CS 60050
Machine Learning

Neural Networks



Gradient Descent — as we studied it

e GD minimizes

 Aparameter = - learning rate * gradient

* Gradient computed based on all training
examples (x., y,): “Batch” GD

* Epoch: using all training examples once



Stochastic Gradient Descent (SGD)

* Pickone (x,,v,)atatime, apply GD to e( h(x,), v, )

* When done over many training examples, many
times, average direction of descent will be the same

as the “ideal” direction
* Benefits
— Cheaper computation
— Randomization helps escape trivial local minima

— But cannot guarantee reaching global minima in
case of non-convex error functions



Limitations of linear models

* Linear models not sufficient for regression /
classification of complex functions

 Non-linear combinations can be used, but not
feasible as the number of features increases beyond
few hundred (e.g., pixels in an image) — which non-
linear combinations to use?



Neural Networks
* Origins: Algorithms that try to mimic the brain.

 Was very widely used in 80s and early 90s;
popularity diminished in late 90s.

 Recent resurgence: State-of-the-art technique for
many applications



The “one learning algorithm” hypothesis

Auditory Cortex

Auditory cortex learns to see



Neurons in the brain
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To mimic the biological function, mimic the biological structure




Logical unit: perceptron
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Non-linear classification example: XOR/XNOR
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Cannot be separated using a
perceptron or any linear
classifier model



Combining multiple perceptrons
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Creating layers
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Creating layers
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The multi-layer perceptron
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A powerful model — can generate complex decision boundaries

Target 8 perceptrons
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From perceptron to a neuron implementing a non-linear function

 Desirable: a smooth function that is efficient to
differentiate

 Possible functions
 Range [0, 1]: logistic function
 Range [-1, 1]: tanh function

Logistic function tanh function
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A neural network

input x hidden layers 1 <[l < L output layer [ = L

Number of layers: L
Number of neurons in layer I: d®



Different architectures possible for neural network. Example for
a four-class classifier

For our discussion, we will consider a simple regression
model with only one neuron in the output layer.



How the network operates
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How the network operates
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input x hidden layers 1 < [ < L output layer [ = L




How to get the weights?

 As ML practitioners, our job is to automatically learn
the weights from training data

* Learning the weights efficiently: Backpropagation
algorithm



Applying SGD
* All the weights w = { w; } determine the hypothesis h
* Erroronexample (x,,vy,)ise(h(x,),y,) =e(w)

* Toimplement SGD, we need the gradient

0 e(w) o
Ve(w): ,, for all 7, 7,1
(W) 5 “,_l(_;)

 Can compute the differentials one by one, analytically
or numerically, but it will be very inefficient
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Computing

A trick for efficient computation:
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& for the final (output) layer () _ 9e(w)
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For the final layer l = L and 5 = 1:
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Back propagation of 6
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Back propagation algorithm

at random
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- Return the final weights w;,

Note: weights have to be initialized at random, or with some
intelligent values. Zero initialization will not work.



What are the hidden layers doing?
Learning non-linear transforms

input x hidden layers 1 < 1 < L output layer { = L



