
CS 60050
Machine Learning

Ensemble Learning

Some slides taken from course materials of Tan, Steinbach, Kumar

Basic idea

● Concordet’s jury theorem (1785):
– Imagine that a group of people has to select between

two choices (from which only one is correct).
– They vote independently, and the probability that each

of them votes correctly is p.
– The votes are combined by the majority rule.
– Let m denote the probability that the majority vote is

correct.
– If p>0.5 then mà1 as the number of votes goes to

infinity

Basic idea

● So the crowd is more clever than the individuals
under some assumptions

– Each individual must be correct with p>0.5 (better than
random guessing)

– Their should make independent decisions

● How can we apply this idea in machine learning?

Strong vs. weak learners

● Strong learner: we seek to produce one classifier for
which the classification error can be made arbitrarily small

● Weak learner: a classifier which is just better than random
guessing

● Ensemble learning: instead of creating one strong
classifier, we create a large set of weak classifiers, then
we combine their outputs into one final decision

– According to Concordet’s theorem, under proper conditions the
ensemble model can attain an error rate that is close to zero

– While creating a lot of weak classifiers is hopefully a much easier
task than to create one strong classifier

General Idea

Original
Training data

....D1 D2 Dt-1 Dt

D

Step 1:
Create Multiple

Data Sets

C1 C2 Ct -1 Ct

Step 2:
Build Multiple

Classifiers

C*
Step 3:

Combine
Classifiers

Why does it work?

● Suppose there are 25 base classifiers
– Each classifier has error rate, ε = 0.35
– Assume classifiers are independent, i.e., their errors

are uncorrelated
● Ensemble classifier: majority vote on the

predictions made by the base classifiers
– Probability that the ensemble classifier makes a

wrong prediction:

∑
=

− =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛25

13

25 06.0)1(
25

i

ii

i
εε

Conditions for effective ensemble

● Two conditions for an ensemble classifier to
perform better than a single classifier:

– The base classifiers should be independent of each
other (in practice, ensemble works even when base
classifiers are slightly correlated)

– The base classifiers should perform better than a
classifier that performs random guessing

How to produce diverse classifiers?

● We can combine different learning algorithms (“hybridization”)
– E.g. train a Neural Network, an SVM, a k-NN,… over the same

data, and then combine their output

● We can combine the same learning algorithm trained several
times over the same data

– Works only if there is some random factor in the training method
– E.g. neural networks trained with different random initialization

● We can combine the same learning algorithm trained over
different subsets of the training data

– We can also try using different subsets of the features

Types of ensemble methods

● Manipulate the training instances
– Create multiple training sets by re-sampling original

data by some sampling distribution
– Build one classifier from each training set
– Examples: Bagging, Boosting

● Manipulate input features
– Choose a subset of input features to form each training

set, either randomly or based on domain expertise
– Build one classifier from each training set
– Example: Random Forest

Types of ensemble methods

● Manipulate the learning algorithm
– Some learning algorithms can give models that vary

based on parameter settings, even when trained on
same training data

– Train different models on same training data, and
consider ensembles of the different models

– Example: decision trees can give various models if
randomness is introduced in tree growing process

● Hybrid methods (combinations of the above types of
methods) can also be used

Examples of Ensemble Methods

● How to generate an ensemble of classifiers?

● We will focus on
– Bagging
– Boosting

Bagging

Bagging

● Bagging = Bootstrap + aggregating
● Sampling with replacement to generate different

training sets from the original training set

● Build classifier on each bootstrap sample
● Classification - aggregate the base learners by

taking their average (using uniform weights for
each classifiers), or by majority voting

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

Bagging: bootstrap resampling

● Suppose we have a training set with n records

● Bootstrap resampling takes random samples
from the original set with replacement

– Randomness required to obtain different training sets
for different rounds of resampling

– Replacement required to create training sets of size n
from the original data set of size n

Bagging algorithm

When is bagging effective?

● The ensemble model is almost always better than
the base learners if the base learners are
unstable

– Unstable learners: a small change in the training data
may cause a large change in the learnt model

– Unstable: Neural networks, Decision Trees
– Stable: SVM, k nearest neighbor

● Bagging with stable learners not a good idea

Boosting

Boosting: basic idea

● An iterative procedure that proceeds in rounds
– Generate a series of base learners which complement

each other
– For this, we will force each learner to focus on the

mistakes of the previous learner

● Adaptively change distribution of training data by
focusing more on previously misclassified records

– Initially, all n records are assigned equal weights
– Unlike bagging, weights given to records may change

at the end of each boosting round

Boosting: resampling

● Records that are wrongly classified will have their
weights increased for next round

● Records that are classified correctly will have
their weights decreased for next round

Original Data 1 2 3 4 5 6 7 8 9 10
Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3
Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2
Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• Example 4 is hard to classify

• Its weight is increased, therefore it is more
likely to be chosen again in subsequent rounds

Bootstrap: learning the ensemble

● In each round
– Sample a training set considering the weights

assigned to each record
– Train learner on the sampled training set
– Apply learner on the whole training set
– Note performance of learner, and which records

correctly / wrongly classified
– Adjust weights of records for next round

● If performance of learner in a certain round is too
bad, certain special steps can be taken

Bootstrap: aggregation step

● Combine decisions of base learners obtained in
different rounds

● Boosting attempts to make the aggregation
process more intelligent:

– Aggregate the base learners using weighted voting
– Importance / weight of base learners: The learners

which had better performance will get a larger weight
than those whose performance was not good

Implementations of boosting

● Many implementations of boosting, differing in:
– How weights of records are updated after every round
– How importance of base learners is measured
– How the decisions of base learners are aggregated

● A popular implementation: AdaBoost (Adaptive
Boosting)

AdaBoost

● Base classifiers: C1, C2, …, CT

● Error rate of classifier Ci where
wj is weight of record j:

● Importance of classifier Ci :

()∑
=

≠=
N

j
jjiji yxCw

N 1

)(1
δε

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

i

i
i ε

ε
α

1ln
2
1

AdaBoost

● Weight update - how weight of wi is updated for round j+1,
after round j:

● Normalization such that sum of all weights in a particular
round equals 1

● If any intermediate round produces error rate higher than
50%, the weights are reverted back to 1/n and the
resampling procedure is repeated

factor ionnormalizat theis where

)(ifexp
)(ifexp)(

)1(

j

iij

iij

j

j
ij

i

Z

yxC
yxC

Z
ww

j

j

⎪⎩

⎪
⎨
⎧

≠

=
=

−
+

α

α

Weight increased if
classification incorrect

Weight decreased if
classification correct

AdaBoost

● Classification:

● Choose that class y which maximizes the
weighted vote

● Learners Cj weighted according to importance ⍺j

()∑
=

==
T

j
jj

y
yxCxC

1

)(maxarg)(* δα

Bagging vs. Boosting

Bagging vs. Boosting

● Both are usually effective in learning ensemble
classifiers that are better than base classifiers

● On average, boosting results in better
classification accuracy than bagging

● But boosting is particularly subject to overfitting if
training set has significant amount of noise

– Bagging gives equal weightage to all records
– Boosting gives higher weightage to those records that

are difficult to classify (which may be noise)

● Bagging is easy to parallelize, but boosting is not

