CS 60050 Machine Learning

Neural Networks

Gradient Descent – as we studied it

GD minimizes

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \underbrace{e(h(\mathbf{x}_n), y_n)}_{\text{total properties}}$$

- Δparameter = learning rate * gradient
- Gradient computed based on all training examples (x_n, y_n) : "Batch" GD
- Epoch: using all training examples once

Stochastic Gradient Descent (SGD)

- Pick one (x_n, y_n) at a time, apply GD to e(h(x_n), y_n)
- When done over many training examples, many times, average direction of descent will be the same as the "ideal" direction
- Benefits
 - Cheaper computation
 - Randomization helps escape trivial local minima
 - But cannot guarantee reaching global minima in case of non-convex error functions

Limitations of linear models

 Linear models not sufficient for regression / classification of complex functions

 Non-linear combinations can be used, but not feasible as the number of features increases beyond few hundred (e.g., pixels in an image) – which nonlinear combinations to use?

Neural Networks

- Origins: Algorithms that try to mimic the brain.
- Was very widely used in 80s and early 90s; popularity diminished in late 90s.
- Recent resurgence: State-of-the-art technique for many applications

The "one learning algorithm" hypothesis

Neurons in the brain

To mimic the biological function, mimic the biological structure

Logical unit: perceptron

 $x_1, x_2 \text{ take values } \{-1, +1\}$

Non-linear classification example: XOR/XNOR

$$y = x_1 \text{ XOR } x_2$$
$$x_1 \text{ XNOR } x_2$$
$$\text{NOT } (x_1 \text{ XOR } x_2)$$

Cannot be separated using a perceptron or any linear classifier model

Combining multiple perceptrons

Creating layers

Creating layers

The multi-layer perceptron

A powerful model – can generate complex decision boundaries

From perceptron to a neuron implementing a non-linear function

- Desirable: a smooth function that is efficient to differentiate
- Possible functions
 - Range [0, 1]: logistic function
 - Range [-1, 1]: tanh function

Logistic function

$$\Theta(z) = \frac{1}{1 + e^{-z}}$$

tanh function

$$\Theta(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

A neural network

Number of layers: L Number of neurons in layer I: d^(I)

Different architectures possible for neural network. Example for a four-class classifier

For our discussion, we will consider a simple regression model with only one neuron in the output layer.

How the network operates

$$w_{ij}^{(l)} \quad \left\{ egin{array}{ll} 1 & \leq l \leq L & ext{layers} \ 0 & \leq i \leq d^{(l-1)} & ext{inputs} \ 1 & \leq j \leq d^{(l)} & ext{outputs} \end{array}
ight.$$

Weight of the link from i-th neuron in layer (l-1) to the j-th neuron in layer l

$$x_j^{(l)}= heta(s_j^{(l)})= heta\left(\sum_{i=0}^{d^{(l-1)}}w_{ij}^{(l)}\;x_i^{(l-1)}
ight)$$
 $the j-th neuron in layer I$

Output of the

How the network operates

Apply
$$\mathbf{x}$$
 to $x_1^{(0)} \cdots x_{d^{(0)}}^{(0)} \rightarrow \rightarrow x_1^{(L)} = h(\mathbf{x})$

How to get the weights?

- As ML practitioners, our job is to automatically learn the weights from training data
- Learning the weights efficiently: Backpropagation algorithm

Applying SGD

- All the weights $w = \{w_{ij}^{(l)}\}\$ determine the hypothesis h
- Error on example (x_n, y_n) is $e(h(x_n), y_n) = e(w)$
- To implement SGD, we need the gradient

$$\nabla \mathbf{e}(\mathbf{w})$$
: $\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}}$ for all i, j, l

 Can compute the differentials one by one, analytically or numerically, but it will be very inefficient

Computing
$$\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}}$$

A trick for efficient computation:

$$\frac{\partial e(\mathbf{w})}{\partial w_{ij}^{(l)}} = \frac{\partial e(\mathbf{w})}{\partial s_j^{(l)}} \times \frac{\partial s_j^{(l)}}{\partial w_{ij}^{(l)}}$$

We have
$$\frac{\partial \ s_j^{(l)}}{\partial \ w_{ij}^{(l)}} = x_i^{(l-1)}$$
 We only need: $\frac{\partial \ \mathrm{e}(\mathbf{w})}{\partial \ s_j^{(l)}} = \ \pmb{\delta}_j^{(l)}$

δ for the final (output) layer

$$\delta_{j}^{(l)} = \frac{\partial e(\mathbf{w})}{\partial s_{j}^{(l)}}$$

For the final layer l = L and j = 1:

$$\begin{split} \delta_1^{(L)} &= \frac{\partial \ \mathrm{e}(\mathbf{w})}{\partial \ s_1^{(L)}} \\ \mathrm{e}(\mathbf{w}) &= (\ x_1^{(L)} - \ y_n)^2 \\ \\ x_1^{(L)} &= \ \theta(s_1^{(L)}) \\ \\ \theta'(s) &= 1 \ - \ \theta^2(s) \quad \text{for the tanh} \end{split}$$

Back propagation of δ

$$\begin{split} \delta_{i}^{(l-1)} &= \frac{\partial \ \mathrm{e}(\mathbf{w})}{\partial \ s_{i}^{(l-1)}} \\ &= \sum_{j=1}^{d^{(l)}} \frac{\partial \ \mathrm{e}(\mathbf{w})}{\partial \ s_{j}^{(l)}} \times \frac{\partial \ s_{j}^{(l)}}{\partial \ x_{i}^{(l-1)}} \times \frac{\partial \ x_{i}^{(l-1)}}{\partial \ s_{i}^{(l-1)}} \\ &= \sum_{j=1}^{d^{(l)}} \frac{\delta_{j}^{(l)}}{\partial \ s_{j}^{(l)}} \times w_{ij}^{(l)} \times \theta'(s_{i}^{(l-1)}) \\ &= \sum_{j=1}^{d^{(l)}} \delta_{j}^{(l)} \times w_{ij}^{(l)} \times \theta'(s_{i}^{(l-1)}) \\ \delta_{i}^{(l-1)} &= (1 - (x_{i}^{(l-1)})^{2}) \sum_{j=1}^{d^{(l)}} w_{ij}^{(l)} \delta_{j}^{(l)} \end{split}$$

Back propagation algorithm

```
1: Initialize all weights w_{ij}^{(l)} at random
2: for t=0,1,2,\ldots do
3: Pick n\in\{1,2,\cdots,N\}
4: Forward: Compute all x_j^{(l)}
5: Backward: Compute all \delta_j^{(l)}
6: Update the weights: w_{ij}^{(l)}\leftarrow w_{ij}^{(l)}-\eta\;x_i^{(l-1)}\delta_j^{(l)}
7: Iterate to the next step until it is time to stop
8: Return the final weights w_{ij}^{(l)}
```

Note: weights have to be initialized at random, or with some intelligent values. Zero initialization will not work.

What are the hidden layers doing? Learning non-linear transforms

