### CS 60050 Machine Learning

### Overfitting and Regularization

Some slides taken from course materials of Andrew Ng

#### Example: Linear regression (housing prices)



$$\theta_0 + \theta_1 x + \theta_2 x^2$$

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Fitting a linear function

- Not a good fit
- Underfitting or high bias

Fitting a quadratic function works well

Fitting a higher order function

- Not a good model does not generalize
- Overfitting or high variance

#### Example: Linear regression (housing prices)



**Overfitting:** If we have too many features, the learned hypothesis may fit the training set very well  $(J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$ , but fail to generalize to new examples.

#### **Example: Logistic regression**



#### Addressing overfitting: Two ways

- 1. Reduce number of features
  - Manually select which features to keep
  - Some algorithms to be discussed later
  - Problem: loss of some information (discarded features)
- 2. Regularization
  - Keep all the features, but reduce magnitude/values of parameters  $\theta_j$
  - Works well when we have a lot of features, each of which contributes a bit to predicting y

#### Intuition of regularization





Size of house

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Suppose we penalize and make  $\theta_3$ ,  $\theta_4$  really small.

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + K \Theta_3^2 + K \Theta_4^2$$

#### Regularization

$$J(\theta) = \frac{1}{2m} \begin{bmatrix} \sum\limits_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2 + \lambda \sum\limits_{j=1}^n \theta_j^2 \end{bmatrix} \quad \text{By convention,} \quad \text{regularization is not}$$

$$\min_{\theta} J(\theta)$$

λ: Regularization parameter

Smaller values of parameters lead to more generalizable models, less overfitting



applied on  $\theta_0$  (makes

In regularized linear regression, we choose  $\theta$  to minimize

$$J(\theta) = \frac{1}{2m} \left[ \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

Regularization parameter  $\lambda$ 

- Controls trade-off between our two goals
- (1) fitting the training data well
- (2) keeping values of parameters small
- What if λ is too large? Underfitting

## Regularized linear regression

#### **Gradient Descent for ordinary linear regression**

Repeat  $\{$   $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$   $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$   $(j = \mathbf{X}, 1, 2, 3, \dots, n)$ 

#### Regularized linear regression

$$J(\theta) = \frac{1}{2m} \left[ \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\min_{\theta} J(\theta)$$

#### **Gradient Descent for Regularized Linear Regression**

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$(j = \mathbf{X}, 1, 2, 3, \dots, n)$$

# Regularized logistic regression

#### Example: Logistic regression



#### Gradient descent for ordinary logistic regression

$$\begin{split} J(\theta) &= -\frac{1}{m} [\sum_{i=1}^m y^{(i)} \log h_{\theta}(x^{(i)}) + (1-y^{(i)}) \log (1-h_{\theta}(x^{(i)}))] \\ \text{Repeat} \quad & \{ \\ \theta_0 &:= \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)} \\ \theta_j &:= \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \\ & (j = \mathbf{X}, 1, 2, 3, \dots, n) \end{split}$$

#### **Gradient Descent for Regularized Logistic Regression**

$$J(\theta) = -\frac{1}{m} \left[ \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

#### **Gradient Descent for Regularized Logistic Regression**

$$J(\theta) = -\frac{1}{m} [\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))]$$
 Repeat 
$$\{ \theta_{0} := \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)}$$
 
$$\theta_{j} := \theta_{j} (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$
 
$$(j = \mathbb{X}, 1, 2, 3, \dots, n)$$
 
$$\}$$