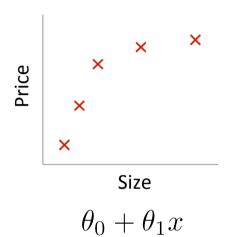
CS 60050 Machine Learning

Overfitting and Regularization

Some slides taken from course materials of Andrew Ng

Example: Linear regression (housing prices)



$$\theta_0 + \theta_1 x + \theta_2 x^2$$

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Fitting a linear function

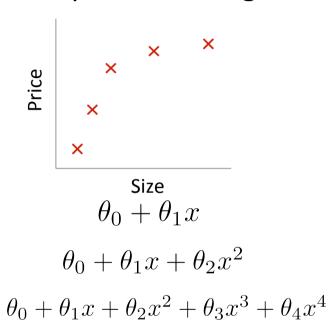
- Not a good fit
- Underfitting or high bias

Fitting a quadratic function works well

Fitting a higher order function

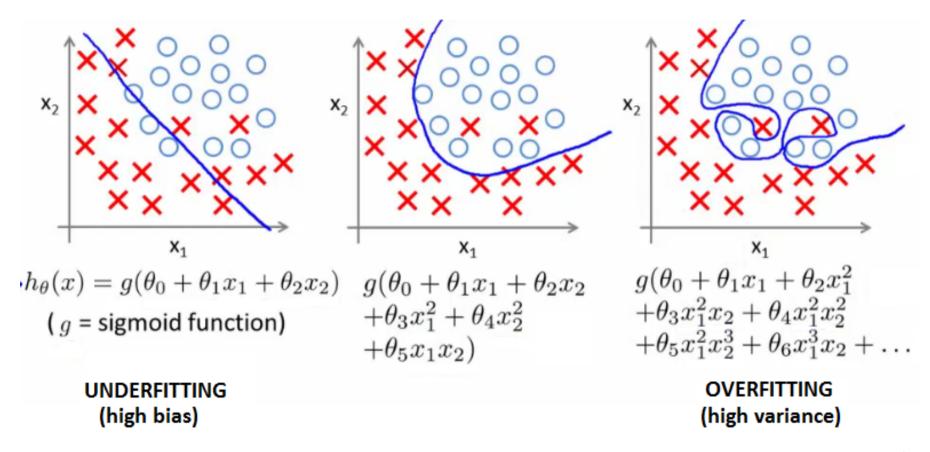
- Not a good model does not generalize
- Overfitting or high variance

Example: Linear regression (housing prices)



Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $(J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$, but fail to generalize to new examples.

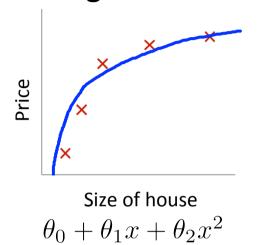
Example: Logistic regression

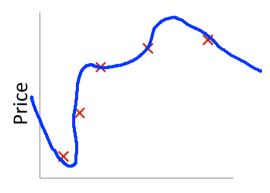


Addressing overfitting: Two ways

- 1. Reduce number of features
 - Manually select which features to keep
 - Some algorithms to be discussed later
 - Problem: loss of some information (discarded features)
- 2. Regularization
 - Keep all the features, but reduce magnitude/values of parameters θ_j
 - Works well when we have a lot of features, each of which contributes a bit to predicting y

Intuition of regularization





Size of house

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Suppose we penalize and make θ_3 , θ_4 really small.

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + K \Theta_3^2 + K \Theta_4^2$$

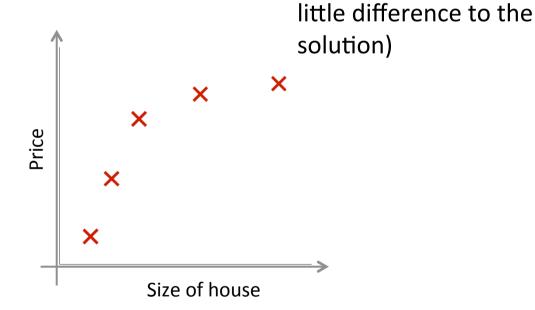
Regularization

$$J(\theta) = \frac{1}{2m} \begin{bmatrix} \sum\limits_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2 + \lambda \sum\limits_{j=1}^n \theta_j^2 \end{bmatrix} \quad \text{By convention,} \quad \text{regularization is not}$$

$$\min_{\theta} J(\theta)$$

λ: Regularization parameter

Smaller values of parameters lead to more generalizable models, less overfitting



applied on θ_0 (makes

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

Regularization parameter λ

- Controls trade-off between our two goals
- (1) fitting the training data well
- (2) keeping values of parameters small
- What if λ is too large? Underfitting

Regularized linear regression

Gradient Descent for ordinary linear regression

Repeat $\{$ $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$ $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$ $(j = \mathbf{X}, 1, 2, 3, \dots, n)$

Regularized linear regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\min_{\theta} J(\theta)$$

Gradient Descent for Regularized Linear Regression

Repeat {

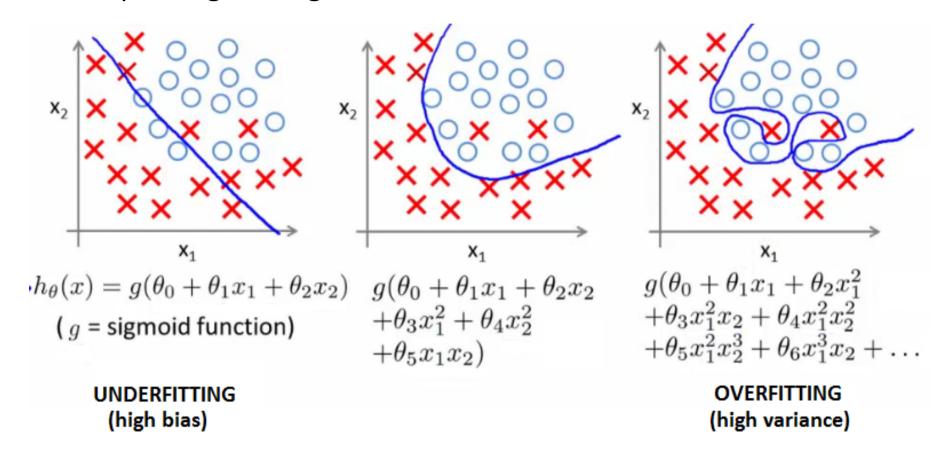
$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$(j = \mathbf{X}, 1, 2, 3, \dots, n)$$

Regularized logistic regression

Example: Logistic regression



Gradient descent for ordinary logistic regression

$$\begin{split} J(\theta) &= -\frac{1}{m} [\sum_{i=1}^m y^{(i)} \log h_{\theta}(x^{(i)}) + (1-y^{(i)}) \log (1-h_{\theta}(x^{(i)}))] \\ \text{Repeat} \quad & \{ \\ \theta_0 &:= \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)} \\ \theta_j &:= \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \\ & (j = \mathbf{X}, 1, 2, 3, \dots, n) \end{split}$$

Gradient Descent for Regularized Logistic Regression

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Gradient Descent for Regularized Logistic Regression

$$J(\theta) = -\frac{1}{m} [\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))]$$
 Repeat
$$\{ \theta_{0} := \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)}$$

$$\theta_{j} := \theta_{j} (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$(j = \mathbb{X}, 1, 2, 3, \dots, n)$$

$$\}$$