CS 60050 Machine Learning

Classification: Logistic Regression

Some slides taken from course materials of Andrew Ng

Classification

Email: Spam / Not Spam? Online Transactions: Fraudulent / Genuine? Tumor: Malignant / Benign ?

 $y \in \{0, 1\}$ 1: "Positive Class" (e.g., benign tumor) 1: "Positive Class" (e.g., malignant tumor)

Can we solve the problem using linear regression?

Can we solve the problem using linear regression? E.g., fit a straight line and define a threshold at 0.5

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If $h_{\theta}(x) \geq 0.5$, predict "y = 1"

If $h_{\theta}(x) < 0.5$, predict "y = 0"

Can we solve the problem using linear regression? E.g., fit a straight line and define a threshold at 0.5

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If $h_{\theta}(x) \geq 0.5$, predict "y = 1"

Failure due to adding a new point

If $h_{\theta}(x) < 0.5$, predict "y = 0"

Classification:
$$y = 0$$
 or 1
 $h_{\theta}(x)$ can be > 1 or < 0

Another drawback of using linear regression for this problem

What we need:

Logistic Regression: $0 \le h_{\theta}(x) \le 1$

Logistic Regression Model

Want $0 \le h_{\theta}(x) \le 1$

$$h_{\theta}(x) = g(\theta^T x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid function Logistic function

A useful property: easy to compute differential at any point

Interpretation of Hypothesis Output

 $h_{\theta}(x)$ = estimated probability that y = 1 on input x

"probability that y = 1, given x, parameterized by θ "

Example: If $h_{\theta}(x) = 0.7$

Tell patient that 70% chance of tumor being malignant

Logistic regression

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "y = 1" if $h_{\theta}(x) \ge 0.5$

predict "
$$y = 0$$
" if $h_{\theta}(x) < 0.5$

Logistic regression

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "y = 1" if $h_{\theta}(x) \ge 0.5$ When $\Theta^{T} x \ge 0$

predict "y = 0" if $h_{\theta}(x) < 0.5$ When $\Theta^{T} x < 0$

Separating two classes of points

- We are attempting to separate two given sets / classes of points
- Separate two regions of the feature space
- Concept of Decision Boundary
- Finding a good decision boundary => learn appropriate values for the parameters Ø

Decision Boundary

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Decision Boundary

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Predict
$$y = 1$$
 if $-3 + x_1 + x_2 \ge 0$

How to get the parameter values – will be discussed soon

Non-linear decision boundaries

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) + \theta_3 x_1^2 + \theta_4 x_2^2)$$

We can learn more complex decision boundaries where the hypothesis function contains higher order terms.

(remember polynomial regression)

Non-linear decision boundaries

How to get the parameter values – will be discussed soon

Cost function for Logistic Regression

How to get the parameter values?

How to choose parameters θ ?

Cost function

Linear regression:
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Squared error cost function:

$$\operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

However this cost function is non-convex for the hypothesis of logistic regression.

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1 | x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Note: y = 0 or 1 always

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

= $-\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$

This cost function is convex

To fit parameters θ :

$$\min_{\theta} J(\theta)$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat $\{$

}

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

(simultaneously update all θ_j)

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

$$\begin{array}{l} \text{Repeat } \{ \\ \theta_j := \theta_j - \underline{\alpha} \sum\limits_{m=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \\ \\ \} \end{array} \\ \text{(simultaneously update all } \theta_j \end{array}$$

Algorithm looks identical to linear regression, but the hypothesis function is different for logistic regression.

Thus we can gradient descent to learn parameter values, and hence compute for a new input:

To make a prediction given new x :

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

= estimated probability that y = 1 on input x

How to use the estimated probability?

- Refraining from classifying unless confident
- Ranking items
- Multi-class classification

Multi-class classification: one vs. all

Multiclass classification

News article tagging: Politics, Sports, Movies, Religion, ...

Medical diagnosis: Not ill, Cold, Flu, Fever

Weather: Sunny, Cloudy, Rain, Snow

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y = i.

On a new input x, to make a prediction, pick the class i that maximizes

$$\max_i h_{\theta}^{(i)}(x)$$

Advanced Optimization algorithms (not part of this course)

Optimization algorithms:

- Gradient descent
- Conjugate gradient
- BFGS
- L-BFGS

Advantages of the other algorithms:

- No need to manually pick learning rate
- Often converges faster than gradient descent

Disadvantages:

- More complex