CS 60050 Machine Learning

Support Vector Machines

Intuition

- Many possible separating lines. Which separating line is the best?
- Margin: distance from the nearest example to the separating line

Notations

- Training set: (x_i, y_i) , j = 1, 2, ..., N,
 - Each x_i is a vector of d dimensions
 - Each $y_i = +1$ or -1
- Separating plane: $\Sigma w_j x_j = 0$ where w_j are the parameters to learn
- Vector notation for the plane: $w^Tx = 0$
 - $\text{Vector } w = (w_0, w_1, ..., w_d)$
- Question: Which w maximizes the margin?

Technicalities

• Let x_n be the nearest data point to the plane $w^Tx = 0$

• Normalizing w such that $| w^T x_n | = 1$

• Pull out w_0 , so that $w = (w_1, ..., w_d)$. Insert constant b. Plane is now $w^Tx + b = 0$, normalized such that $|w^Tx_n + b| = 1$

Computing the margin

The distance between \mathbf{x}_n and the plane $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$

where
$$|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = 1$$

Computing the margin

The vector \mathbf{w} is \perp to the plane in the \mathcal{X} space:

Take \mathbf{x}' and \mathbf{x}'' on the plane

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}' + b = 0$$
 and $\mathbf{w}^{\mathsf{T}}\mathbf{x}'' + b = 0$

$$\implies \mathbf{w}^{\mathsf{T}}(\mathbf{x}' - \mathbf{x}'') = 0$$

Distance between x_n and the plane

Take any point ${f x}$ on the plane

Projection of $\mathbf{x}_n - \mathbf{x}$ on \mathbf{w}

$$\hat{\mathbf{w}} = \frac{\mathbf{w}}{\|\mathbf{w}\|} \implies \text{distance} = \left| \hat{\mathbf{w}}^{\mathsf{T}} (\mathbf{x}_n - \mathbf{x}) \right|$$

Distance between x_n and the plane

distance
$$=\frac{1}{\|\mathbf{w}\|}|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n - \mathbf{w}^{\mathsf{T}}\mathbf{x}| =$$

$$\frac{1}{\|\mathbf{w}\|} |\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b - \mathbf{w}^{\mathsf{T}} \mathbf{x} - b| = \frac{1}{\|\mathbf{w}\|}$$

The optimization problem

Maximize
$$\frac{1}{\|\mathbf{w}\|}$$
 subject to $\min_{n=1,2,...,N} |\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = 1$

Notice:
$$|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b)$$

Equivalent optimization problem

Maximize
$$\frac{1}{\|\mathbf{w}\|}$$
 subject to $\min_{n=1,2,\dots,N} |\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = 1$ Notice: $|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = y_n (\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b)$ Minimize $\frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}$ subject to $y_n (\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) \geq 1$ for $n = 1, 2, \dots, N$

Solving the optimization

Minimize
$$\frac{1}{2}\,\mathbf{w}^{\mathsf{T}}\mathbf{w}$$
 subject to $y_n\,(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n+b)\geq 1$ for $n=1,2,\ldots,N$ $\mathbf{w}\in\mathbb{R}^d,\;b\in\mathbb{R}$

Inequality constraints handled by KKT conditions (due to Karush and Kuhn-Tucker)

Lagrange formulation

Minimize
$$\frac{1}{2}\,\mathbf{w}^{\scriptscriptstyle\mathsf{T}}\mathbf{w}$$
 subject to $y_n\,(\mathbf{w}^{\scriptscriptstyle\mathsf{T}}\mathbf{x}_n+b)\geq 1$ for $n=1,2,\ldots,N$ $\mathbf{w}\in\mathbb{R}^d,\;b\in\mathbb{R}$

Minimize
$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{w} - \sum_{n=1}^N \alpha_n (y_n (\mathbf{w}^\mathsf{T} \mathbf{x}_n + b) - 1)$$
 w.r.t. \mathbf{w} and b and maximize w.r.t. each $\alpha_n \geq 0$

Lagrange formulation

Minimize
$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{w} - \sum_{n=1}^N \alpha_n (y_n (\mathbf{w}^\mathsf{T} \mathbf{x}_n + b) - 1)$$
 w.r.t. \mathbf{w} and b and maximize w.r.t. each $\alpha_n \geq 0$

For the unconstrained case:

$$\nabla_{\mathbf{w}} \mathcal{L} = \mathbf{w} - \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n = \mathbf{0}$$

$$\frac{\partial \mathcal{L}}{\partial b} = -\sum_{n=1}^{N} \alpha_n y_n = \mathbf{0}$$

Lagrange formulation

Minimize
$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{n=1}^{N} \alpha_n (y_n (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b) - 1)$$

w.r.t. w and b and maximize w.r.t. each $\alpha_n \geq 0$

Substituting

$$\mathbf{w} = \sum_{n=1}^N \alpha_n y_n \mathbf{x}_n$$
 and $\sum_{n=1}^N \alpha_n y_n = 0$

We get

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \; \alpha_n \alpha_m \; \mathbf{x}_n^{\mathsf{T}} \mathbf{x}_m$$

Final constrained optimization

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \; \alpha_n \alpha_m \; \mathbf{x}_n^{\mathsf{T}} \mathbf{x}_m$$

Maximize w.r.t. to lpha subject to

$$\alpha_n \geq 0$$
 for $n=1,\cdots,N$ and $\sum_{n=1}^N \alpha_n y_n = 0$

Can be solved by Quadratic Programming, which gives us

$$\alpha = \alpha_1, \cdots, \alpha_N$$

The solution

Solution:
$$\boldsymbol{\alpha} = \alpha_1, \cdots, \alpha_N$$
 $\Longrightarrow \mathbf{w} = \sum_{n=1}^N \alpha_n y_n \mathbf{x}_n$ KKT condition: For $n=1,\cdots,N$ $\alpha_n \left(y_n \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b\right) - 1\right) = 0$

$$lpha_n > 0 \implies \mathbf{x}_n$$
 is a $oxed{ extstyle extstyle$

Support vectors

Closest \mathbf{x}_n 's to the plane: achieve the margin

$$\implies y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) = 1$$

$$\mathbf{w} = \sum_{\mathbf{x}_n \text{ is SV}} \alpha_n y_n \mathbf{x}_n$$

Solve for b using any SV:

$$y_n\left(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b\right) = 1$$

Hypothesis $g(x) = sign(w^Tx + b)$

#SV's = #effective parameters

Generalization result

$$\mathbb{E}[E_{ ext{out}}] \leq rac{\mathbb{E}[\# ext{ of SV's}]}{N-1}$$

Nonlinear transforms

Nonlinear transforms

- Points transformed from X-space to Z-space
- Optimization problem formulated in Z-space

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \; \alpha_n \alpha_m \; \mathbf{z}_n^{\mathsf{T}} \mathbf{z}_m$$

- SVs found in Z-space (different Z-spaces can give different SVs)
- Complexity of optimization problem is independent of dimension of Z-space, only depends on number of points (N)

What do we need from the Z-space?

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \; \alpha_n \alpha_m \; \mathbf{z}_n^{\mathsf{T}} \mathbf{z}_m$$

Constraints:
$$\alpha_n \geq 0$$
 for $n=1,\cdots,N$ and $\sum_{n=1}^N \alpha_n y_n = 0$

$$g(\mathbf{x}) = \mathrm{sign}\left(\mathbf{w}^{\mathsf{T}}\mathbf{z} + b\right)$$
 where $\mathbf{w} = \sum_{\mathbf{z}_n \text{ is SV}} \alpha_n y_n \mathbf{z}_n$ and b : $y_m\left(\mathbf{w}^{\mathsf{T}}\mathbf{z}_m + b\right) = 1$

What do we need from the Z-space?

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \; \alpha_n \alpha_m \; \mathbf{z}_n^{\mathsf{T}} \mathbf{z}_m$$

Constraints:
$$\alpha_n \geq 0$$
 for $n=1,\cdots,N$ and $\sum_{n=1}^N \alpha_n y_n = 0$

$$g(\mathbf{x}) = \mathrm{sign}\,(\mathbf{w}^{\scriptscriptstyle\mathsf{T}}\mathbf{z} + b)$$
 where $\mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n$

and
$$b$$
: $y_m (\mathbf{w}^\mathsf{T} \mathbf{z}_m + b) = 1$

Zm is SV

need
$$\mathbf{z}_n^{\scriptscriptstyle\mathsf{T}}\mathbf{z}$$

need
$$\mathbf{z}_n^{\scriptscriptstyle\mathsf{T}}\mathbf{z}_m$$

Need only inner products of vectors in the Z-space

Inner products in Z-space

- Given two vectors x and x'
- Which is easier:
 - Getting the transformed vectors z and z' in Z-space
 - Getting the inner product of z and z'

 Can we compute inner products in Z-space without transforming vectors to Z-space?

Kernel function

- Given two points x, $x' \in X$, let $z^T z' = K(x, x')$
- A kernel function is an inner product of two vectors in some Z-space

Example:
$$\mathbf{x} = (x_1, x_2) \longrightarrow 2$$
nd-order Φ $\mathbf{z} = \Phi(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_2^2, x_1 x_2)$ $K(\mathbf{x}, \mathbf{x}') = \mathbf{z}^{\mathsf{T}} \mathbf{z}' = 1 + x_1 x'_1 + x_2 x'_2 + x_1 x'_1 x_2 x'_2$

Can we compute K(x, x') without transforming x and x'?

Consider
$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\mathsf{T}} \mathbf{x}')^2 = (1 + x_1 x'_1 + x_2 x'_2)^2$$

= $1 + x_1^2 x'_1^2 + x_2^2 x'_2^2 + 2x_1 x'_1 + 2x_2 x'_2 + 2x_1 x'_1 x_2 x'_2$

This is an inner product!
$$(\ 1\ ,\ x_1^2\ ,\ x_2^2\ ,\ \sqrt{2}\,x_1\ ,\ \sqrt{2}\,x_2\ ,\ \sqrt{2}\,x_1x_2\)$$

$$(\ 1\ ,\ x_1'^2\ ,\ x_2'^2\ ,\ \sqrt{2}x_1'\ ,\ \sqrt{2}x_1'\ ,\ \sqrt{2}x_2'\ ,\ \sqrt{2}x_1'x_2'\)$$

The kernel trick

- Get the classification done in a high-dimensional space, without paying much of a price in terms of computational complexity
- Z-space can be very high dimensional, even of infinite dimension

$$K(x, x') = \exp\left(-(x - x')^2\right)$$

$$= \exp\left(-x^2\right) \exp\left(-x'^2\right) \sum_{k=0}^{\infty} \frac{2^k (x)^k (x')^k}{k!}$$

$$= \exp\left(2xx'\right)$$

Several well-known kernels exist

- Polynomial kernel
- Exponential kernel
- Radial Basis Function (RBF) kernel

 You can design your own kernel, provided it satisfies some conditions

Designing your own kernel

 $K(\mathbf{x},\mathbf{x'})$ is a valid kernel iff

1. It is symmetric and

2. The matrix: $\begin{bmatrix} K(\mathbf{x}_1,\mathbf{x}_1) & K(\mathbf{x}_1,\mathbf{x}_2) & \dots & K(\mathbf{x}_1,\mathbf{x}_N) \\ K(\mathbf{x}_2,\mathbf{x}_1) & K(\mathbf{x}_2,\mathbf{x}_2) & \dots & K(\mathbf{x}_2,\mathbf{x}_N) \\ \dots & \dots & \dots & \dots \\ K(\mathbf{x}_N,\mathbf{x}_1) & K(\mathbf{x}_N,\mathbf{x}_2) & \dots & K(\mathbf{x}_N,\mathbf{x}_N) \end{bmatrix}$ is positive semi-definite

for any $\mathbf{x}_1, \dots, \mathbf{x}_N$ (Mercer's condition)