CS 60050 Machine Learning

Neural Networks

Some slides taken from course materials of Abu Mostafa

Gradient Descent – as we studied it

• GD minimizes

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \underbrace{e(h(\mathbf{x}_n), y_n)}_{h(\mathbf{x}_n) \in \mathbf{w}^{\text{T}}(\mathbf{x}_n)}$$

- Δparameter = learning rate * gradient
- Gradient computed based on all training examples (x_n, y_n): "Batch" GD
- Epoch: using all training examples once

Stochastic Gradient Descent (SGD)

- Pick one (x_n, y_n) at a time, apply GD to e($h(x_n), y_n$)
- When done over many training examples, many times, average direction of descent will be the same as the "ideal" direction
- Benefits
 - Cheaper computation
 - Randomization helps escape trivial local minima
 - Like batch GD, cannot guarantee reaching global minima for non-convex error functions (most error functions, especially in neural networks, will be non-convex)

Limitations of linear models

- Linear models not sufficient for regression / classification of complex functions
- Non-linear combinations can be used, but not feasible as the number of features increases beyond few hundred (e.g., pixels in an image) – which nonlinear combinations to use?
- Need for non-linear models

Neural Networks: Algorithms that try to mimic the brain

Idea: To mimic the biological function, first mimic the biological structure

The "one learning algorithm" hypothesis

Auditory cortex learns to see

Neural Networks

- Was very widely used in 80s and early 90s
- Popularity diminished in late 90s.
- Recent resurgence: State-of-the-art technique for many applications
 - Better hardware infrastructure (GPUs)
 - Better algorithms to deal with some problems in earlier implementations

Logical unit: perceptron

- Inputs x₁, x₂, ... each take values {-1, +1}
- One input is a constant (called a bias)
- Each input x_i has a weight w_i
- Output: weighted sum of inputs = $\sum W_i X_i$
- Convention for both inputs and output: negative means logical
 0, positive means logical 1

Using perceptron for logical operation (OR)

Inputs $x_1, x_2, ...$ each take values $\{-1, +1\}$ Output: weighted sum of inputs = $\sum W_i X_i$

Convention for both inputs and output: negative means logical 0, positive means logical 1

Using perceptron for logical operation (AND)

Inputs $x_1, x_2, ...$ each take values $\{-1, +1\}$ Output: weighted sum of inputs = $\sum W_i X_i$

Convention for both inputs and output: negative means logical 0, positive means logical 1

Creating layers of perceptrons to implement more complex functions (XOR)

Creating layers of perceptrons to implement more complex functions (XOR)

Non-linear classification using perceptrons

$$y = x_1 \text{ XOR } x_2$$
$$x_1 \text{ XNOR } x_2$$
$$\text{NOT } (x_1 \text{ XOR } x_2)$$

Cannot be separated using a perceptron or any linear classifier model

Need to combine multiple perceptrons

A multi-layer perceptron for the non-linear classification

Suitable weights w_1 and w_2 need to be fixed

A powerful model – can generate complex decision boundaries by combining many linear classifiers

Multilayer perceptrons, suitably combined, can generate almost all functions / decision boundaries

From perceptron to a neuron

- Optimization becomes difficult with many perceptrons
- Desirable: instead of a hard threshold of the perceptron, a smooth function that is efficient to differentiate
- A perceptron with a smooth non-linear function is called a neuron

From perceptron to a neuron

- Desirable: a smooth function that is efficient to differentiate
- Possible functions
 - Range [0, 1]: logistic function
 - Range [-1, 1]: tanh function

tanh function

$$\Theta(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

A neural network

Number of layers: L Input layer, hidden layer(s), output layer Number of neurons in layer I: $d^{(I)}$ Number of neurons in input layer = number of features in input = $d^{(0)}$

Different architectures possible for neural network. Example for a four-class classifier

For our discussion:

- We consider a simple regression model with only one neuron in the output layer
- Non-linearity in different neurons can be different. We consider all neurons to implement the same non-linear function

How the network operates

$$w_{ij}^{(l)} \quad \left\{ egin{array}{ll} 1 &\leq l &\leq L & ext{layers} & ext{li} \ 0 &\leq i &\leq d^{(l-1)} & ext{inputs} & ext{n} \ 1 &\leq j &\leq d^{(l)} & ext{outputs} \end{array}
ight.$$

Weight of the link from i-th neuron in layer (l-1) to the j-th neuron in layer l

$$x_{j}^{(l)} = \theta(s_{j}^{(l)}) = \theta\left(\sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} x_{i}^{(l-1)}\right)$$

Output of the j-th neuron in layer l

Input to the j-th neuron in layer l

How the network operates

Apply
$$\mathbf{x}$$
 to $x_1^{(0)} \cdots x_{d^{(0)}}^{(0)} \to \to x_1^{(L)} = h(\mathbf{x})$

How to get the weights?

- Till now what we have discussed if the weights are known, how the neural network operates
- As ML practitioners, our job is to automatically learn the weights from training data
- Learning the weights efficiently: Backpropagation algorithm

Applying SGD

- All weights $w = \{ w_{ij}^{(l)} \}$ determine the hypothesis h(x)
- Error on example (x_n, y_n) is $e(h(x_n), y_n) = e(w)$ which can be squared error or logistic error function
- To implement SGD, we need the gradient

$$\nabla \mathbf{e}(\mathbf{w}): \quad \frac{\partial \mathbf{e}(\mathbf{w})}{\partial w_{ij}^{(l)}} \quad \text{for all } i, j, l$$

• Can compute the differentials one by one, analytically or numerically, but it will be very inefficient

Computing
$$\frac{\partial e(\mathbf{w})}{\partial w_{ij}^{(l)}}$$

A trick for efficient computation:

$$\frac{\partial \mathbf{e}(\mathbf{w})}{\partial w_{ij}^{(l)}} = \frac{\partial \mathbf{e}(\mathbf{w})}{\partial s_j^{(l)}} \times \frac{\partial s_j^{(l)}}{\partial w_{ij}^{(l)}}$$
We have $\frac{\partial s_j^{(l)}}{\partial w_{ij}^{(l)}} = x_i^{(l-1)}$ We only need: $\frac{\partial \mathbf{e}(\mathbf{w})}{\partial s_j^{(l)}} = \delta_j^{(l)}$

l)

Computing
$$\frac{\partial e(\mathbf{w})}{\partial w_{ij}^{(l)}}$$

A trick for efficient computation:

$$\frac{\partial \mathbf{e}(\mathbf{w})}{\partial w_{ij}^{(l)}} = \frac{\partial \mathbf{e}(\mathbf{w})}{\partial s_j^{(l)}} \times \frac{\partial s_j^{(l)}}{\partial w_{ij}^{(l)}}$$
We have $\frac{\partial s_j^{(l)}}{\partial w_{ij}^{(l)}} = x_i^{(l-1)}$ We only need: $\frac{\partial \mathbf{e}(\mathbf{w})}{\partial s_j^{(l)}} = \delta_j^{(l)}$

We will compute this recursively, starting from the last layer backwards

(1)

δ for the final (output) layer

$$\delta_{j}^{(l)} = rac{\partial \mathbf{e}(\mathbf{w})}{\partial s_{j}^{(l)}}$$

For the final layer l = L and j = 1:

$$\begin{split} \delta_1^{(L)} &= \frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_1^{(L)}} \\ \mathbf{e}(\mathbf{w}) &= (\ x_1^{(L)} - \ y_n)^2 \quad \text{Assuming squared error function} \\ x_1^{(L)} &= \ \theta(s_1^{(L)}) \\ \theta'(s) &= 1 \ - \ \theta^2(s) \quad \text{for the tanh} \end{split}$$

Back propagation of \delta - Assuming all δ values of layer I have been computed already, how to compute δ for the i-th neuron (for any i) in layer (I-1)?

Back propagation of \delta - Assuming all δ values of layer I have been computed already, how to compute δ for the i-th neuron (for any i) in layer (I-1)?

Backpropagation

- δ values of layer (l-1) are computed based on the δ values of layer l
- So the δ values propagate backwards through the network

Backpropagation algorithm

Note: Each iteration uses only one training sample: SGD

Discussion

- Zero initialization will not work
 - If all weights initialized to zero, either all x's or all δ's will be zero; hence weights would not be adjusted
 - Weights have to be initialized randomly, or with some intelligent values (pre-trained models)
- How many layers? How many neurons in each layer?
 - Decide number of parameters (weights) based on available training data
- Not guaranteed to reach global minima; will reach a local minima depending on initialization, which sample chosen in which iteration, etc.

What are the hidden layers doing? Learning non-linear transforms

