CS 60050
Machine Learning

Neural Networks

Gradient Descent — as we studied it

e GD minimizes

 Aparameter = - learning rate * gradient

* Gradient computed based on all training
examples (x., y,): “Batch” GD

* Epoch: using all training examples once

Stochastic Gradient Descent (SGD)

* Pickone (x,,v,)atatime, apply GD to e(h(x,), v,)

* When done over many training examples, many
times, average direction of descent will be the same

as the “ideal” direction
* Benefits
— Cheaper computation
— Randomization helps escape trivial local minima

— But cannot guarantee reaching global minima in
case of non-convex error functions

Limitations of linear models

* Linear models not sufficient for regression /
classification of complex functions

 Non-linear combinations can be used, but not
feasible as the number of features increases beyond
few hundred (e.g., pixels in an image) — which non-
linear combinations to use?

Neural Networks
* Origins: Algorithms that try to mimic the brain.

 Was very widely used in 80s and early 90s;
popularity diminished in late 90s.

 Recent resurgence: State-of-the-art technique for
many applications

The “one learning algorithm” hypothesis

Auditory Cortex

Auditory cortex learns to see

Neurons in the brain

Dendrite Axon terminal

N4 cell body fx
7V N
\ ! / Node of Ranvje I ;)

\
. o

71/A N\ Axon Schwann cell

Nucleus Myelin sheath

To mimic the biological function, mimic the biological structure

Logical unit: perceptron

1
1.5
@1—> L OR(z, o)
n Y]

X,, X, take values {-1, +1}

Non-linear classification example: XOR/XNOR

) r
x X
y =11 XOR 9
r1 XNOR 9

2

xxx

%y
2
22
2 2

X4

Cannot be separated using a
perceptron or any linear
classifier model

Combining multiple perceptrons

OR(zy,)

AA’TD(.’L‘I, 1‘2)

Creating layers

1.5
1

hihoy 1

—» f

Creating layers

1.5
@ . > ——» f
hihoy 1

The multi-layer perceptron

D00
t-l’v
o&ca

A powerful model — can generate complex decision boundaries

Target 8 perceptrons

\,f\}*lj \\»

T, S

N\

N \ f \ \
N A A
7’ " \ \ \

\ \ L\
o ,"K'\. N
Fal \ + + N\,
™ 1

16 perceptrons

From perceptron to a neuron implementing a non-linear function

 Desirable: a smooth function that is efficient to
differentiate

 Possible functions
 Range [0, 1]: logistic function
 Range [-1, 1]: tanh function

Logistic function tanh function

1 e’ —e °

O(z) = 1 4+ e~ % Ols) = == ET

A neural network

input x hidden layers 1 <[l < L output layer [= L

Number of layers: L
Number of neurons in layer I: d®

Different architectures possible for neural network. Example for
a four-class classifier

For our discussion, we will consider a simple regression
model with only one neuron in the output layer.

How the network operates

1 <1 < L layers
wg-) 0 <i <d'Y inputs
1 <j <dW® outputs
d-1)
() _ gDy _ o) (-1
z;) =0(s;’) =0 w;; T,

Weight of the
link from i-th
neuron in layer
(I-1) to the j-th
neuron in layer |

Output of the
j-th neuron in
layer |

How the network operates

Apply x to ;17(10) ce ;z‘gz())) — — ;IfgL) = h(x)

= G 0
O (Y (&) h

: —

input x hidden layers 1 < [< L output layer [= L

How to get the weights?

 As ML practitioners, our job is to automatically learn
the weights from training data

* Learning the weights efficiently: Backpropagation
algorithm

Applying SGD
* All the weights w = { w; } determine the hypothesis h
* Erroronexample (x,,vy,)ise(h(x,),y,) =e(w)

* Toimplement SGD, we need the gradient

0 e(w) o
Ve(w): ,, for all 7, 7,1
(W) 5 “,_l(_;)

 Can compute the differentials one by one, analytically
or numerically, but it will be very inefficient

0 e(w)
0 'wg.)

Computing

A trick for efficient computation:

de(w) de(w) 0 Sg-l)

0T m 50

0 w;: 0 s ; du ;
We h asgl) —z"Y We only need: 2™ — 4
¢ have ——5 = 7; e only need: —=g7 = §;

i J

& for the final (output) layer () _ 9e(w)

i T asgz)

For the final layer l = L and 5 = 1:

50 _ d e(w)
51—
33§L)
L
e(w) = (z") — yn)?
L L
r” = 6(si)

0'(s) =1 — 6*(s) for the tanh

Back propagation of 6

(-1 _ Oe(w)
5! _
i 9 5D
(1) p _
. X
2 asgz) P (l)% 5 Z(.1—1)
PO)
— Z 6](:1) X z(;) X 9’(s§l-1))
=1
d(l)

0D _ (1 — (gDy2 Z 0 8¢

Back propagation algorithm

at random

v

~Initialize all weights u*(l)
fort =0,1,2,... do

s Pickne{1,2,.--- N}
(7)

ro

« Forward: Compute all x;

j
s. Backward: Compute all 5
)

[[-1) (I
& Update the weights: w(— wz(J) 7 ;r.g)OJ(-)
. lterate to the next step untll It is time to stop

(1)

ij

oo

- Return the final weights w;,

Note: weights have to be initialized at random, or with some
intelligent values. Zero initialization will not work.

What are the hidden layers doing?
Learning non-linear transforms

input x hidden layers 1 < 1 < L output layer { = L

