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Illustrating Classification Task

Apply 
Model

Induction

Deduction

Learn 
Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Learning
algorithm

Training Set



Intuition behind a decision tree

● Ask a series of questions about a given record
– Each question is about one of the attributes
– Answer to one question decides what question to ask 

next (or if a next question is needed)
– Continue asking questions until we can infer the class 

of the given record



Example of a Decision Tree

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model:  Decision Tree



Structure of a decision tree

● Decision tree: hierarchical structure
– One root node: no incoming edge, zero or more 

outgoing edges
– Internal nodes: exactly one incoming edge, two or 

more outgoing edges
– Leaf or terminal nodes: exactly one incoming edge, no 

outgoing edge

● Each leaf node assigned a class label
● Each non-leaf node contains a test condition on 

one of the attributes



Applying a Decision Tree Classifier

Apply 
Model

Induction

Deduction

Learn 
Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 Test Set

Tree
Induction
algorithm

Training Set
Decision 
Tree



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data
Start from the root of tree.

Once a decision tree 
has been constructed 
(learned), it is easy to 
apply it to test data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data

Assign Cheat to “No”



Learning a Decision Tree Classifier

Apply 
Model

Induction

Deduction

Learn 
Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 
Test Set

Tree
Induction
algorithm

Training Set

Decision 
Tree

How to learn a decision tree?



A Decision Tree (seen earlier)

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model:  Decision Tree



Another Decision Tree on same dataset

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

MarSt

Refund

TaxInc

YESNO

NO

NO

Yes No

Married
Single, 

Divorced

< 80K > 80K

There could be more than one tree 
that fits the same data!



Challenge in learning decision tree

● Exponentially many decision trees can be 
constructed from a given set of attributes

– Some of the trees are more ‘accurate’ or better 
classifiers than the others

– Finding the optimal tree is computationally infeasible
● Efficient algorithms available to learn a 

reasonably accurate (although potentially 
suboptimal) decision tree in reasonable time

– Employs greedy strategy
– Locally optimal choices about which attribute to use 

next to partition the data



Decision Tree Induction

● Many Algorithms:
– Hunt’s Algorithm (one of the earliest)
– CART
– ID3, C4.5
– SLIQ,SPRINT



General Structure of Hunt’s Algorithm

● Let Dt be the set of training records 
that reach a node t

● General Procedure:
– If Dt contains records that all 

belong the same class yt, then t 
is a leaf node labeled as yt

– If Dt is an empty set, then t is a 
leaf node labeled by the default 
class yd

– If Dt contains records that 
belong to more than one class, 
use an attribute test to split the 
data into smaller subsets. 
Recursively apply the 
procedure to each subset.

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Dt

?



Hunt’s Algorithm

Don’t 
Cheat

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Default class is “Don’t 
cheat” since it is the 
majority class in the 
dataset



Hunt’s Algorithm

Don’t 
Cheat

Refund

Don’t 
Cheat

Don’t 
Cheat

Yes No

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

For now, assume that 
“Refund” has been 
decided to be the best 
attribute for splitting in 
some way (to be 
discussed soon)



Hunt’s Algorithm

Don’t 
Cheat

Refund

Don’t 
Cheat

Don’t 
Cheat

Yes No

Refund

Don’t 
Cheat

Yes No

Marital
Status

Don’t 
Cheat

Cheat

Single,
Divorced Married

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10



Hunt’s Algorithm

Don’t 
Cheat

Refund

Don’t 
Cheat

Don’t 
Cheat

Yes No

Refund

Don’t 
Cheat

Yes No

Marital
Status

Don’t 
Cheat

Cheat

Single,
Divorced Married

Taxable
Income

Don’t 
Cheat

< 80K >= 80K

Refund

Don’t 
Cheat

Yes No

Marital
Status

Don’t 
Cheat

Cheat

Single,
Divorced Married

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10



Tree Induction

● Greedy strategy
– Split the records based on an attribute test 

that optimizes certain criterion

● Issues
– Determine how to split the records

uHow to specify the attribute test condition?
uHow to determine the best split?

– Determine when to stop splitting



Tree Induction

● Greedy strategy
– Split the records based on an attribute test 

that optimizes certain criterion

● Issues
– Determine how to split the records

uHow to specify the attribute test condition?
uHow to determine the best split?

– Determine when to stop splitting



How to Specify Test Condition?

● Depends on attribute types
– Nominal: two or more distinct values (special 

case: binary) E.g., marital status: {single, 
divorced, married}

– Ordinal: two or more distinct values that have 
an ordering. E.g. shirt size: {S, M, L, XL}

– Continuous: continuous range of values
● Depends on number of ways to split

– 2-way split
– Multi-way split



Splitting Based on Nominal Attributes

● Multi-way split: Use as many partitions as distinct 
values. 

● Binary split: Divides values into two subsets. 
Need to find optimal partitioning.

CarType
Family

Sports
Luxury

CarType
{Family, 
Luxury} {Sports}

CarType
{Sports, 
Luxury} {Family} OR



● Multi-way split: Use as many partitions as distinct 
values. 

● Binary split: Divides values into two subsets. 
Need to find optimal partitioning.

● What about this split?

Splitting Based on Ordinal Attributes

Size
Small

Medium
Large

Size
{Medium, 

Large} {Small}
Size

{Small, 
Medium} {Large} OR

Size
{Small, 
Large} {Medium}



Splitting Based on Continuous Attributes

● Different ways of handling
– Discretization to form an ordinal categorical 

attribute
u Static – discretize once at the beginning
u Dynamic – ranges can be found by equal interval 

bucketing, equal frequency bucketing
(percentiles), or clustering.

– Binary Decision: (A < v) or (A ≥ v)
u consider all possible splits and finds the best cut
u can be more compute intensive



Splitting Based on Continuous Attributes

Taxable
Income
> 80K?

Yes No

Taxable
Income?

(i) Binary split (ii) Multi-way split

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K



Tree Induction

● Greedy strategy.
– Split the records based on an attribute test 

that optimizes certain criterion.

● Issues
– Determine how to split the records

uHow to specify the attribute test condition?
uHow to determine the best split?

– Determine when to stop splitting



What is meant by “determine best split”

Own
Car?

C0: 6
C1: 4

C0: 4
C1: 6

C0: 1
C1: 3

C0: 8
C1: 0

C0: 1
C1: 7

Car
Type?

C0: 1
C1: 0

C0: 1
C1: 0

C0: 0
C1: 1

Student
ID?

...

Yes No Family

Sports

Luxury c1
c10

c20

C0: 0
C1: 1

...

c11

Before Splitting: 10 records of class 0,
10 records of class 1

Which test condition is the best?



How to determine the Best Split

● Greedy approach: 
– Nodes with homogeneous class distribution 

are preferred
● Need a measure of node impurity:

C0: 5
C1: 5

C0: 9
C1: 1

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity



Measures of Node Impurity

● Gini Index

● Entropy

● Misclassification error



How to Find the Best Split

B?

Yes No

Node N3 Node N4

A?

Yes No

Node N1 Node N2

Before Splitting:

C0 N10 
C1 N11 

 

 

C0 N20 
C1 N21 

 

 

C0 N30 
C1 N31 

 

 

C0 N40 
C1 N41 

 

 

C0 N00 
C1 N01 

 

 

M0

M1 M2 M3 M4

M12 M34
Gain = M0 – M12 vs  M0 – M34



Measures of Node Impurity

● Gini Index

● Entropy

● Misclassification error



Measure of Impurity: GINI Index

● Gini Index for a given node t :

p( j | t) is the relative frequency of class j at node t

∑−=
j

tjptGINI 2)]|([1)(



Examples for computing GINI

C1 0 
C2 6 

 

 

C1 2 
C2 4 

 

 

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0 

∑−=
j

tjptGINI 2)]|([1)(

P(C1) = 1/6          P(C2) = 5/6

Gini = 1 – (1/6)2 – (5/6)2 = 0.278

P(C1) = 2/6          P(C2) = 4/6

Gini = 1 – (2/6)2 – (4/6)2 = 0.444



Measure of Impurity: GINI Index

● Gini Index for a given node t :

p( j | t) is the relative frequency of class j at node t

– Maximum (1 - 1/nc) when records are equally 
distributed among all classes, implying least 
interesting information [nc: number of classes]

– Minimum (0.0) when all records belong to one class, 
implying most interesting information

∑−=
j

tjptGINI 2)]|([1)(

C1 0
C2 6
Gini=0.000

C1 2
C2 4
Gini=0.444

C1 3
C2 3
Gini=0.500

C1 1
C2 5
Gini=0.278



Splitting Based on GINI

● Used in CART, SLIQ, SPRINT.
● When a node p is split into k partitions (children), the 

quality of split is computed as,

where, ni = number of records at child i,
n = number of records at node p.

∑
=

=
k

i

i
split iGINI

n
nGINI

1

)(



Binary Attributes: Computing GINI Index

● Splits into two partitions
● Effect of Weighing partitions: 

– Larger and Purer Partitions are sought for.

B?

Yes No

Node N1 Node N2

 Parent 
C1 6 
C2 6 

Gini = 0.500 
 

 N1 N2 
C1 5 1 
C2 2 4 
Gini=0.371 

 

 

Gini(N1) 
= 1 – (5/7)2 – (2/7)2

= 0.408 

Gini(N2) 
= 1 – (1/5)2 – (4/5)2

= 0.32

Gini(Children) 
= 7/12 * 0.408 + 

5/12 * 0.32
= 0.371



Categorical Attributes: Computing Gini Index

● For each distinct value, gather counts for each class in 
the dataset

● Use the count matrix to make decisions

CarType
{Sports,
Luxury} {Family}

C1 3 1
C2 2 4
Gini 0.400

CarType

{Sports} {Family,Luxury}
C1 2 2
C2 1 5
Gini 0.419

CarType
Family Sports Luxury

C1 1 2 1
C2 4 1 1
Gini 0.393

Multi-way split Two-way split 
(find best partition of values)



Continuous Attributes: Computing Gini Index

● Use Binary Decisions based on one 
value

● Several Choices for the splitting value
– Number of possible splitting values 

= Number of distinct values
● Each splitting value has a count matrix 

associated with it
– Class counts in each of the 

partitions, A < v and A ≥ v
● Simple method to choose best v

– For each v, scan the database to 
gather count matrix and compute 
its Gini index

– Computationally Inefficient! 
Repetition of work.

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Taxable
Income
> 80K?

Yes No



Continuous Attributes: Computing Gini Index...

● For efficient computation: for each attribute,
– Sort the attribute on values
– Linearly scan these values, each time updating the count matrix 

and computing gini index
– Choose the split position that has the least gini index

Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230
<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Positions
Sorted Values



Measures of Node Impurity

● Gini Index

● Entropy

● Misclassification error



Alternative Splitting Criteria based on INFO

● Entropy at a given node t:

p( j | t) is the relative frequency of class j at node t

●Measures homogeneity of a node

∑−=
j

tjptjptEntropy )|(log)|()(
2



Examples for computing Entropy

C1 0 
C2 6 

 

 

C1 2 
C2 4 

 

 

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0 

P(C1) = 1/6          P(C2) = 5/6

Entropy = – (1/6) log2 (1/6) – (5/6) log2 (1/6) = 0.65

P(C1) = 2/6          P(C2) = 4/6

Entropy = – (2/6) log2 (2/6) – (4/6) log2 (4/6) = 0.92

∑−=
j

tjptjptEntropy )|(log)|()(
2



Alternative Splitting Criteria based on INFO

● Entropy at a given node t:

p( j | t) is the relative frequency of class j at node t

●Measures homogeneity of a node 
uMaximum (log nc) when records are equally distributed 

among all classes implying least information
uMinimum (0.0) when all records belong to one class, 

implying most information

∑−=
j

tjptjptEntropy )|(log)|()(
2



Splitting Based on INFO...

● Information Gain: 

Parent Node p is split into k partitions;
ni is number of records in partition i

– Measures Reduction in Entropy achieved because of 
the split. Choose the split that achieves most reduction 
(maximizes GAIN)

– Used in ID3 and C4.5
– Disadvantage: Tends to prefer splits that result in large 

number of partitions, each being small but pure.

⎟
⎠
⎞

⎜
⎝
⎛−= ∑

=

k

i

i

split
iEntropy

n
npEntropyGAIN

1
)()(



Splitting Based on INFO...

● Gain Ratio: 

Parent Node, p is split into k partitions
ni is the number of records in partition i

– Adjusts Information Gain by the entropy of the 
partitioning (SplitINFO). Higher entropy partitioning 
(large number of small partitions) is penalized!

– Used in C4.5
– Designed to overcome the disadvantage of Information 

Gain

SplitINFO
GAIN

GainRATIO Split

split
= ∑

=
−=

k

i

ii

n
n

n
nSplitINFO

1
log



Measures of Node Impurity

● Gini Index

● Entropy

● Misclassification error



Splitting Criteria based on Classification Error

● Classification error at a node t :

● Measures misclassification error made by a node

)|(max1)( tiPtError
i

−=

p( i | t) is the relative frequency of class i at node t



Examples for Computing Error

C1 0 
C2 6 

 

 

C1 2 
C2 4 

 

 

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Error = 1 – max (0, 1) = 1 – 1 = 0 

P(C1) = 1/6          P(C2) = 5/6

Error = 1 – max (1/6, 5/6) = 1 – 5/6 = 1/6

P(C1) = 2/6          P(C2) = 4/6

Error = 1 – max (2/6, 4/6) = 1 – 4/6 = 1/3

)|(max1)( tiPtError
i

−=



Splitting Criteria based on Classification Error

● Classification error at a node t :

● Measures misclassification error made by a node 
u Maximum (1 - 1/nc) when records are equally distributed 

among all classes, implying least interesting information
u Minimum (0.0) when all records belong to one class, implying 

most interesting information

)|(max1)( tiPtError
i

−=



Comparison among Splitting Criteria

For a 2-class problem:



Tree Induction

● Greedy strategy.
– Split the records based on an attribute test 

that optimizes certain criterion.

● Issues
– Determine how to split the records

uHow to specify the attribute test condition?
uHow to determine the best split?

– Determine when to stop splitting



Stopping Criteria for Tree Induction

● Stop expanding a node when all the records 
belong to the same class

● Stop expanding a node when all the records have 
similar attribute values (if different class values, 
then usually assign the majority class)

● Early termination, usually to prevent overfitting (to 
be discussed later)



DT classification: points to note

● Finding an optimal DT is NPC, but efficient and 
fast heuristic methods available

● Advantages:
– Extremely fast at classifying unknown records
– Easy to interpret, especially for small-sized 

trees
– Accuracy is comparable to other classification 

techniques for many simple data sets



DT classification: points to note

● In what we discussed till now, the test condition 
always involved a single attribute 
– Decision boundaries are ‘rectilinear’ i.e., parallel 

to ‘coordinate axes’ of the feature space
– Limits the expressiveness of DTs

● Oblique DTs – allows test conditions that involve 
more than one attribute (e.g., x + y < 1)
– Better expressiveness
– But finding a good tree is computationally more 

expensive



Decision Boundary

y < 0.33?

     : 0
     : 3

     : 4
     : 0

y < 0.47?

    : 4
    : 0

     : 0
     : 4

x < 0.43?

Yes

Yes

No

No Yes No

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

• Border line between two neighboring regions of different classes is 
known as decision boundary

• Decision boundary is parallel to axes because test condition involves 
a single attribute at-a-time



Oblique Decision Trees

x + y < 1

Class = + Class =     

• Test condition may involve multiple attributes

• More expressive representation

• Finding optimal test condition is computationally expensive



Example: C4.5

● Simple depth-first construction.
● Uses Information Gain
● Sorts Continuous Attributes at each node.
● Needs entire data to fit in memory.
● Unsuitable for Large Datasets.

– Needs out-of-core sorting.

● You can download the software from:
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz



Practical issues of Decision Tree classifier



Underfitting and Overfitting (Example)

500 circular and 500 
triangular data points.

Circular points:

0.5 ≤ sqrt(x1
2+x2

2) ≤ 1

Triangular points:

sqrt(x1
2+x2

2) > 0.5 or

sqrt(x1
2+x2

2) < 1



Underfitting and Overfitting

Overfitting

Underfitting: when DT is too simple, both training and test errors are large

Overfitting: DT has grown too large, and is now fitting the noise in the dataset 



Overfitting

● Overfitting results in decision trees that are more 
complex than necessary

● Training error no longer provides a good estimate 
of how well the tree will perform on previously 
unseen records



Overfitting due to Noise 

Decision boundary is distorted by noise point



Overfitting due to Insufficient Examples

Lack of data points in the lower half of the diagram makes it difficult 
to predict correctly the class labels of that region 

- Insufficient number of training records in the region causes the 
decision tree to predict the test examples using other training 
records that are irrelevant to the classification task



Occam’s Razor

● Given two models of similar generalization errors,  
one should prefer the simpler model over the 
more complex model

● For complex models, there is a greater chance 
that it was fitted accidentally by errors in data

● Therefore, one should include model complexity 
when evaluating a model



Minimum Description Length (MDL)

● Cost(Model,Data) = Cost(Data|Model) + Cost(Model)
– Cost is the number of bits needed for encoding.
– Search for the least costly model.

● Cost(Data|Model) encodes the misclassification errors.
● Cost(Model) uses node encoding (number of children) 

plus splitting condition encoding.
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How to Address Overfitting

● Pre-Pruning (Early Stopping Rule)
– Stop the algorithm before it becomes a fully-grown tree
– Typical stopping conditions for a node:

u Stop if all instances belong to the same class
u Stop if all the attribute values are the same

– More restrictive conditions:
u Stop if number of instances is less than some user-specified 
threshold
uStop if expanding the current node does not improve impurity

measures (e.g., Gini or information gain)



How to Address Overfitting…

● Post-pruning
– Grow decision tree to its entirety
– Trim the nodes of the decision tree in a bottom-up 

fashion
– If generalization error improves after trimming, replace 

sub-tree by a leaf node.
– Class label of leaf node is determined from majority 

class of instances in the sub-tree
– Can use MDL for post-pruning



Other Issues

● Data Fragmentation
● Search Strategy
● Expressiveness
● Tree Replication



Data Fragmentation

● Number of instances gets smaller as you traverse 
down the tree

● Number of instances at the leaf nodes could be 
too small to make any statistically significant 
decision



Search Strategy

● Finding an optimal decision tree is NP-hard

● The algorithm presented so far uses a greedy, 
top-down, recursive partitioning strategy to 
induce a reasonable solution

● Other strategies?
– Bottom-up
– Bi-directional



Expressiveness

● Decision tree provides expressive representation for 
learning discrete-valued function

– But they do not generalize well to certain types of 
Boolean functions
u Example: parity function: 

– Class = 1 if there is an even number of Boolean attributes with truth 
value = True

– Class = 0 if there is an odd number of Boolean attributes with truth 
value = True

u For accurate modeling, must have a complete tree

● Not expressive enough for modeling continuous variables
– Particularly when test condition involves only a single 

attribute at-a-time



Tree Replication
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• Same subtree appears in multiple branches


