
CS	60050
Machine	Learning

Neural	Networks

Some	slides	taken	from	course	materials	of	Abu	Mostafa



• GD	minimizes

• Δparameter	=	- learning	rate	*	gradient	
• Gradient	computed	based	on	all	training	
examples	 (xn,	yn):		“Batch” GD

• Epoch:	using	all	training	examples	once

Gradient	Descent	– as	we	studied	it



• Pick	one	(xn,	yn)	at	a	time,	apply	GD	to	e(	h(xn),	yn )
• When	done	over	many	training	examples,	many	
times,	average	direction	of	descent	will	be	the	same	
as	the	“ideal”	direction

• Benefits
– Cheaper	computation
– Randomization	helps	escape	trivial	local	minima
– Like	batch	GD,	cannot	guarantee	reaching	global	minima	
for	non-convex	error	functions	(most	error	functions,	
especially	in	neural	networks,	will	be	non-convex)

Stochastic	Gradient	Descent	(SGD)



• Linear	models	not	sufficient	for	regression	/	
classification	of	complex	functions

• Non-linear	combinations	can	be	used,	but	not	
feasible	as	the	number	of	features	increases	beyond	
few	hundred	(e.g.,	pixels	in	an	image)	– which	non-
linear	combinations	to	use?

• Need	for	non-linear	models

Limitations	of	linear	models



Neural	Networks:	Algorithms	that	try	to	mimic	the	brain



Idea:	To	mimic	the	biological	function,	first	mimic	the	
biological	structure



Auditory	cortex	learns	to	see

Auditory	Cortex

The	“one	learning	algorithm”	hypothesis



Neural	Networks

• Was	very	widely	used	in	80s	and	early	90s	

• Popularity	diminished	in	late	90s.

• Recent	resurgence:	State-of-the-art	technique	for	
many	applications
• Better	hardware	infrastructure	(GPUs)
• Better	algorithms	to	deal	with	some	problems	in	
earlier	implementations



Logical	unit:	perceptron

• Inputs	x1,	x2,	… each	take	values	{-1,	+1}
• One	input	is	a	constant	(called	a	bias)

• Each	input	xi has	a	weight	wi

• Output:	weighted	sum	of	inputs	=	∑	wi xi

• Convention	for	both	inputs	and	output:	negative	means	logical	
0,	positive	means	logical	1



Using	perceptron	for	logical	operation	(OR)
Inputs	x1,	x2,	… each	take	values	{-1,	+1}
Output:	weighted	sum	of	inputs	=	∑	wi xi

Convention	for	both	inputs	and	output:	negative	means	logical	0,	
positive	means	logical	1



Using	perceptron	for	logical	operation	(AND)
Inputs	x1,	x2,	… each	take	values	{-1,	+1}
Output:	weighted	sum	of	inputs	=	∑	wi xi

Convention	for	both	inputs	and	output:	negative	means	logical	0,	
positive	means	logical	1



Creating	layers	of	perceptrons	to	implement	more	
complex	functions	(XOR)



Creating	layers	of	perceptrons	to	implement	more	
complex	functions	(XOR)



Non-linear	classification	using	perceptrons

x1

x2

x1

x2

Cannot	be	separated	using	a	
perceptron	or	any	linear	
classifier	model



Need	to	combine	multiple	perceptrons



A	multi-layer	perceptron	
for	the	non-linear	classification

Suitable	weights	w1 and	w2 need	to	be	fixed



A	powerful	model	– can	generate	complex	decision	boundaries	
by	combining	many	linear	classifiers	

Multilayer	perceptrons,	suitably	combined,	can	generate	almost	
all	functions	/	decision	boundaries



• Optimization	becomes	difficult	with	many	
perceptrons

• Desirable:	instead	of	a	hard	threshold	of	the	
perceptron,	a	smooth	function	that	is	efficient	to	
differentiate

• A	perceptron	with	a	smooth	non-linear	function	is	
called	a	neuron

From	perceptron	to	a	neuron



• Desirable:	a	smooth	function	that	is	efficient	to	
differentiate

• Possible	functions
• Range	[0,	1]:	logistic	function	
• Range	[-1,	1]:	tanh	function

Logistic	function

Θ(z)	=	

tanh	function

Θ(s)	=	

From	perceptron	to	a	neuron



A	neural	network

Number	of	layers:	L
Input	layer,	hidden	layer(s),	output	layer
Number	of	neurons	in	layer	l:		d(l)
Number	of	neurons	in	input	layer	=	number	of	features	
in	input	=	d(0)



Different	architectures	possible	for	neural	network.	Example	for	
a	four-class	classifier

For	our	discussion:	
- We	consider	a	simple	regression	model	with	only	one	neuron	in	

the	output	layer
- Non-linearity	in	different	neurons	can	be	different.	We	consider	

all	neurons		to	implement	the	same	non-linear	function



How	the	network	operates

Weight	of	the	
link	from	i-th	
neuron	in	layer	
(l-1)	to	the	j-th	
neuron	in	layer	l

Output	of	the				
j-th	neuron	in	
layer	l

Input	to	the		j-th	neuron	in	layer	l



How	the	network	operates



How	to	get	the	weights?

• Till	now	what	we	have	discussed	– if	the	weights	are	
known,	how	the	neural	network	operates

• As	ML	practitioners,	our	job	is	to	automatically	learn	
the	weights	from	training	data

• Learning	the	weights	efficiently:	Backpropagation	
algorithm



Applying	SGD

• All	weights	w	=	{	wij
(l) }	determine	the	hypothesis	h(x)

• Error	on	example	(xn,	yn)	is	e(	h(xn),	yn)	=	e(w)	which	
can	be	squared	error	or	logistic	error	function

• To	implement	SGD,	we	need	the	gradient

• Can	compute	the	differentials	one	by	one,	analytically	
or	numerically,	but	it	will	be	very	inefficient





We	will	compute	this	recursively,	
starting	from	the	last	layer	backwards



δ	for	the	final	(output)	layer

Assuming	squared	error	function



Back	propagation	of	δ	- Assuming	all	δ	values	of	layer	l	
have	been	computed	already,	how	to	compute	δ	for	the	
i-th	neuron	(for	any	i)	in	layer	(l-1)?	



Back	propagation	of	δ	- Assuming	all	δ	values	of	layer	l	
have	been	computed	already,	how	to	compute	δ	for	the	
i-th	neuron	(for	any	i)	in	layer	(l-1)?	



Backpropagation

• δ	values	of	layer	(l-1)	are	computed	based	on	
the	δ	values	of	layer	l

• So	the	δ	values	propagate	backwards through	
the	network



Backpropagation	algorithm

Note:	Each	iteration	uses	only	one	training	sample:	SGD



Discussion
• Zero	initialization	will	not	work	

– If	all	weights	initialized	to	zero,	either	all	x’s	or	all	δ’s	will	
be	zero;	hence	weights	would	not	be	adjusted	

– Weights	have	to	be	initialized	randomly,	or	with	some	
intelligent	values	(pre-trained	models)

• How	many	layers?	How	many	neurons	in	each	layer?
– Decide	number	of	parameters	(weights)	based	on	available	
training	data

• Not	guaranteed	to	reach	global	minima;	will	reach	a	
local	minima	depending	on	initialization,	which	
sample	chosen	in	which	iteration,	etc.



What	are	the	hidden	layers	doing?	
Learning	non-linear	transforms


