
CS	60050
Machine	Learning

Support	Vector	Machines

Some	slides	taken	from	course	materials	of	Abu	Mostafa



Intuition

• Many	possible	separating	lines.	Which	separating	line	
is	the	best?	

• Margin:	distance	from	the	nearest	example	to	the	
separating	line

• Bigger	margin	is	better	à better	generalization



Finding	the	decision	boundary

• We	want	to	find	the	decision	boundary	that	
not	only	classifies	all	the	points	correctly	but	
also	maximizes	the	margin

• Assume	d-dimensional	 feature	space
• Decision	boundary	 in	d-dimensional	 feature	
space:	a	(hyper)plane

• We	assume	data	is	linearly	separable;	the	
separating	plane	will	not	touch	any	point



Notations
• Training	set:	(xj,	yj),	j	=	1,	2,	…,	N,	
– Each	xj is	a	vector	of	d	dimensions
– Each	yj =	+1	or	-1

• Separating	plane:	Σ	wj xj =	0	where	wj are	the	
parameters	to	learn

• Vector	notation	for	the	plane:		wTx	=	0	
– Vector	w	=	(w0,	w1,	…,	wd)

• Question:	Which	wmaximizes	the	margin?	



Two	preliminary	technicalities	
(to	simplify	the	math)

• Let	xn be	the	nearest	data	point	to	the	plane	
wTx	=	0		

• (1)	Normalize	w	such	that	|	wTxn |	=	1
–Multiplying	all	w’s	by	a	constant	factor	still	gives	
the	same	plane

– This	normalization	does	not	reduce	generality	–
we	are	not	missing	any	planes



• Let	xn be	the	nearest	data	point	to	the	plane	
wTx	=	0		

• (1)	Normalize	w	such	that	|	wTxn |	=	1

• (2)	Pull	out	w0,	so	that	w	=	(w1,	…,	wd).	Insert	
constant	b.	Plane	is	now	wTx	+	b	=	0,	
normalized	such	that	|	wTxn +	b|	=	1
– Remember:	data	points	are	of	d	dimensions	1,	…,	d

Two	preliminary	technicalities	
(to	simplify	the	math)



Computing	the	margin



Computing	the	margin

The	vector	w	is	orthogonal	to	
a	vector	that	lies	on	the	plane



Distance	between	xn and	the	plane

(direction	orthogonal	to	
the	plane)



Distance	between	xn and	the	plane



The	optimization	problem



The	optimization	problem

This	is	not	a	’friendly’	optimization	problem,	because	of	
(i) the	norm	in	the	objective	function,	and	
(ii) the	minimum	term	in	the	constraints

Can	we	find	an	equivalent	optimization	problem	that	is	more	
friendly?	



Simplifying	the	optimization	problem

Maximizing	1	/	||w||		

Equivalent	to	

Minimizing	(wT w)	



(assuming	all	points	are	classified	correctly)

Simplifying	the	optimization	problem



Equivalent	optimization	problem



Final	optimization	problem



Solving	the	optimization	problem



Solving	the	optimization

A	way	of	solving	constrained	optimization	problems:	take	the	
Lagrangian	formulation	of	the	problem

One	issue:	constraints	are	inequality	constraints	- handled	by	KKT	
conditions	(due	to	Karush	and	Kuhn-Tucker)



Towards	Lagrange	formulation

For	each	equality	constraint,	consider	a	‘slack’	(difference	
between	the	left	hand	side	and	right	hand	side)

The	slack	quantities	will	be	multiplied	by	‘Lagrange	multipliers’	⍺n
and	will	be	made	part	of	the	objective	function



Lagrange	formulation

Note:	we	have	one	Lagrange	multiplier	for	each	of	the	n	data	points



Lagrange	formulation

Let	us	consider	the	unconstrained	 case:

Vector	differentiation

Scalar	differentiation



Lagrange	formulation

Substituting

We	get



Final	constrained	optimization

Can	be	solved	by	Quadratic	Programming,	which	gives	us	



The	solution

For	all	points:
Either	the	slack	is	zero,	or	
the	Lagrange	multiplier	⍺ is	
zero

⍺’s	for	most	points	will	be	
zero,	only	for	few	points	⍺
will	be	positive



Support	vectors

Hypothesis	g(x)	=	sign(	wTx	+	b	)



Non-linear	transforms



Nonlinear	transforms

Non-linearly	separable	in	original	
feature	space

Linearly	separable	in	
some	other	space



Nonlinear	transforms
• Points	transformed	 from	X-space	to	Z-space
• Optimization	problem	formulated	in	Z-space

• SVs	found	in	Z-space	(different	Z-spaces	can	give	
different	SVs)

• Complexity	of	optimization	problem	is	independent	of	
dimension	of	Z-space,	only	depends	on	number	of	
points	(N)



What	do	we	need	from	the	Z-space?



What	do	we	need	from	the	Z-space?



What	do	we	need	from	the	Z-space?



What	do	we	need	from	the	Z-space?

Need	only	inner	products	of	vectors	in	the	Z-space



Inner	products	in	Z-space

• Given	two	vectors	x	and	x’	(in	original	feature	space)

• Which	is	easier:
– Getting	the	transformed	vectors	z	and	z’	in	Z-space
– Getting	the	inner	product	of	z	and	z’

• Can	we	compute	inner	products	in	Z-space	without	
transforming	vectors	to	Z-space?



Kernel	function

• Given	two	points	x,	x’	ε	X,	let	zTz’	=	K(x,	x’)

• A	kernel	function	is	a	function	of	x	and	x’,	such	that	
the	value	K(x,	x’)	is	an	inner	product	of	two	vectors	in	
some Z-space

• Allows	computation	of	the	inner	product	in	the	Z-
space,	without	needing	to	transform	the	vectors	to	
the	Z-space



Kernel	function:	an	example
Assume	original	feature	space	X	has	two	dimensions

We	apply	a	2nd order	non-linear	transformation	ɸ



Can	we	compute	K(x,	x’)	without	
transforming	x	and	x’?



The	kernel	trick
• Get	the	classification	done	in	a	high-dimensional	
space,	without	paying	much	of	a	price	in	terms	of	
computational	complexity	

• Since	we	do	not	have	to	actually	transform	the	
vectors	to	the	high-dimensional	space

• Z-space	can	be	very	high	dimensional,	even	of	
infinite	dimension



Several	well-known	kernels	exist

• Polynomial	kernel
• Exponential	kernel
• Radial	Basis	Function	(RBF)	kernel

• You	can	design	your	own	kernel,	provided	 it	
satisfies	some	conditions


