CS 60050
Machine Learning

Ensemble Learning

Some slides taken from course materials of Tan, Steinbach, Kumar



Basic idea

® Concordet’s jury theorem (1785):

Imagine that a group of people has to select between
two choices (from which only one is correct).

They vote independently, and the probability that each
of them votes correctly is p.

The votes are combined by the majority rule.

Let m denote the probability that the majority vote is
correct.

If p>0.5then m->1 as the number of votes goes to
infinity



Basic idea

® So the crowd is more clever than the individuals
under some assumptions

— Each individual must be correct with p>0.5 (better than
random guessing)

— Their should make independent decisions

® How can we apply this idea in machine learning?



Strong vs. weak learners

® Strong learner: we seek to produce one classifierfor
which the classification error can be made arbitrarily small

® \Weak learner: a classifierwhich is just better than random
guessing

® Ensemble learning: instead of creating one strong
classifier, we create a large set of weak classifiers, then
we combine their outputs into one final decision

— According to Concordet’s theorem, under proper conditions the
ensemble model can attain an error rate thatis close to zero

— While creating a lot of weak classifiers is hopefully a much easier
task than to create one strong classifier



General Idea

Step 1:
Create Multiple
Data Sets

Step 2:
Build Multiple
Classifiers
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Why does it work?

® Suppose there are 25 base classifiers

— Each classifier has error rate, ¢ = 0.35

— Assume classifiers are independent, i.e., their errors
are uncorrelated

® Ensemble classifier: majority vote on the
predictions made by the base classifiers

— Probability that the ensemble classifiermakes a
wrong prediction:

i 25\ 25
e =€) =0.06
=13\ 1



Conditions for effective ensemble

® Two conditions for an ensemble classifier to
perform better than a single classifier:

— The base classifiers should be independent of each
other (in practice, ensemble works even when base
classifiers are slightly correlated)

— The base classifiers should perform better than a
classifierthat performs random guessing



How to produce diverse classifiers?

@ We can combine different learning algorithms (“hybridization™)

— E.g. train a Neural Network, an SVM, a k-NN,... overthe same
data, and then combine their output

@ We can combine the same learning algorithm trained several
times over the same data

— Works only if there is some random factor in the training method
— E.g. neural networks trained with different random initialization

® \We can combine the same learning algorithm trained over
different subsets of the training data

— We can also try using different subsets of the features



Types of ensemble methods

® Manipulate the training instances

— Create multiple training sets by re-sampling original
data by some sampling distribution

— Build one classifier from each training set
— Examples: Bagging, Boosting

® Manipulate input features

— Choose a subset of input features to form each training
set, either randomly or based on domain expertise

— Build one classifier from each training set
— Example: Random Forest



Types of ensemble methods

® Manipulate the learning algorithm

— Some learning algorithms can give models that vary
based on parameter settings, even when trained on
same training data

— Train different models on same training data, and
consider ensembles of the different models

— Example: decision trees can give various models if
randomness is introduced in tree growing process

® Hybrid methods (combinations of the above types of
methods) can also be used



Examples of Ensemble Methods

@ How to generate an ensemble of classifiers?

e \We will focus on

— Bagging
— Boosting



Bagging



Bagging

@ Bagging = Bootstrap + aggregating

® Sampling with replacement to generate different
training sets from the original training set
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@ Build classifier on each bootstrap sample

e Classification - aggregate the base learners by
taking their average (using uniform weights for
each classifiers), or by majority voting



Bagging: bootstrap resampling

® Suppose we have a training set with n records

® Bootstrap resampling takes random samples
from the original set with replacement

— Randomness required to obtain different training sets
for different rounds of resampling

— Replacement required to create training sets of size n
from the original data set of size n



Bagging algorithm

Model generation

Let n be the number of instances in the training data
For each of t iterations:
Sample n instances from training set
(with replacement)
Apply learning algorithm to the sample
Store resulting model

Classification

For each of the t models:
Predict class of instance using model
Return class that is predicted most often




When is bagging effective?

® The ensemble model is almost always better than
the base learners if the base learners are
unstable

— Unstable learners: a small change in the training data
may cause a large change in the learnt model

— Unstable: Neural networks, Decision Trees
— Stable: SVM, k nearest neighbor

@ Bagging with stable learners not a good idea



Boosting



Boosting: basic idea

® An iterative procedure that proceeds in rounds

— (Generate a series of base learners which complement
each other

— For this, we will force each learner to focus on the
mistakes of the previous learner

® Adaptively change distribution of training data by
focusing more on previously misclassified records
— Initially, all n records are assigned equal weights

— Unlike bagging, weights given to records may change
at the end of each boosting round



Boosting: resampling

® Records that are wrongly classified will have their
weights increased for next round

® Records that are classified correctly will have
their weights decreased for next round
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« Example 4 is hard to classify

* Its weightis increased, therefore it is more

likely to be chosenagainin subsequentrounds



Bootstrap: learning the ensemble

® In each round

— Sample a training set considering the weights
assigned to each record

— Train learner on the sampled training set
— Apply learner on the whole training set

— Note performance of learner, and which records
correctly / wrongly classified

— Adjust weights of records for next round

e If performance of learner in a certain round is too
bad, certain special steps can be taken



Bootstrap: aggregation step

® Combine decisions of base learners obtained in
different rounds

® Boosting attempts to make the aggregation
process more intelligent:
— Aggregate the base learners using weighted voting

— Importance / weight of base learners: The learners
which had better performance will get a larger weight
than those whose performance was not good



Implementations of boosting

@ Many implementations of boosting, differing in:
— How weights of records are updated after every round
— How importance of base learners is measured
— How the decisions of base learners are aggregated

® A popular implementation: AdaBoost (Adaptive
Boosting)



AdaBoost

® Base classifiers: C,4, C,, ..., Ct

@ Error rate of classifier C, where
w; is weight of record j:
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AdaBoost

® Weight update - how weight of w; is updated for round j+1,
after round j:

Weight decreased if

[ B A —
WUt w” lexp 7 af Cj (X;) =Y  classification correct

l .
Zj exp’ 1if Cj(xl-) # Y. Weightincreased if
classificationincorrect

where Z ; 1s the normalization factor

® Normalization such that sum of all weights in a particular
round equals 1

@ If any intermediate round produces error rate higher than
50%, the weights are reverted back to 1/n and the
resampling procedure is repeated



AdaBoost

o Classification:

C*(x)= argmaxiajé(Cj(x) = y)

y

® Choose that class y which maximizes the
weighted vote

@ Learners C; weighted according to importance o



Bagging vs. Boosting



Bagging vs. Boosting

@ Both are usually effective in learning ensemble
classifiers that are better than base classifiers

@ On average, boosting results in better
classification accuracy than bagging

@ But boosting is particularly subject to overfitting if
training set has significant amount of noise

— Bagging gives equal weightage to all records

— Boosting gives higher weightage to those records that
are difficultto classify (which may be noise)

® Bagging is easy to parallelize, but boosting is not



