CS 60050
Machine Learning

Overfitting and Regularization

Some slides taken from course materials of Andrew Ng



Example: Linear regression (housing prices)

x X Fitting a linear function
8 - Not a good fit
X - Underfitting or high bias

Price

Size Fitting a quadratic function works well

0o + 012 Fitting a higher order function

- Not a good model — does not generalize

0o + 0 0o
0+ 01 + Uom - Overfitting or high variance

90 + 91$ + 92332 + (93333 + 84374
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Example: Linear regression (housing prices)

% X

0 X Overfitting: If we have too many
& x features, the learned hypothesis may fit
x the training set very well
Size (J(0) = 2 3 (ho(2?) — y9)2 ~ 0), but fail to
Oo + 012 generalizlé to new examples.

Oy + 01z + (92332
Oy + 01z + 92332 + (93333 + 84374
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Example: Logistic regression

ho(z) = g(0g + 0121 + O222) g(90 + 60121 + 0229 g(6o + 0121 + 023;%

2 22
(¢ = sigmoid function) +032% + 0423 +032%ws + Oy}a)
+95£B1$2) +95$1$2 +06$1(L'2 4+ ...
UNDERFITTING OVERFITTING

(high bias) (high variance)
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Addressing overfitting: Two ways

1. Reduce number of features
— Manually select which features to keep
— Some algorithms to be discussed later
— Problem: loss of some information (discarded features)

2. Regularization
— Keep all the features, but reduce magnitude/values of
parameters 0;
— Works well when we have a lot of features, each of which
contributes a bit to predicting ¥y
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Intuition of regularization

Price
Price

Size of house Size of house

0y + 01z + (925132 Oy + 012 + 92372 + (93.%3 + 94%4

Suppose we penalize and make 03,04 really small.
1 X . .
min — E (ho(z) — )2 +K02+K0O,2

0 2m 4
1=1
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Regularization

mein J(0)

A\: Regularization parameter

Price

Smaller values of parameters
lead to more generalizable
models, less overfitting

Size of house

By convention,
regularization is not
applied on 6, (makes
little difference to the
solution)
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In regularized linear regression, we choose 6 to minimize

m

J(0) = 5= | 3 (ho(a®) = y@)2 4 X 3" 2

i=1 j=1
Regularization parameter A

Controls trade-off between our two goals
(1) fitting the training data well
(2) keeping values of parameters small

What if Ais too large? Underfitting
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Regularized linear regression



Gradient Descent for ordinary linear regression

Repeat {
0o := 0o — gy Y- (ho(a?) — y@)ay)
1=1
0; :=0; —« % Z(he(fﬁ(z)) y(’))wy)
1=1
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Regularized linear regression



Gradient Descent for Regularized Linear Regression
Repeat {

~
I
’—l
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Regularized logistic regression



Example: Logistic regression

ho(z) = g(0g + 0121 + O222) g(90 + 60121 + 0229 g(6o + 0121 + 023;%

2 22
(¢ = sigmoid function) +032% + 0423 +032%ws + Oy}a)
+95£B1$2) +95$1$2 +06$1(L'2 4+ ...
UNDERFITTING OVERFITTING

(high bias) (high variance)



Gradient descent for ordinary logistic regression

.

1=

J(0) = ‘%[fi y® log he(z) + (1 — y) log (1 — he(x®))]
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Gradient Descent for Regularized Logistic Regression

m

J(0) = —%[; ylog hg(zW) + (1 — y)log (1 — he(x(i)nm
+ )L. < &t
p T 3':4 J
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Gradient Descent for Regularized Logistic Regression

m

J(0) = =3 yWloghe(zW) + (1 — yV)log (1 — he(z))]

i—1 A
+ )L. <
p T 3':4 J

Repeat {
0o =0 — ak S (ho(z®) — y D)zl
1=1
;= 0;(1— o) —ag 3 (he(x®) — y@)ay
1=1
(1 =%,1,2,3,...,n)
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