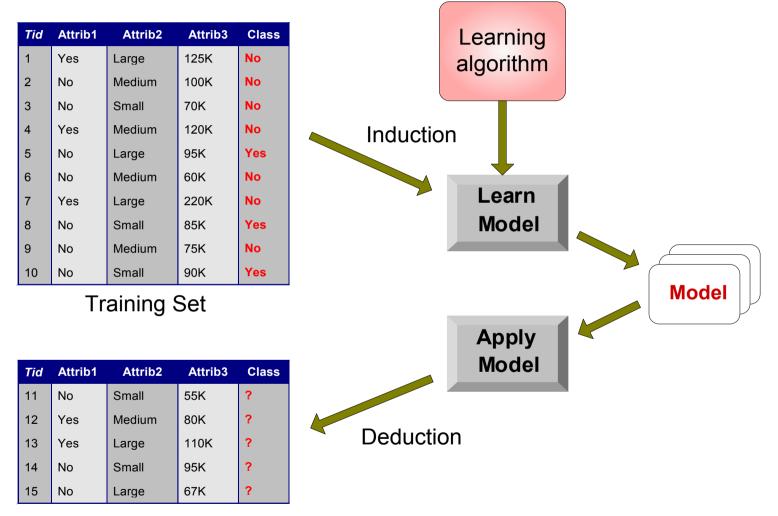
CS 60050 Machine Learning

Decision Tree Classifier

Slides taken from course materials of Tan, Steinbach, Kumar

Illustrating Classification Task

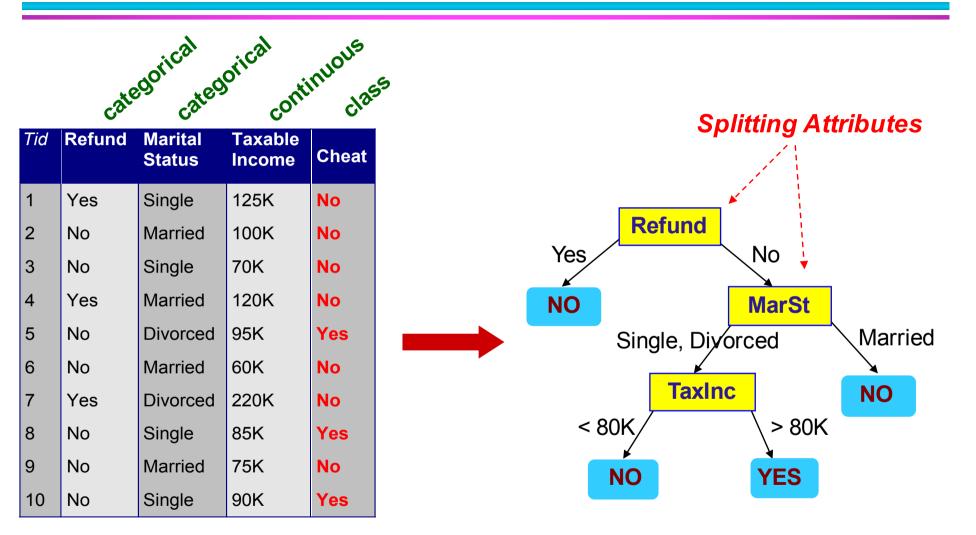


Test Set

Intuition behind a decision tree

- Ask a series of questions about a given record
 - Each question is about one of the attributes
 - Answer to one question decides what question to ask next (or if a next question is needed)
 - Continue asking questions until we can infer the class of the given record

Example of a Decision Tree



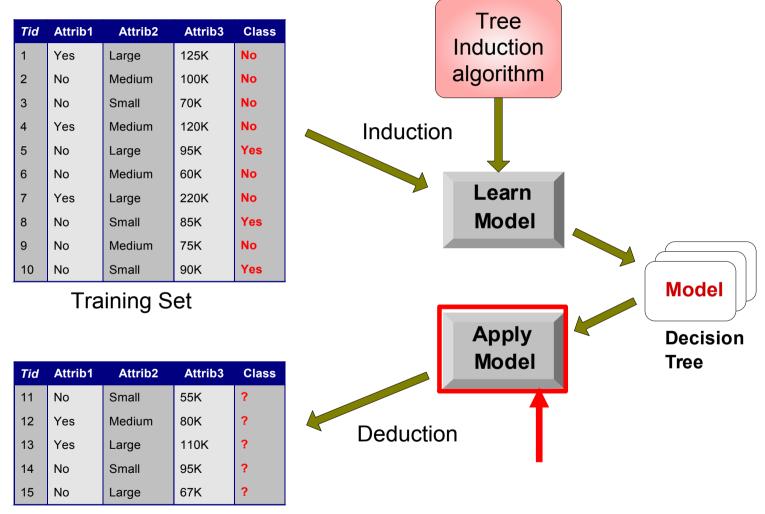
Training Data

Model: Decision Tree

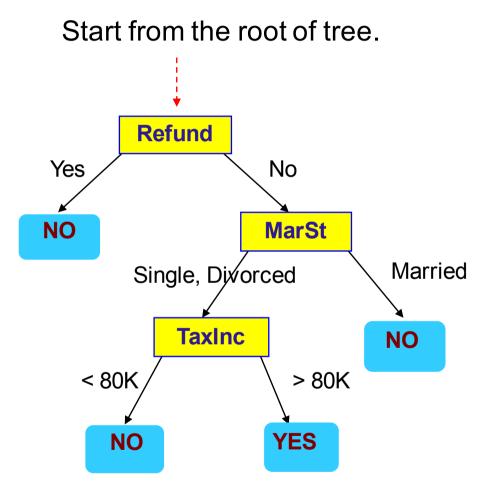
Structure of a decision tree

- Decision tree: hierarchical structure
 - One root node: no incoming edge, zero or more outgoing edges
 - Internal nodes: exactly one incoming edge, two or more outgoing edges
 - Leaf or terminal nodes: exactly one incoming edge, no outgoing edge
- Each leaf node assigned a class label
- Each non-leaf node contains a test condition on one of the attributes

Applying a Decision Tree Classifier



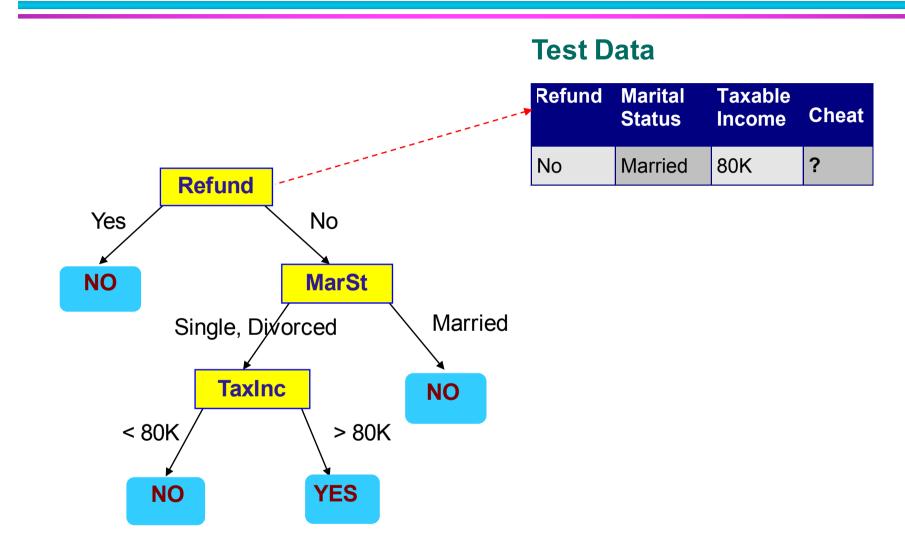
Test Set

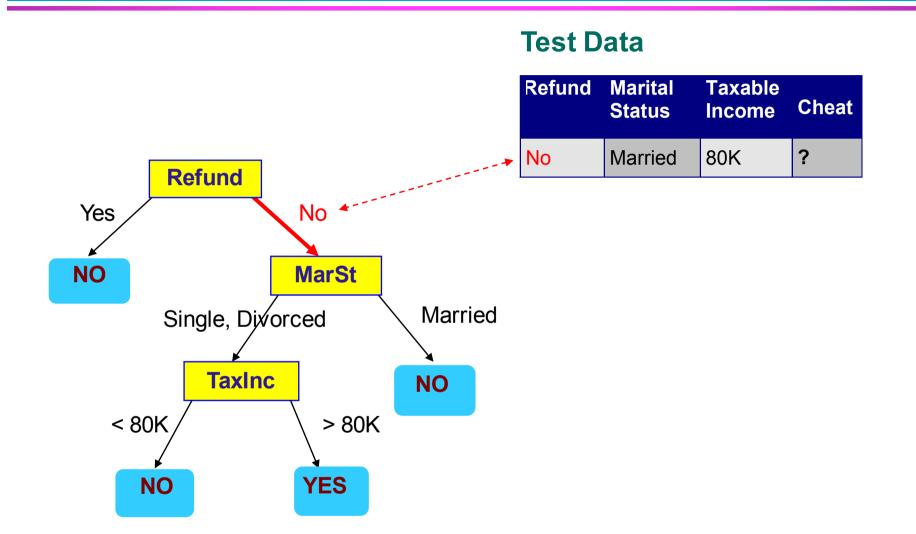


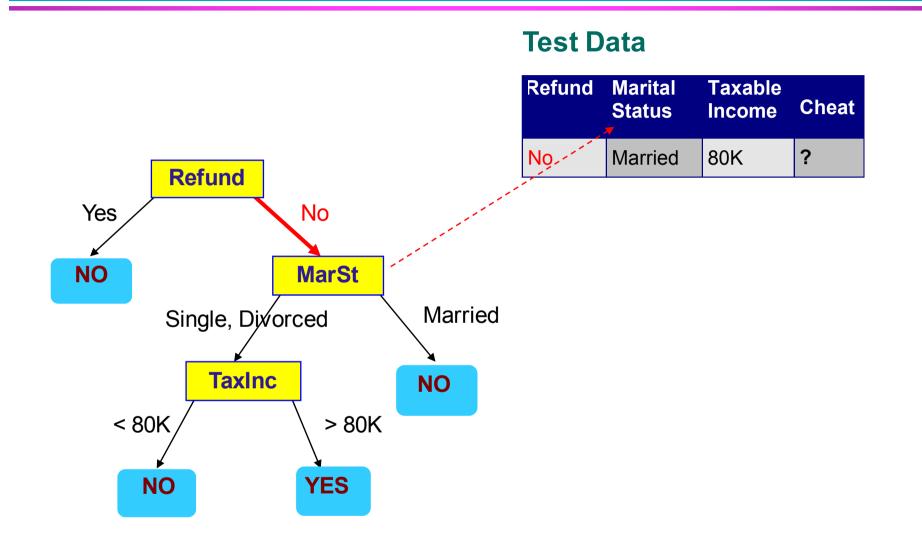
Test Data

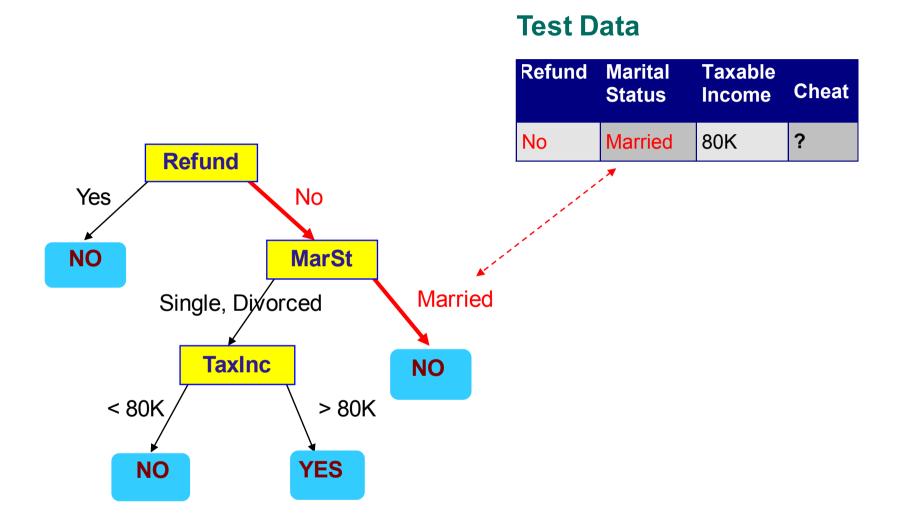
Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

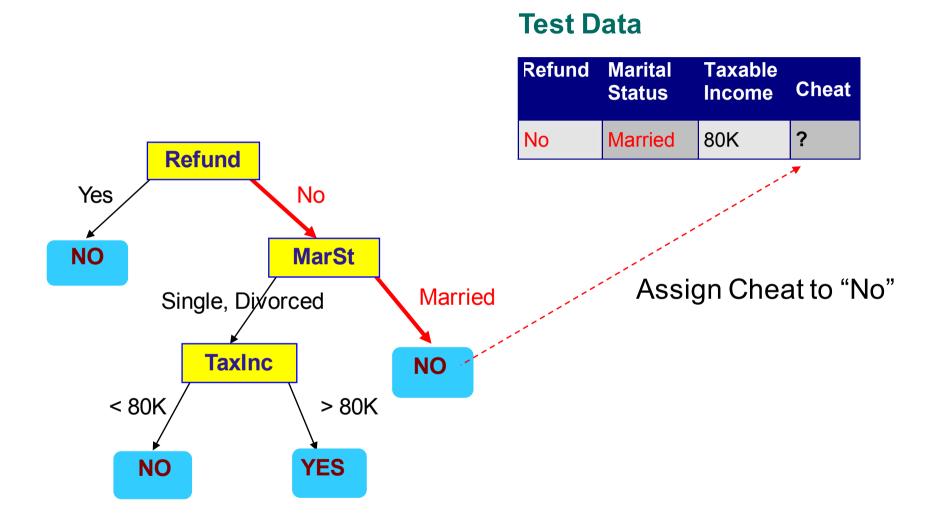
Once a decision tree has been constructed (learned), it is easy to apply it to test data



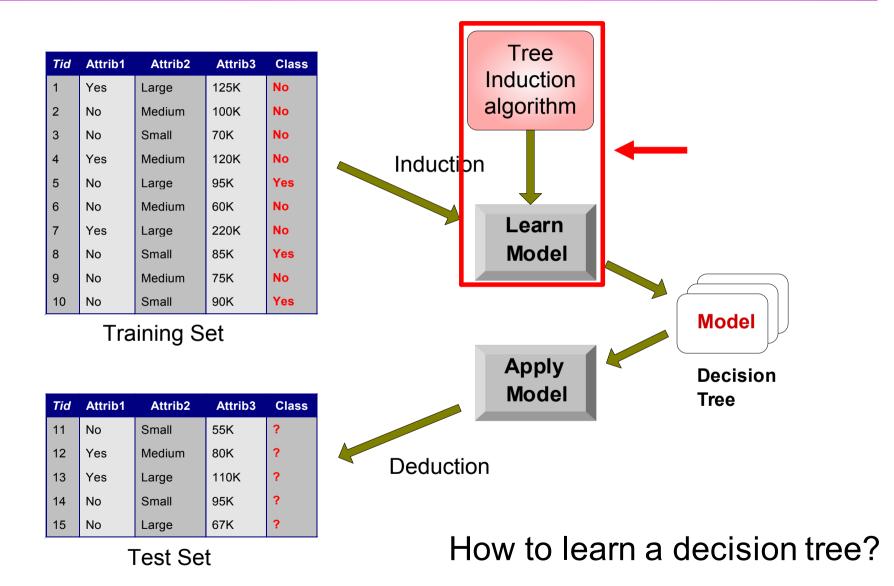




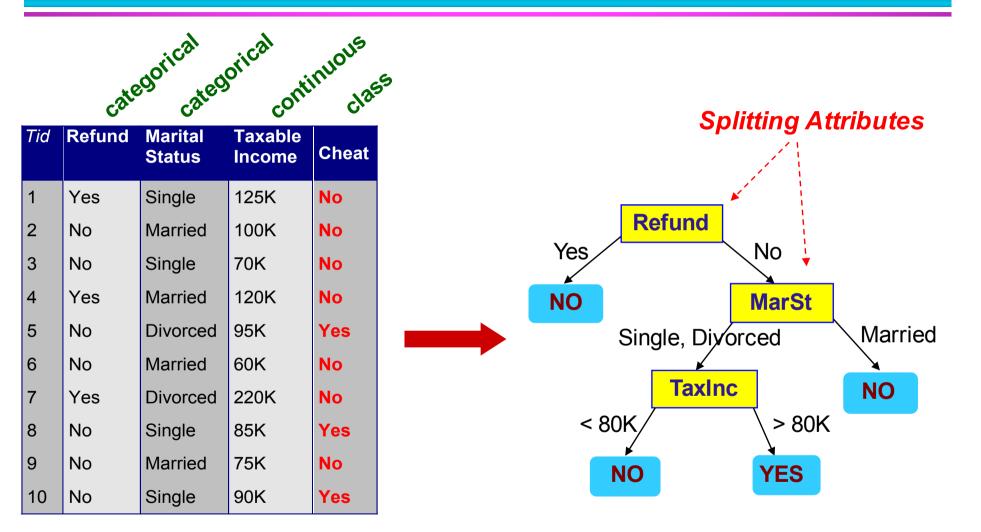




Learning a Decision Tree Classifier



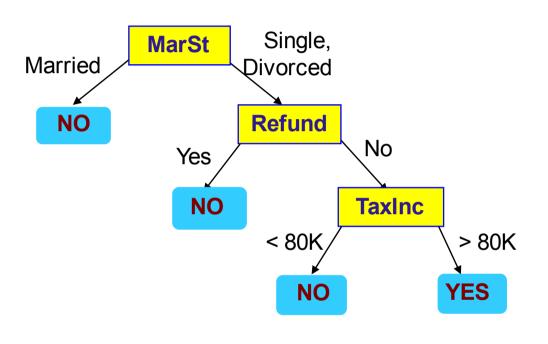
A Decision Tree (seen earlier)



Training Data

Model: Decision Tree

Another Decision Tree on same dataset



There could be more than one tree that fits the same data!

Challenge in learning decision tree

- Exponentially many decision trees can be constructed from a given set of attributes
 - Some of the trees are more 'accurate' or better classifiers than the others
 - Finding the optimal tree is computationally infeasible
- Efficient algorithms available to learn a reasonably accurate (although potentially suboptimal) decision tree in reasonable time
 - Employs greedy strategy
 - Locally optimal choices about which attribute to use next to partition the data

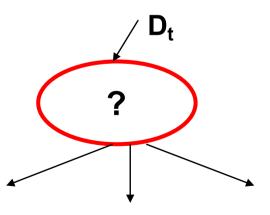
Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ, SPRINT

General Structure of Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that all belong the same class y_t , then t is a leaf node labeled as y_t
 - If D_t is an empty set, then t is a leaf node labeled by the default class y_d
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes



Hunt's Algorithm	Tid	Refund	Marital Status	Taxable Income	Cheat
	1	Yes	Single	125K	No
	2	No	Married	100K	No
Don't	3	No	Single	70K	No
Cheat	4	Yes	Married	120K	No
	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No

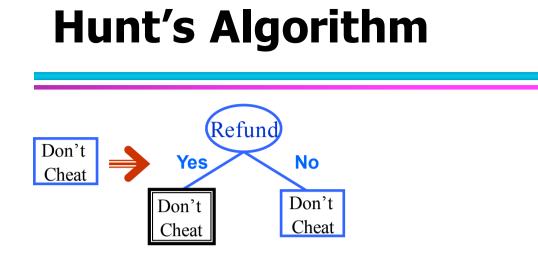
Default class is "Don't cheat" since it is the majority class in the dataset

Single

90K

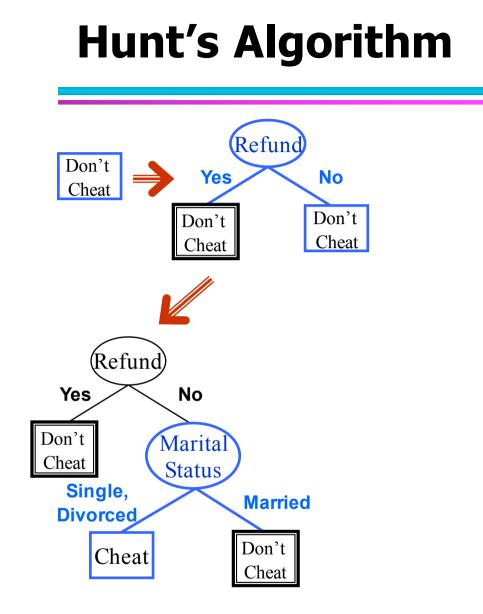
Yes

10 No

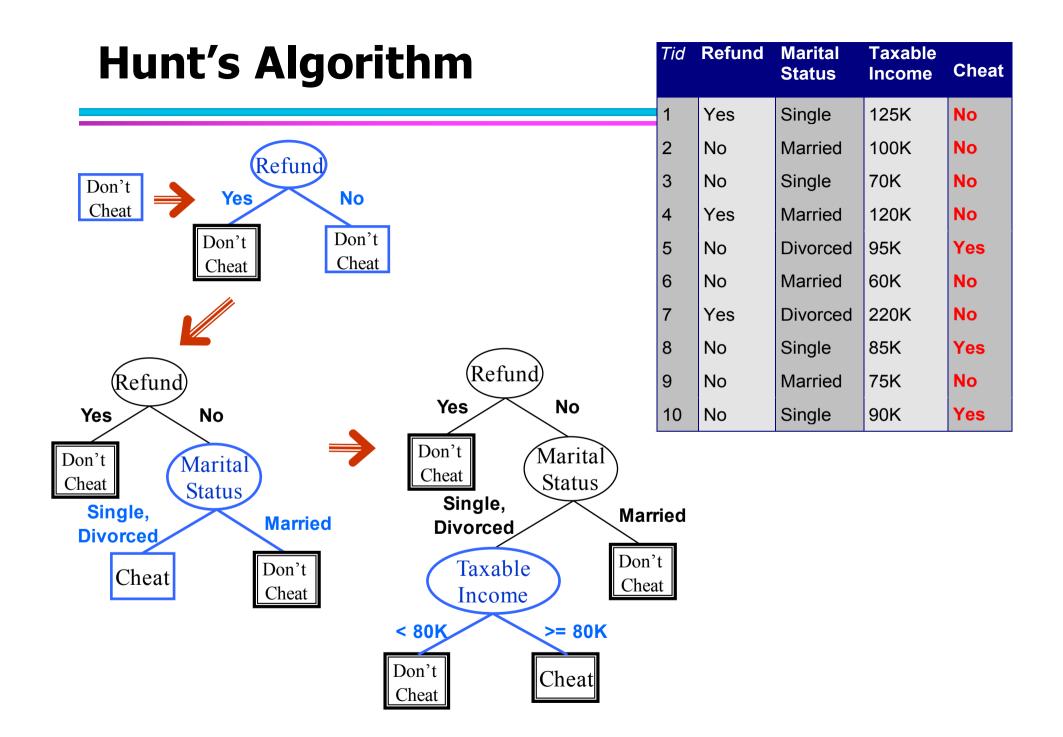


Tid	Refund	d Marital Taxable Status Income		Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

For now, assume that "Refund" has been decided to be the best attribute for splitting in some way (to be discussed soon)



Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes



Tree Induction

- Greedy strategy
 - Split the records based on an attribute test that optimizes certain criterion
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Tree Induction

- Greedy strategy
 - Split the records based on an attribute test that optimizes certain criterion
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to Specify Test Condition?

Depends on attribute types

- Nominal: two or more distinct values (special case: binary) E.g., marital status: {single, divorced, married}
- Ordinal: two or more distinct values that have an ordering. E.g. shirt size: {S, M, L, XL}
- Continuous: continuous range of values
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

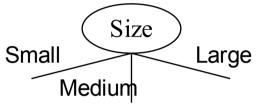
Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

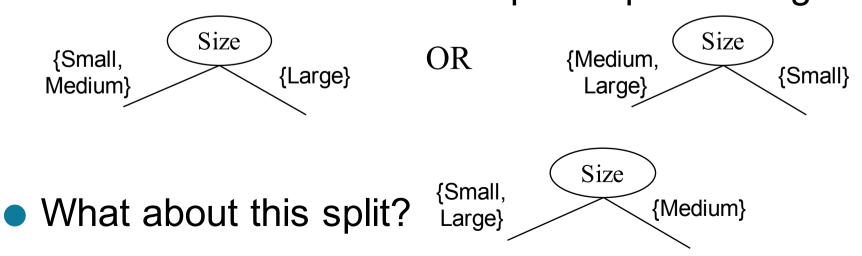
 Binary split: Divides values into two subsets. Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.



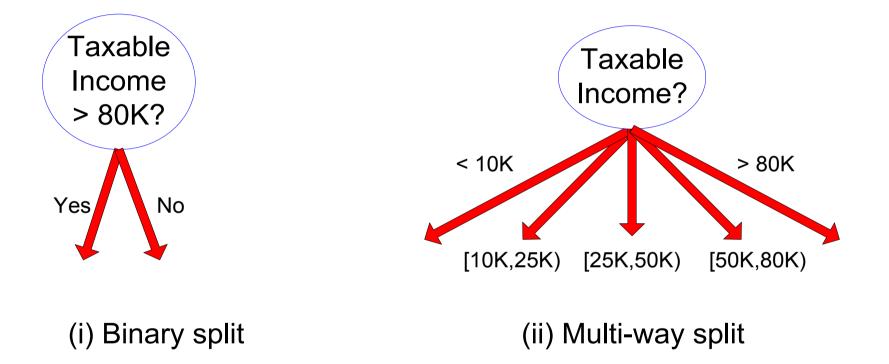
Binary split: Divides values into two subsets.
 Need to find optimal partitioning.



Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - can be more compute intensive

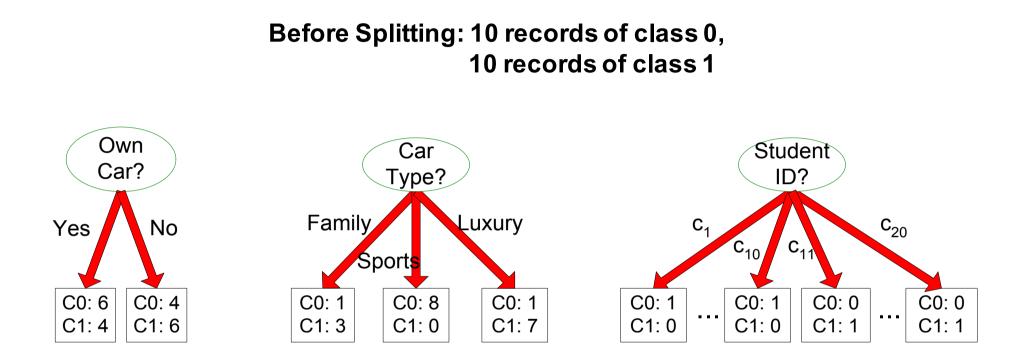
Splitting Based on Continuous Attributes



Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

What is meant by "determine best split"



Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

Non-homogeneous, High degree of impurity C0: 9 C1: 1

Homogeneous,

Low degree of impurity

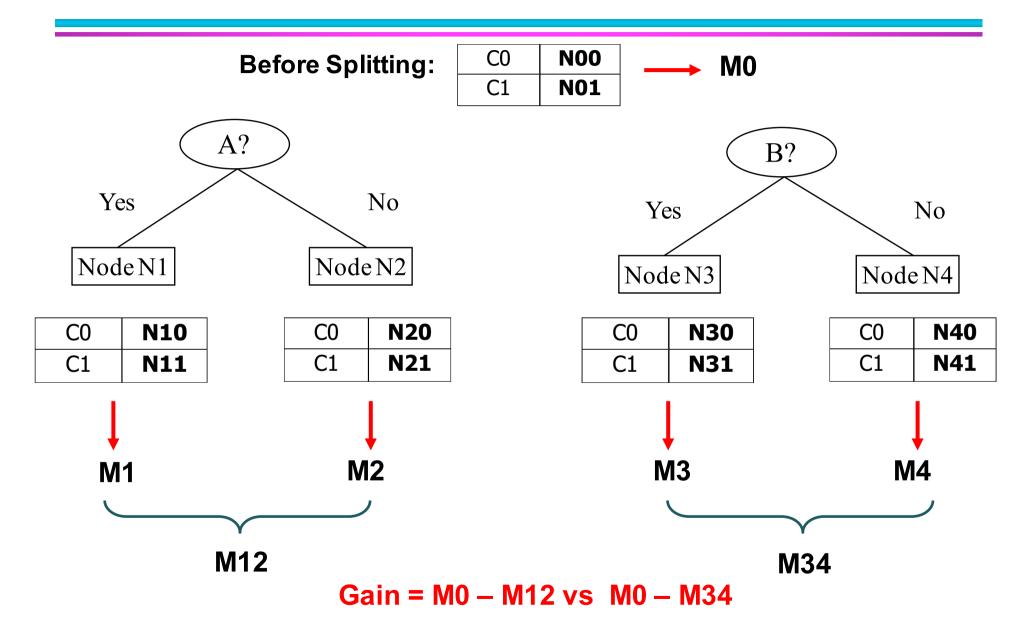
Measures of Node Impurity

Gini Index

Entropy

Misclassification error

How to Find the Best Split



Measures of Node Impurity

• Gini Index

Entropy

Misclassification error

Measure of Impurity: GINI Index

• Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^2$$

 $p(j \mid t)$ is the relative frequency of class j at node t

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

C1	0
C2	6

P(C1) = 0/6 = 0	P(C2) = 6/6 = 1
Gini = 1 – P(C1) ²	$^{2}-P(C2)^{2}=1-0-1=0$

C1	1
C2	5

P(C1) = 1/6	P(C2) = 5/6
Gini = $1 - (1/6)^2$	$^2-(5/6)^2=0.278$

C1	2
C2	4

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Gini = 1 - (2/6)² - (4/6)² = 0.444

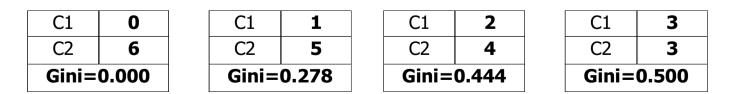
Measure of Impurity: GINI Index

• Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^2$$

 $p(j \mid t)$ is the relative frequency of class j at node t

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information [n_c: number of classes]
- Minimum (0.0) when all records belong to one class, implying most interesting information



Splitting Based on GINI

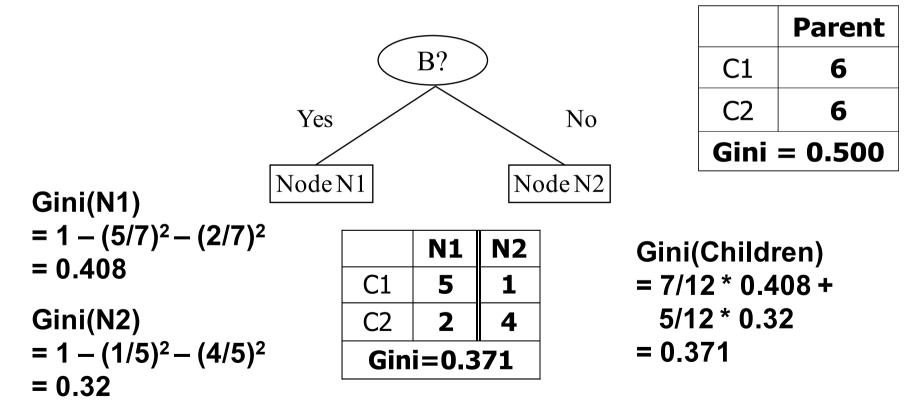
- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n = number of records at node p.

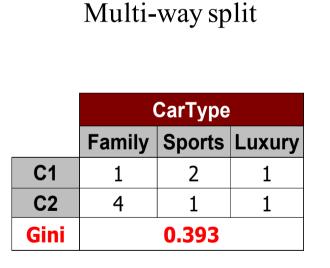
Binary Attributes: Computing GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.



Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions



Two-way split (find best partition of values)

	CarT	уре		CarT	уре	
	{Sports, Luxury}	{Family}		{Sports}	{Family, Luxury}	
C1	3	1	C1	2	2	
C2	2	4	C2	1	5	
Gini	0.4	00	Gini	0.4	19	

Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v and $A \ge v$
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

		No		Nc)	N	0	Ye	S	Ye	S	Ye	es	N	0	N	0	N	0		No		
	Taxable Income																						
Sorted Values		(60		70		7	5	85	;	90)	9	5	10	0	12	20	12	25		220	
Split Position	5	5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	0	12	22	17	2	23	0
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
Gini			20	0.4	00	0.3	575	0.3	43	0.4	17	0.4	00	<u>0.3</u>	<u>800</u>	0.3	43	0.3	575	0.4	00	0.4	20

Measures of Node Impurity

Gini Index

Entropy

Misclassification error

Alternative Splitting Criteria based on INFO

• Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_2 p(j \mid t)$$

 $p(j \mid t)$ is the relative frequency of class j at node t

• Measures homogeneity of a node

Examples for computing Entropy

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_2 p(j \mid t)$$

C1	0
C2	6

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1Entropy = - 0 log 0 - 1 log 1 = - 0 - 0 = 0

C1	1
C2	5

P(C1) = 1/6 P(C2) = 5/6 Entropy = $-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$

C1	2
C2	4

P(C1) = 2/6 P(C2) = 4/6 Entropy = $-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$

Alternative Splitting Criteria based on INFO

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_2 p(j \mid t)$$

 $p(j \mid t)$ is the relative frequency of class j at node t

Measures homogeneity of a node

- Maximum (log n_c) when records are equally distributed among all classes implying least information
- Minimum (0.0) when all records belong to one class, implying most information

Splitting Based on INFO...

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent Node p is split into k partitions;

n_i is number of records in partition i

- Measures Reduction in Entropy achieved because of the split. Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3 and C4.5
- Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.

Splitting Based on INFO...

• Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

Parent Node, p is split into k partitions n_i is the number of records in partition i

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO). Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5
- Designed to overcome the disadvantage of Information Gain

Measures of Node Impurity

Gini Index

Entropy

• Misclassification error

Splitting Criteria based on Classification Error

• Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

p(i | t) is the relative frequency of class i at node t

• Measures misclassification error made by a node

Examples for Computing Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

C1	0
C2	6

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1Error = 1 - max (0, 1) = 1 - 1 = 0

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
 $Frror = 1 - max (1/6, 5/6) = 1 - 5/6 = 1/6$

C1	2
C2	4

P(C1) = 2/6 P(C2) = 4/6Error = 1 - max (2/6, 4/6) = 1 - 4/6 = 1/3

Splitting Criteria based on Classification Error

Classification error at a node t :

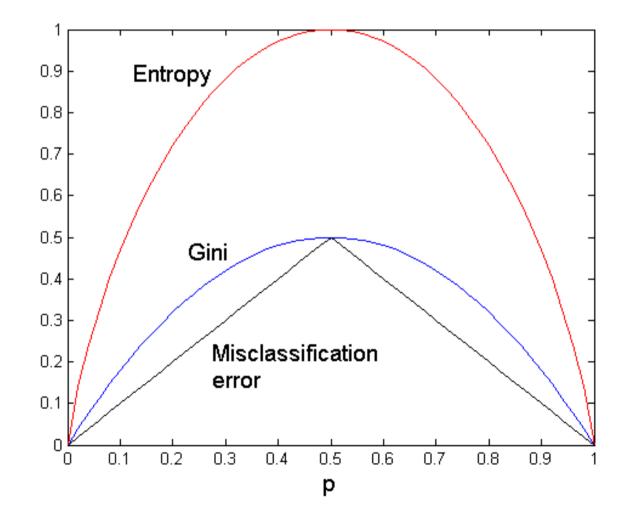
$$Error(t) = 1 - \max_{i} P(i \mid t)$$

• Measures misclassification error made by a node

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Comparison among Splitting Criteria

For a 2-class problem:



Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Stopping Criteria for Tree Induction

- Stop expanding a node when all the records belong to the same class
- Stop expanding a node when all the records have similar attribute values (if different class values, then usually assign the majority class)
- Early termination, usually to prevent overfitting (to be discussed later)

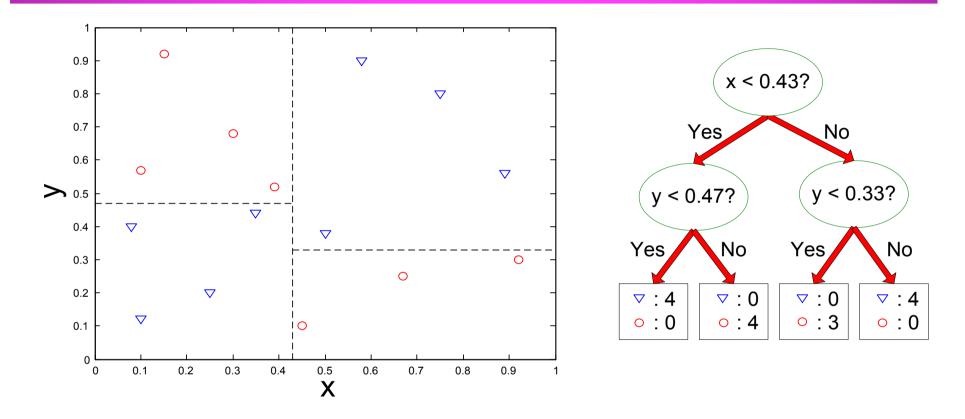
DT classification: points to note

- Finding an optimal DT is NPC, but efficient and fast heuristic methods available
- Advantages:
 - Extremely fast at classifying unknown records
 - Easy to interpret, especially for small-sized trees
 - Accuracy is comparable to other classification techniques for many simple data sets

DT classification: points to note

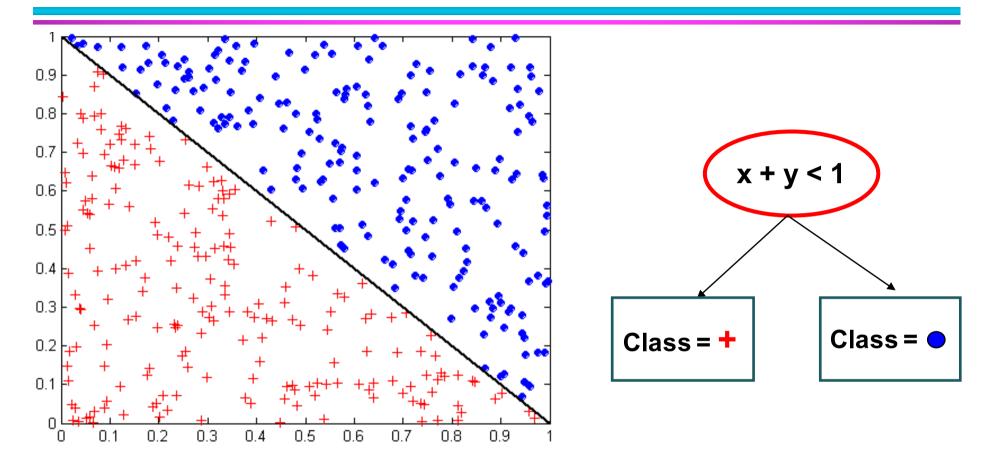
- In what we discussed till now, the test condition always involved a single attribute
 - Decision boundaries are 'rectilinear' i.e., parallel to 'coordinate axes' of the feature space
 - Limits the expressiveness of DTs
- Oblique DTs allows test conditions that involve more than one attribute (e.g., x + y < 1)
 - Better expressiveness
 - But finding a good tree is computationally more expensive

Decision Boundary



- Border line between two neighboring regions of different classes is known as decision boundary
- Decision boundary is parallel to axes because test condition involves a single attribute at-a-time

Oblique Decision Trees



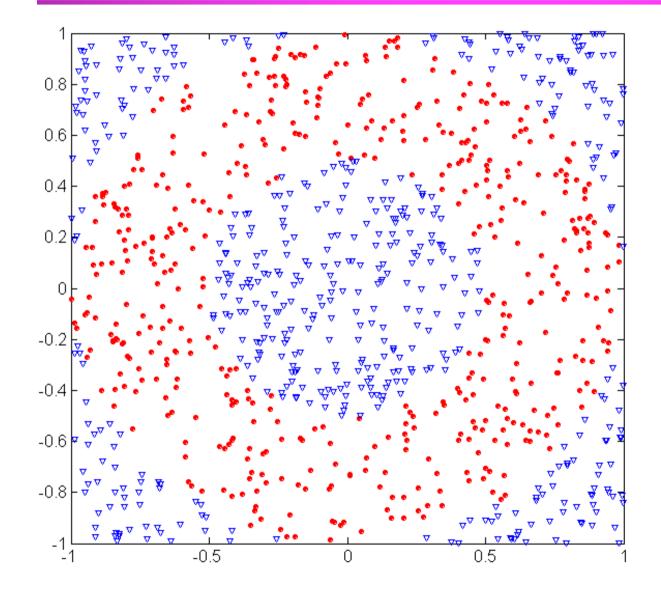
- Test condition may involve multiple attributes
- More expressive representation
- Finding optimal test condition is computationally expensive

Example: C4.5

- Simple depth-first construction.
- Uses Information Gain
- Sorts Continuous Attributes at each node.
- Needs entire data to fit in memory.
- Unsuitable for Large Datasets.
 - Needs out-of-core sorting.
- You can download the software from: <u>http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz</u>

Practical issues of Decision Tree classifier

Underfitting and Overfitting (Example)



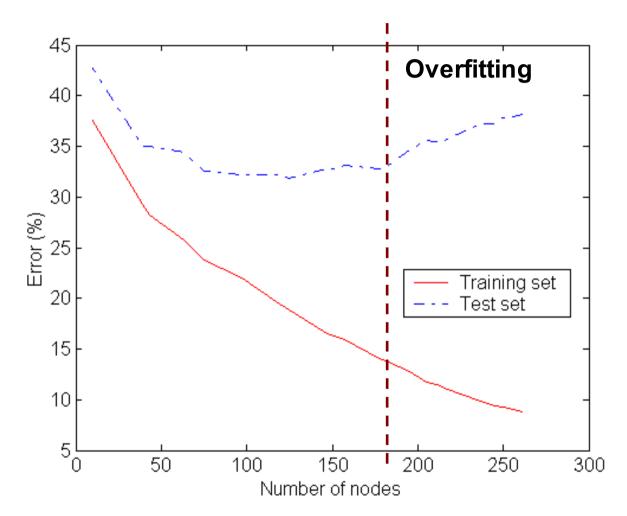
500 circular and 500 triangular data points.

Circular points:

 $0.5 \le sqrt(x_1^2 + x_2^2) \le 1$

Triangular points: $sqrt(x_1^2+x_2^2) > 0.5 \text{ or}$ $sqrt(x_1^2+x_2^2) < 1$

Underfitting and Overfitting

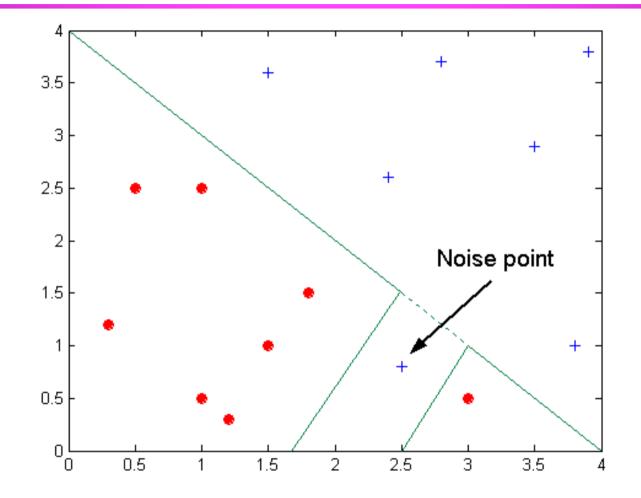


Underfitting: when DT is too simple, both training and test errors are large **Overfitting**: DT has grown too large, and is now fitting the noise in the dataset

Overfitting

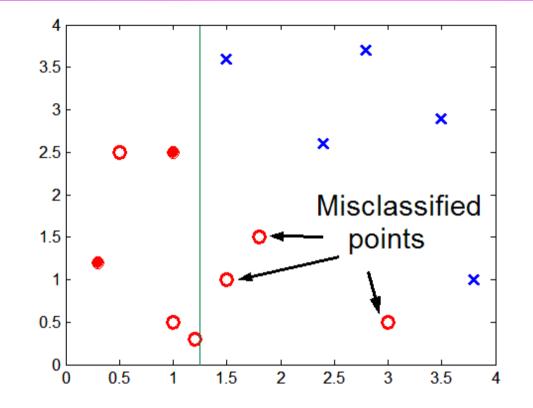
- Overfitting results in decision trees that are more complex than necessary
- Training error no longer provides a good estimate of how well the tree will perform on previously unseen records

Overfitting due to Noise



Decision boundary is distorted by noise point

Overfitting due to Insufficient Examples



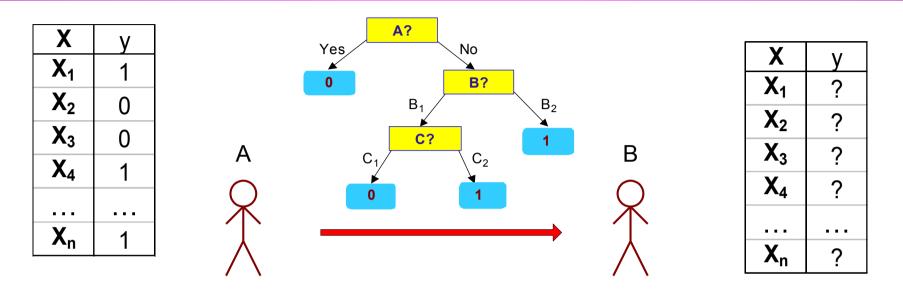
Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region

- Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

Occam's Razor

- Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
- For complex models, there is a greater chance that it was fitted accidentally by errors in data
- Therefore, one should include model complexity when evaluating a model

Minimum Description Length (MDL)



- Cost(Model,Data) = Cost(Data|Model) + Cost(Model)
 - Cost is the number of bits needed for encoding.
 - Search for the least costly model.
- Cost(Data|Model) encodes the misclassification errors.
- Cost(Model) uses node encoding (number of children) plus splitting condition encoding.

How to Address Overfitting

- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain)

How to Address Overfitting...

Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree
- Can use MDL for post-pruning

Other Issues

- Data Fragmentation
- Search Strategy
- Expressiveness
- Tree Replication

Data Fragmentation

- Number of instances gets smaller as you traverse down the tree
- Number of instances at the leaf nodes could be too small to make any statistically significant decision

Search Strategy

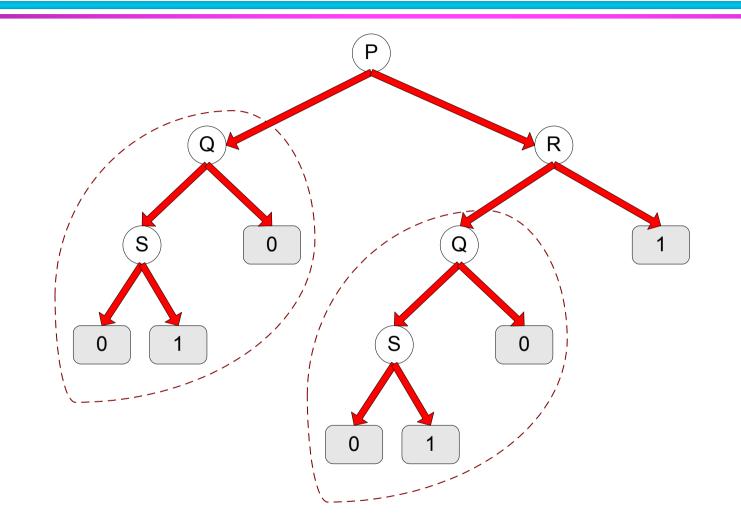
• Finding an optimal decision tree is NP-hard

- The algorithm presented so far uses a greedy, top-down, recursive partitioning strategy to induce a reasonable solution
- Other strategies?
 - Bottom-up
 - Bi-directional

Expressiveness

- Decision tree provides expressive representation for learning discrete-valued function
 - But they do not generalize well to certain types of Boolean functions
 - Example: parity function:
 - Class = 1 if there is an even number of Boolean attributes with truth value = True
 - Class = 0 if there is an odd number of Boolean attributes with truth value = True
 - For accurate modeling, must have a complete tree
- Not expressive enough for modeling continuous variables
 - Particularly when test condition involves only a single attribute at-a-time

Tree Replication



Same subtree appears in multiple branches