CS 60050
Machine Learning

Neural Networks

Some slides taken from course materials of Abu Mostafa



Gradient Descent — as we studied it

* GD minimizes
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 Aparameter = - learning rate * gradient

* Gradient computed based on all training
examples (x,, y,): “Batch” GD

* Epoch: using all training examples once



Stochastic Gradient Descent (SGD)

* Pick one (x,, y,) at a time, apply GD to e( h(x,), y, )

* When done over many training examples, many
times, average direction of descent will be the same

as the “ideal” direction

* Benefits
— Cheaper computation
— Randomization helps escape trivial local minima

— Like batch GD, cannot guarantee reaching global minima
for non-convex error functions (most error functions,
especially in neural networks, will be non-convex)



Limitations of linear models

* Linear models not sufficient for regression /
classification of complex functions

* Non-linear combinations can be used, but not
feasible as the number of features increases beyond
few hundred (e.g., pixels in an image) — which non-
linear combinations to use?

* Need for non-linear models



Neural Networks: Algorithms that try to mimic the brain
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Idea: To mimic the biological function, first mimic the

biological structure
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The “one learning algorithm” hypothesis

Auditory Cortex

Auditory cortex learns to see



Neural Networks

Was very widely used in 80s and early 90s
Popularity diminished in late 90s.

Recent resurgence: State-of-the-art technique for

many applications

e Better hardware infrastructure (GPUs)

* Better algorithms to deal with some problems in
earlier implementations



Logical unit: perceptron

Inputs X4, X,, ... each take values {-1, +1}
One input is a constant (called a bias)

Each input x; has a weight w;
Output: weighted sum of inputs =) W, X;

Convention for both inputs and output: negative means logical
0, positive means logical 1



Using perceptron for logical operation (OR)

Inputs X4, X,, ... each take values {-1, +1}
Output: weighted sum of inputs =) w; X;

Convention for both inputs and output: negative means logical O,
positive means logical 1
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Using perceptron for logical operation (AND)

Inputs X4, X,, ... each take values {-1, +1}
Output: weighted sum of inputs =) w; X;

Convention for both inputs and output: negative means logical O,
positive means logical 1
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Creating layers of perceptrons to implement more
complex functions (XOR)
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Creating layers of perceptrons to implement more
complex functions (XOR)




Non-linear classification using perceptrons
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Need to combine multiple perceptrons




A multi-layer perceptron
for the non-linear classification
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Suitable weights w; and w, need to be fixed




A powerful model — can generate complex decision boundaries
by combining many linear classifiers

A AN DL

Target 8 perceptrons 16 perceptrons

Multilayer perceptrons, suitably combined, can generate almost
all functions / decision boundaries



From perceptron to a neuron

* Optimization becomes difficult with many
perceptrons

 Desirable: instead of a hard threshold of the
perceptron, a smooth function that is efficient to
differentiate

A perceptron with a smooth non-linear function is
called a neuron



From perceptron to a neuron

Desirable: a smooth function that is efficient to
differentiate

Possible functions

 Range [0, 1]: logistic function

e Range [-1, 1]: tanh function

Logistic function tanh function
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A neural network

input x hidden layers 1 <[l < L output layer [ = L

Number of layers: L

Input layer, hidden layer(s), output layer

Number of neurons in layer I: d{!

Number of neurons in input layer = number of features
in input = d{©®



Different architectures possible for neural network. Example for
a four-class classifier
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For our discussion:
- We consider a simple regression model with only one neuron in

the output layer
- Non-linearity in different neurons can be different. We consider

all neurons to implement the same non-linear function



How the network operates

Weight of the
l<i=<1L layers link from i-th
z . _ .
wz(j) 0 <i <d'"" inputs neuron in layer
1 <4 <dW outputs  (I-1) to the j-th

neuron in layer |

Output of the
j-th neuron in
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How the network operates
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hidden lavers 1 <l < L

output layer [ = L



How to get the weights?

* Till now what we have discussed — if the weights are
known, how the neural network operates

* As ML practitioners, our job is to automatically learn
the weights from training data

 Learning the weights efficiently: Backpropagation
algorithm



Applying SGD
* All weights w = { w; } determine the hypothesis h(x)

* Error on example (x,, y,) is e( h(x,), y,,) = e(w) which
can be squared error or logistic error function

* To implement SGD, we need the gradient
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for all 7, 7,1

 Can compute the differentials one by one, analytically
or numerically, but it will be very inefficient
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Computing

A trick for efficient computation:
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Computing

A trick for efficient computation:

() ) ()
o)) (I-1) dew) ()
We have J(z) = 1; We only need: o= 0
0 w;; 0 ) ]

We will compute this recursively,
starting from the last layer backwards



6 for the final (output) layer n  Oe(w)
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For the final layer | = L and 5 = 1:

() _ 9e(w)
) © = —
0 sgL)
(L) 2 . .
e(W) — (171 yn.) Assuming squared error function
(L) (L)
zy = 0(s1 ")

0'(s) =1 — #*(s) for the tanh



Back propagation of 6 - Assuming all 6 values of layer |
have been computed already, how to compute 6 for the
i-th neuron (for any i) in layer (I-1)?
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Back propagation of 6 - Assuming all 6 values of layer |
have been computed already, how to compute 6 for the
i-th neuron (for any i) in layer (I-1)?




Backpropagation

* 6 values of layer (I-1) are computed based on
the & values of layer |

* So the 6 values propagate backwards through
the network



Backpropagation algorithm

~Initialize all weights u'(l) at random

fort_0,1,2,...do

s Pickne{l,2,---,N}
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«  Forward: Compute all z;

j
.  Backward: Compute all 5
)

&  Update the weights: w( — 'wg) =/ r( _1)5](.”
. lterate to the next step untll It is time to stop
(D)

ij

s Return the final weights w,

Note: Each iteration uses only one training sample: SGD



Discussion

Zero initialization will not work

— If all weights initialized to zero, either all x’s or all &’s will
be zero; hence weights would not be adjusted

— Weights have to be initialized randomly, or with some
intelligent values (pre-trained models)

How many layers? How many neurons in each layer?

— Decide number of parameters (weights) based on available
training data

Not guaranteed to reach global minima; will reach a

local minima depending on initialization, which

sample chosen in which iteration, etc.



What are the hidden layers doing?
Learning non-linear transforms

input x hidden layers 1 <1 < L output layer [ = L



