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Ensemble Learning

Some slides taken from course materials of Tan, Steinbach, Kumar



Basic idea

● Concordet’s jury theorem (1785): 
– Imagine that a group of people has to select between 

two choices (from which only one is correct). 
– They vote independently, and the probability that each 

of them votes correctly is p. 
– The votes are combined by the majority rule. 
– Let m denote the probability that the majority vote is 

correct.
– If p>0.5 then mà1 as the number of votes goes to 

infinity



Basic idea

● So the crowd is more clever than the individuals 
under some assumptions

– Each individual must be correct with p>0.5 (better than 
random guessing)

– Their should make independent decisions

● How can we apply this idea in machine learning?



Strong vs. weak learners

● Strong learner: we seek to produce one classifier for 
which the classification error can be made arbitrarily small

● Weak learner: a classifier which is just better than random 
guessing

● Ensemble learning: instead of creating one strong 
classifier, we create a large set of weak classifiers, then 
we combine their outputs into one final decision

– According to Concordet’s theorem, under proper conditions the 
ensemble model can attain an error rate that is close to zero

– While creating a lot of weak classifiers is hopefully a much easier 
task than to create one strong classifier



General Idea
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Why does it work?

● Suppose there are 25 base classifiers
– Each classifier has error rate, ε = 0.35
– Assume classifiers are independent, i.e., their errors 

are uncorrelated
● Ensemble classifier: majority vote on the 

predictions made by the base classifiers
– Probability that the ensemble classifier makes a 

wrong prediction:
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Conditions for effective ensemble

● Two conditions for an ensemble classifier to 
perform better than a single classifier:

– The base classifiers should be independent of each 
other (in practice, ensemble works even when base 
classifiers are slightly correlated)

– The base classifiers should perform better than a 
classifier that performs random guessing



How to produce diverse classifiers?

● We can combine different learning algorithms (“hybridization”)
– E.g. train a Neural Network, an SVM, a k-NN,… over the same 

data, and then combine their output

● We can combine the same learning algorithm trained several 
times over the same data

– Works only if there is some random factor in the training method
– E.g. neural networks trained with different random initialization 

● We can combine the same learning algorithm trained over 
different subsets of the training data

– We can also try using different subsets of the features



Types of ensemble methods

● Manipulate the training instances
– Create multiple training sets by re-sampling original 

data by some sampling distribution
– Build one classifier from each training set
– Examples: Bagging, Boosting

● Manipulate input features
– Choose a subset of input features to form each training 

set, either randomly or based on domain expertise
– Build one classifier from each training set
– Example: Random Forest



Types of ensemble methods

● Manipulate the learning algorithm
– Some learning algorithms can give models that vary 

based on parameter settings, even when trained on 
same training data

– Train different models on same training data, and 
consider ensembles of the different models

– Example: decision trees can give various models if 
randomness is introduced in tree growing process

● Hybrid methods (combinations of the above types of 
methods) can also be used



Examples of Ensemble Methods

● How to generate an ensemble of classifiers?

● We will focus on 
– Bagging
– Boosting



Bagging



Bagging

● Bagging = Bootstrap + aggregating
● Sampling with replacement to generate different 

training sets from the original training set

● Build classifier on each bootstrap sample
● Classification - aggregate the base learners by 

taking their average (using uniform weights for 
each classifiers), or by majority voting

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7



Bagging: bootstrap resampling

● Suppose we have a training set with n records

● Bootstrap resampling takes random samples 
from the original set with replacement

– Randomness required to obtain different training sets 
for different rounds of resampling

– Replacement required to create training sets of size n
from the original data set of size n



Bagging algorithm



When is bagging effective?

● The ensemble model is almost always better than 
the base learners if the base learners are 
unstable 

– Unstable learners: a small change in the training data 
may cause a large change in the learnt model

– Unstable: Neural networks, Decision Trees
– Stable: SVM, k nearest neighbor

● Bagging with stable learners not a good idea



Boosting



Boosting: basic idea

● An iterative procedure that proceeds in rounds
– Generate a series of base learners which complement 

each other 
– For this, we will force each learner to focus on the 

mistakes of the previous learner

● Adaptively change distribution of training data by 
focusing more on previously misclassified records

– Initially, all n records are assigned equal weights
– Unlike bagging, weights given to records may change 

at the end of each boosting round



Boosting: resampling

● Records that are wrongly classified will have their 
weights increased for next round

● Records that are classified correctly will have 
their weights decreased for next round

Original Data 1 2 3 4 5 6 7 8 9 10
Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3
Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2
Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• Example 4 is hard to classify

• Its weight is increased, therefore it is more 
likely to be chosen again in subsequent rounds



Bootstrap: learning the ensemble

● In each round 
– Sample a training set considering the weights 

assigned to each record
– Train learner on the sampled training set
– Apply learner on the whole training set
– Note performance of learner, and which records 

correctly / wrongly classified
– Adjust weights of records for next round

● If performance of learner in a certain round is too 
bad, certain special steps can be taken



Bootstrap: aggregation step

● Combine decisions of base learners obtained in 
different rounds

● Boosting attempts to make the aggregation 
process more intelligent: 

– Aggregate the base learners using weighted voting
– Importance / weight of base learners: The learners 

which had better performance will get a larger weight 
than those whose performance was not good



Implementations of boosting

● Many implementations of boosting, differing in:
– How weights of records are updated after every round
– How importance of base learners is measured
– How the decisions of base learners are aggregated

● A popular implementation: AdaBoost (Adaptive 
Boosting)



AdaBoost

● Base classifiers: C1, C2, …, CT

● Error rate of classifier Ci where 
wj is weight of record j:

● Importance of classifier Ci : 
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AdaBoost

● Weight update - how weight of wi is updated for round j+1, 
after round j:

● Normalization such that sum of all weights in a particular 
round equals 1

● If any intermediate round produces error rate higher than 
50%, the weights are reverted back to 1/n and the 
resampling procedure is repeated
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AdaBoost

● Classification:

● Choose that class y which maximizes the 
weighted vote

● Learners Cj weighted according to importance ⍺j
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Bagging vs. Boosting



Bagging vs. Boosting

● Both are usually effective in learning ensemble 
classifiers that are better than base classifiers

● On average, boosting results in better 
classification accuracy than bagging

● But boosting is particularly subject to overfitting if 
training set has significant amount of noise

– Bagging gives equal weightage to all records
– Boosting gives higher weightage to those records that 

are difficult to classify (which may be noise)

● Bagging is easy to parallelize, but boosting is not


