given a Test Record:

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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classTraining data: P(No) = 7/10 P(Yes) = 3/10

P(Refund = Yes | No) = 3/7
P(Refund = No | No) = 4/7
P(Refund = Yes | Yes) = 0/3
P(Refund = No | Yes) = 3/3

P(Marital status = Single | No) = 2/7
P(Marital status = Divorced | No) = 1/7
P(Marital status = Married | No) = 4/7

P(Marital status = Single | Yes) = 2/3 
P(Marital status = Divorced | Yes) = 1/3
P(Marital status = Married | Yes) = 0/3

For taxable income:
If class=No:   sample mean = 110

sample variance = 2975
If class=Yes: sample mean = 90

sample variance = 25



Example of Naïve Bayes Classifier

120K)IncomeMarried,No,Refund( ===X

● P(X|Class=No) = P(Refund=No|Class=No)
´ P(Married| Class=No)
´ P(Income=120K| Class=No)

= 4/7 ´ 4/7 ´ 0.0072 = 0.0024

● P(X|Class=Yes) = P(Refund=No| Class=Yes)
´ P(Married| Class=Yes)
´ P(Income=120K| Class=Yes)

= 1 ´ 0 ´ 1.2 ´ 10-9 = 0

Since P(X|No)P(No) > P(X|Yes)P(Yes)
Therefore P(No|X) > P(Yes|X)

=> Predicted Class = No

Given a Test Record:

P(No) = 7/10 P(Yes) = 3/10

P(Refund = Yes | No) = 3/7
P(Refund = No | No) = 4/7
P(Refund = Yes | Yes) = 0/3
P(Refund = No | Yes) = 3/3

P(Marital status = Single | No) = 2/7
P(Marital status = Divorced | No) = 1/7
P(Marital status = Married | No) = 4/7

P(Marital status = Single | Yes) = 2/3 
P(Marital status = Divorced | Yes) = 1/3
P(Marital status = Married | Yes) = 0/3

For taxable income:
If class=No:   sample mean = 110

sample variance = 2975
If class=Yes: sample mean = 90

sample variance = 25



Naïve Bayes Classifier

● If one of the conditional probability is zero, then 
the entire expression becomes zero

● To prevent this, some variations of probability 
estimation:
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Naïve Bayes: Pros and Cons

● Robust to isolated noise points

● Can handle missing values by ignoring the 
instance during probability estimate calculations

● Robust to irrelevant attributes

● Independence assumption may not hold for some 
attributes
– Presence of correlated attributes can degrade 

performance of NB classifier



Example with correlated attribute

● Two attributes A, B and class Y (all binary)
● Prior probabilities:

– P(Y=0) = P(Y=1) = 0.5
● Class conditional probabilities of A:

– P(A=0 | Y=0) = 0.4 P(A=1 | Y=0) = 0.6
– P(A=0 | Y=1) = 0.6 P(A=1 | Y=1) = 0.4

● Class conditional probabilities of B are same as 
that of A

● B is perfectly correlated with A when Y=0, but is 
independent of A when Y=1



Example with correlated attribute

● Need to classify a record with A=0, B=0
● P(Y=0 | A=0,B=0) = P(A=0,B=0 | Y=0) P(Y=0)

P(A=0, B=0)
= P(A=0|Y=0) P(B=0|Y=0) P(Y=0)

P(A=0, B=0)
= (0.16 * 0.5) / P(A=0,B=0)

● P(Y=1 | A=0,B=0) = P(A=0,B=0 | Y=1) P(Y=1)
P(A=0, B=0)

= P(A=0|Y=1) P(B=0|Y=1) P(Y=1)
P(A=0, B=0)

= (0.36 * 0.5) / P(A=0,B=0)
● Hence prediction is Y=1



Example with correlated attribute

● Need to classify a record with A=0, B=0
● In reality, since B is perfectly correlated to A when 

Y= 0
● P(Y=0 | A=0,B=0) = P(A=0,B=0 | Y=0) P(Y=0)

P(A=0, B=0)
= P(A=0|Y=0) P(Y=0)

P(A=0, B=0)
= (0.4 * 0.5) / P(A=0,B=0)

● Hence prediction should have been Y=0



Other Bayesian classifiers

● If it is suspected that attributes may have 
correlations:

● Can use other techniques such as Bayesian 
Belief Networks (BBN)

● Uses a graphical model (network) to capture prior 
knowledge in a particular domain, and causal 
dependencies among variables


