CS 60050 Machine Learning

Linear Regression

Some slides taken from course materials of Andrew Ng

Dataset of living area and price of houses in a city

Living area (feet ²)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	:

This is a training set.

How can we learn to predict the prices of houses of other sizes in the city, as a function of their living area?

Dataset of living area and price of houses in a city

Living area (feet ²)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
÷	÷

Example of supervised learning problem.

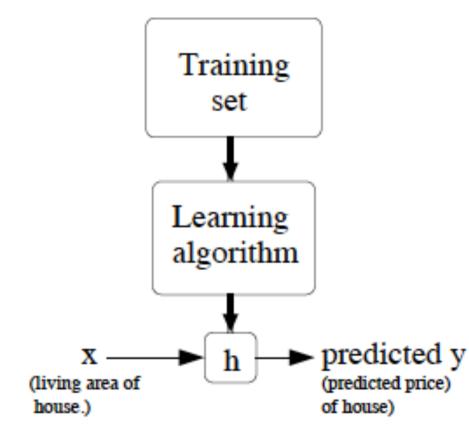
When the target variable we are trying to predict is continuous, regression problem.

Dataset of living area and price of houses in a city

Living area (feet ²)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
÷	÷

- m = number of **training examples**
- x's = input variables / features
- y's = output variables / "target" variables
- (x,y) single training example
- (xⁱ, y^j) specific example (ith training example)
- i is an index to training set

How to use the training set?



Learn a function h(x), so that h(x) is a good predictor for the corresponding value of y

h: hypothesis function

How to represent hypothesis h?

 $h_{\theta}(x) = \theta_0 + \theta_1 x$

- θ_i are **parameters**
- θ_0 is zero condition
- θ_1 is gradient
- θ : vector of all the parameters

We assume y is a linear function of x Univariate linear regression

Digression: Multivariate linear regression

Living area (feet ²)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
÷	÷	:

 $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$

How to represent hypothesis h?

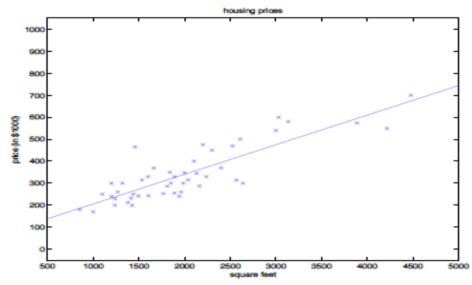
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

θ_i are **parameters**

- θ_0 is zero condition
- θ_1 is gradient

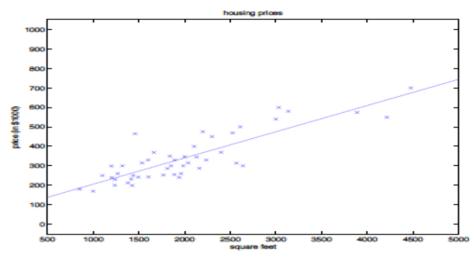
We assume y is a linear function of x Univariate linear regression How to learn the values of the parameters θ_i ?

Intuition of hypothesis function



- We are attempting to fit a straight line to the data in the training set
- Values of the parameters decide the equation of the straight line
- Which is the best straight line to fit the data?

Intuition of hypothesis function



- Which is the best straight line to fit the data?
- How to learn the values of the parameters θ_i ?
- Choose the parameters such that the prediction is close to the actual y-value for the training examples

Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

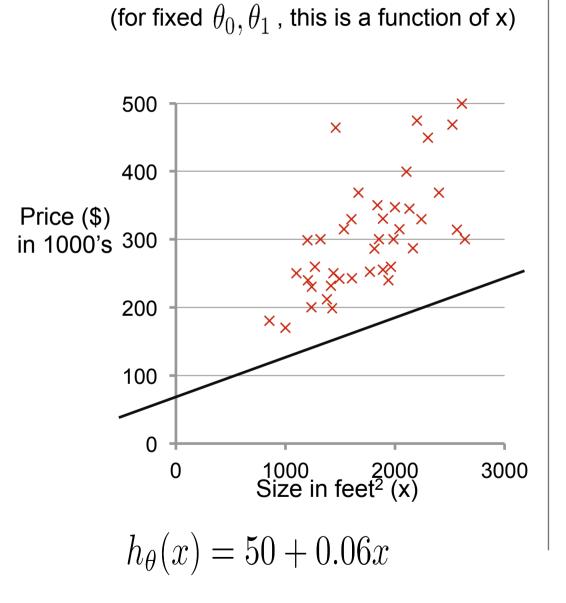
- Measure of how close the predictions are to the actual y-values
- Average over all the m training instances
- Squared error cost function $J(\theta)$
- Choose parameters θ so that $J(\theta)$ is minimized

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

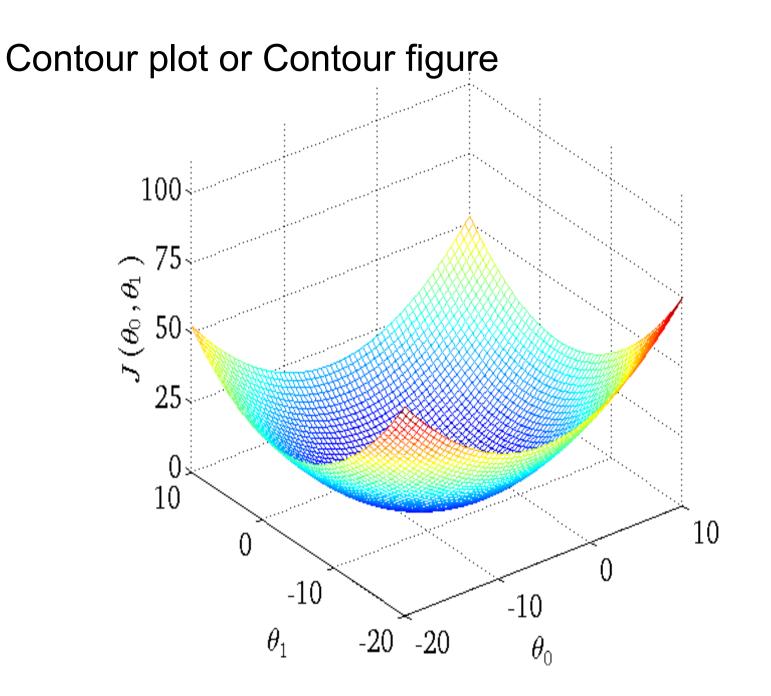
Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2$

Goal: minimize $J(\theta_0, \theta_1)$ θ_0, θ_1



$$J(heta_0, heta_1)$$

(function of the parameters $heta_0, heta_1$)



Minimizing a function

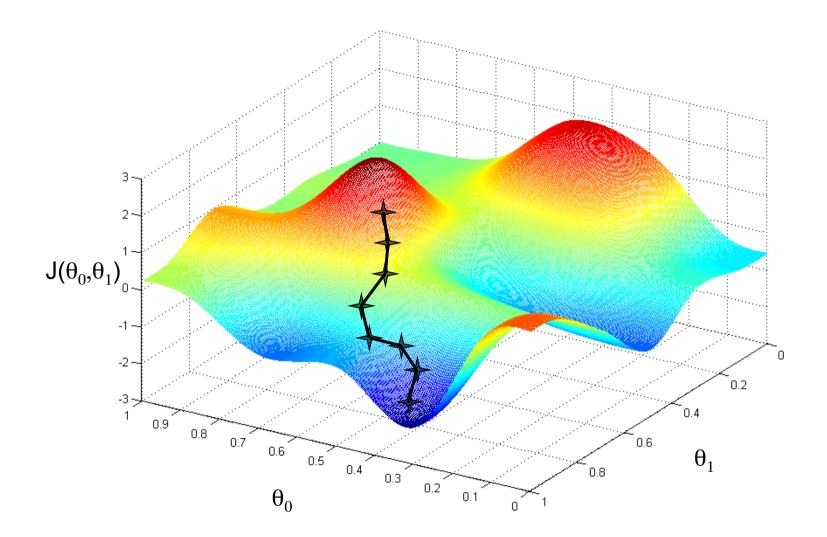
- For now, let us consider some arbitrary function (not necessarily an error function)
- Algorithm called gradient descent
- Used in many applications of minimizing functions

Have some function $J(\theta_0, \theta_1)$

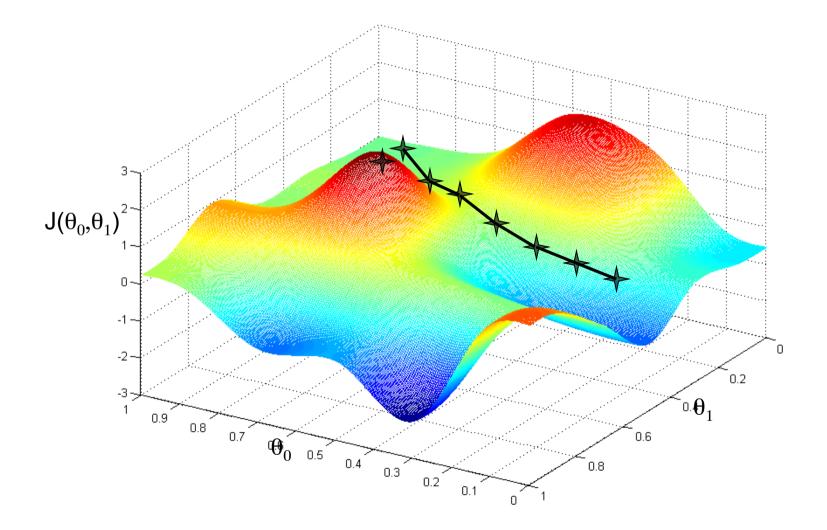
Want
$$\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$$

Outline:

- Start with some $heta_0, heta_1$
- Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum



If the function has multiple local minima, where one starts can decide which minimum is reached



Gradient descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (simultaneously update
 $j = 0$ and $j = 1$)
}

 α is the learning rate – more on this later

Gradient descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1\text{)}$$

}

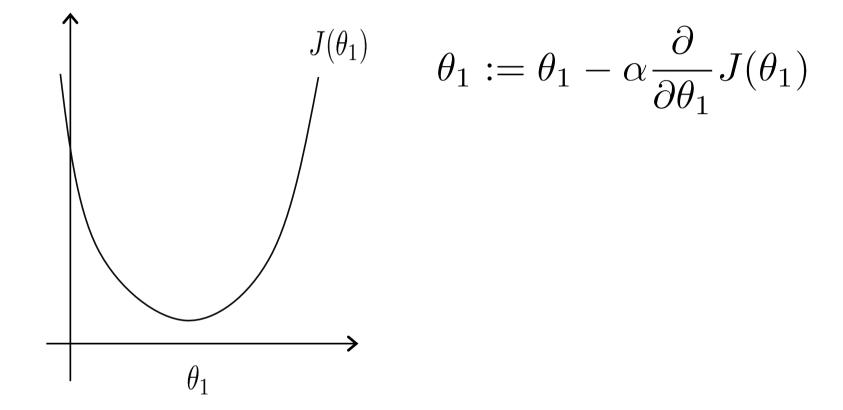
Correct: Simultaneous update

$$\begin{split} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \theta_1 := \operatorname{temp1} \end{split}$$

Incorrect:

$$\begin{split} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_1 := \operatorname{temp1} \end{split}$$

For simplicity, let us first consider a function of a single variable



The learning rate

- Gradient descent can converge to a local minimum, even with the learning rate α fixed
- But, value needs to be chosen judiciously
 - If α is too small, gradient descent can be slow to converge
 - If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent for univariate linear regression

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 1 and j = 0) } Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

Gradient descent for univariate linear regression

repeat until convergence {

$$\theta_{0} := \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_{1} := \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

$$update$$

$$\theta_{0} \text{ and } \theta_{1}$$
simultaneously
$$\theta_{1} := \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

"Batch" Gradient Descent

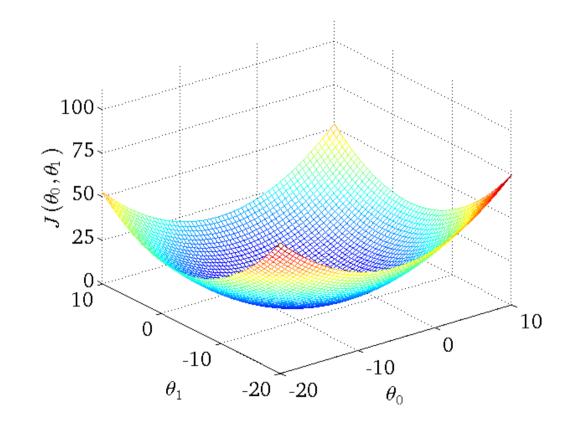
"Batch": Each step of gradient descent uses all the training examples.

There are other variations like "stochastic gradient descent" (used in learning over huge datasets)

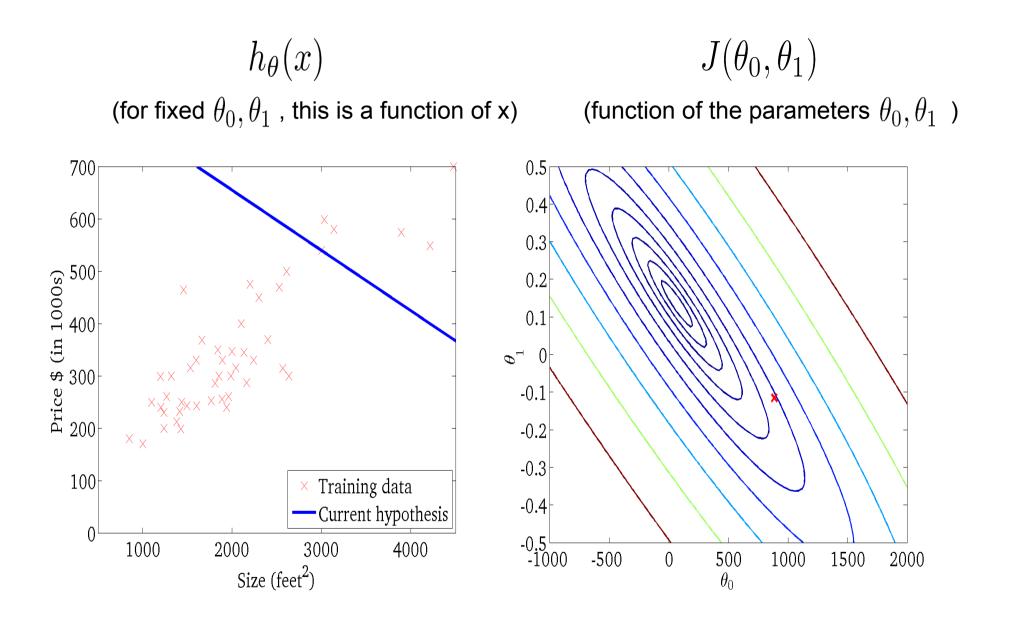
What about multiple local minima?

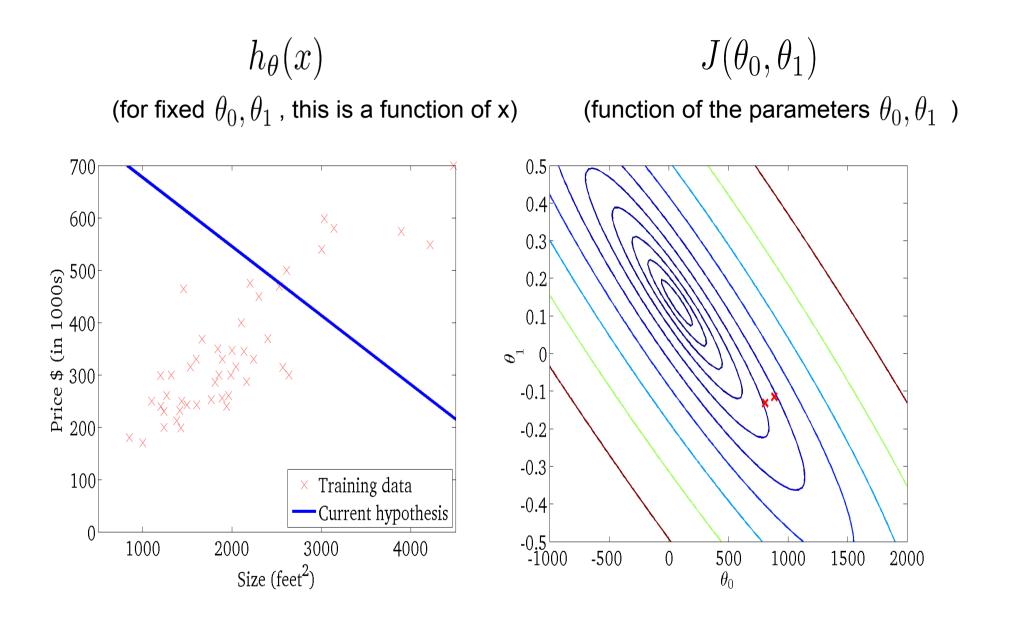
- The cost function in linear regression is always a convex function – always has a single global minimum
- So, gradient descent will always converge

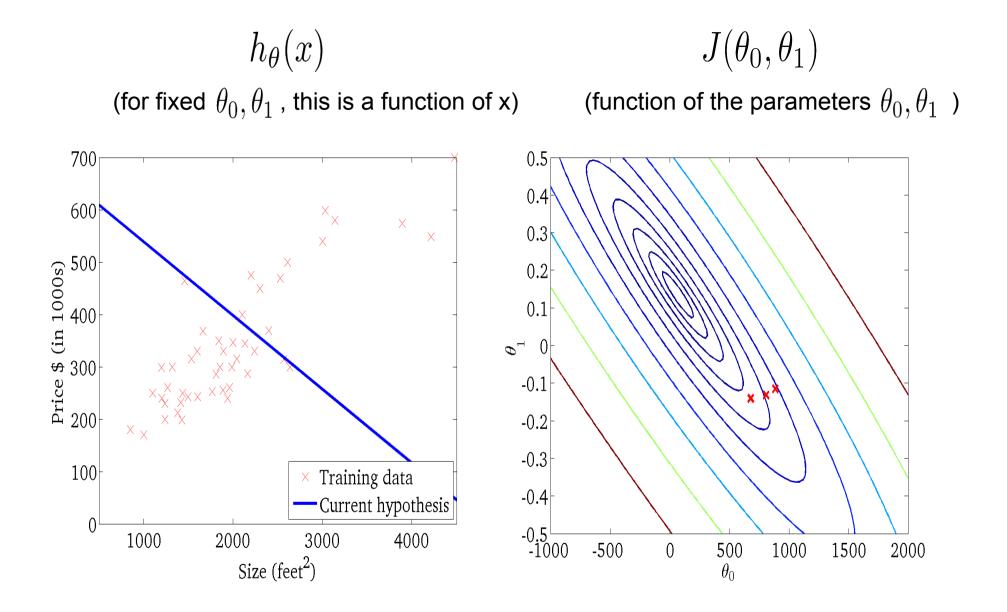
Convex cost function

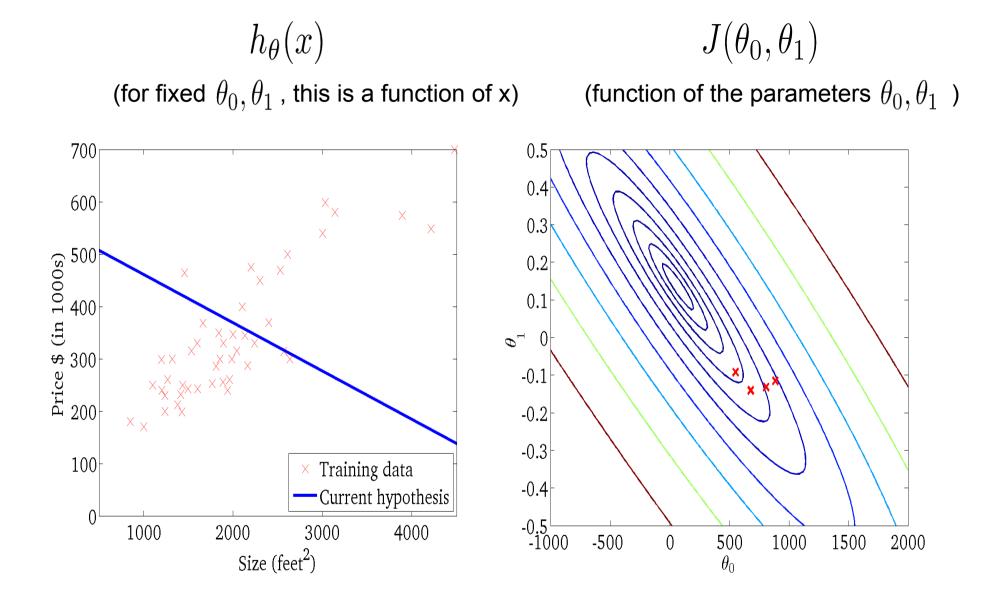


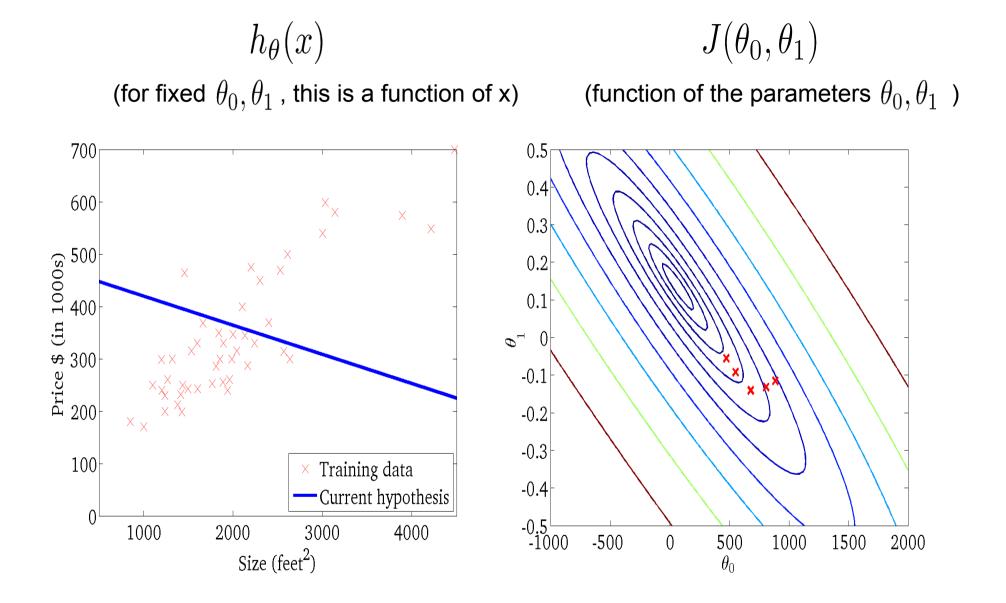
Gradient descent in action

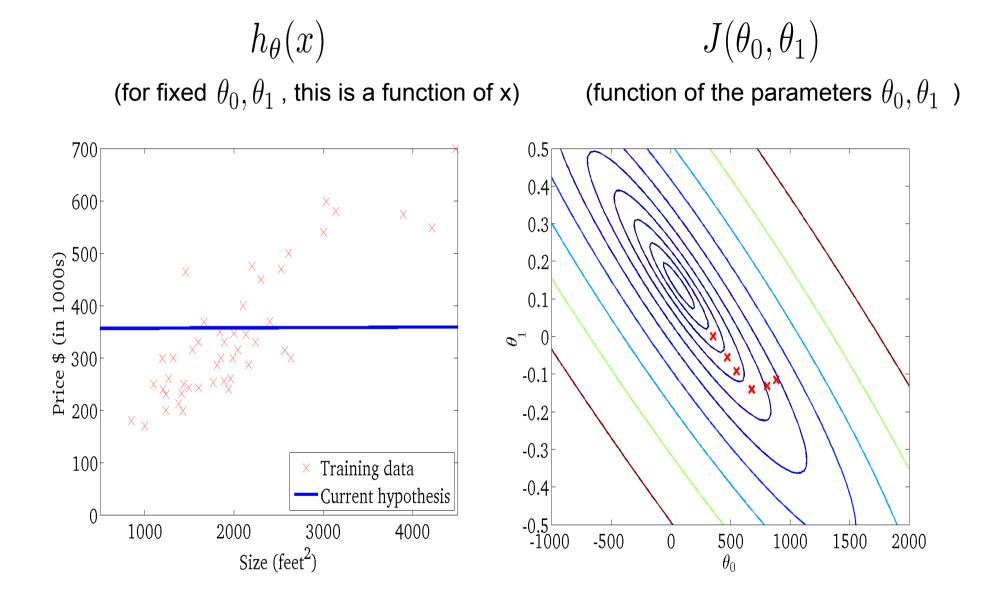


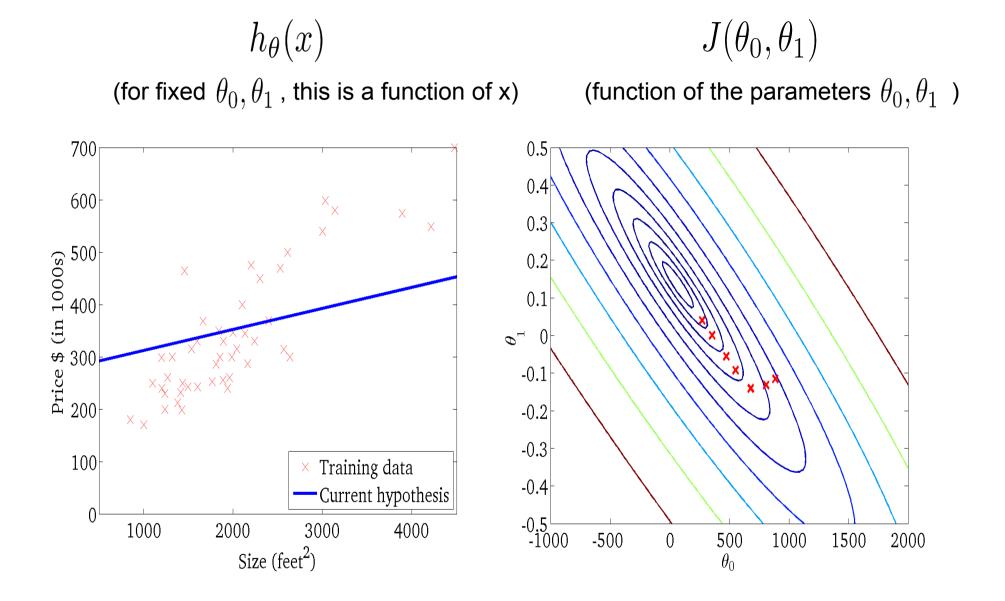


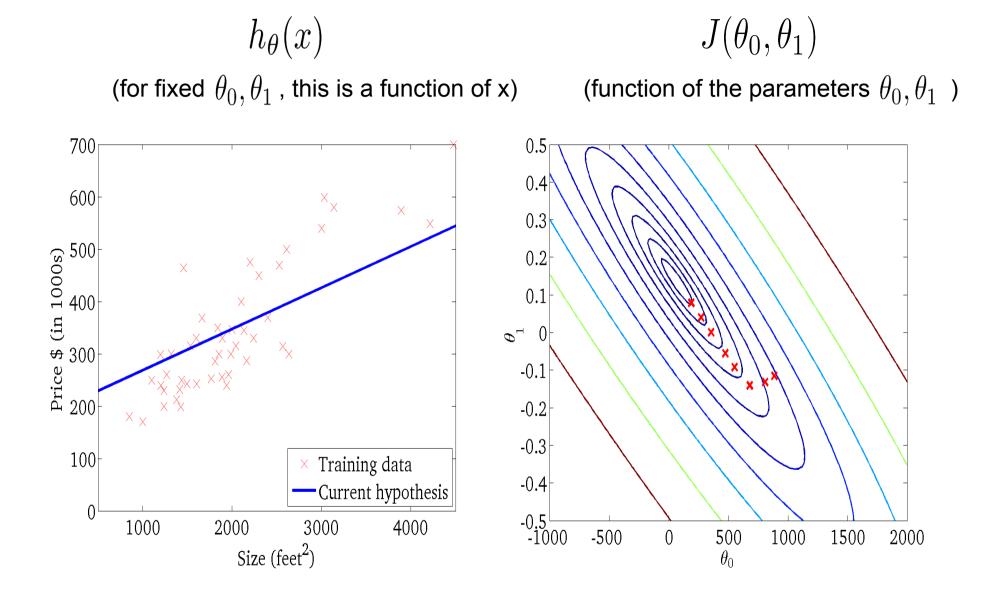


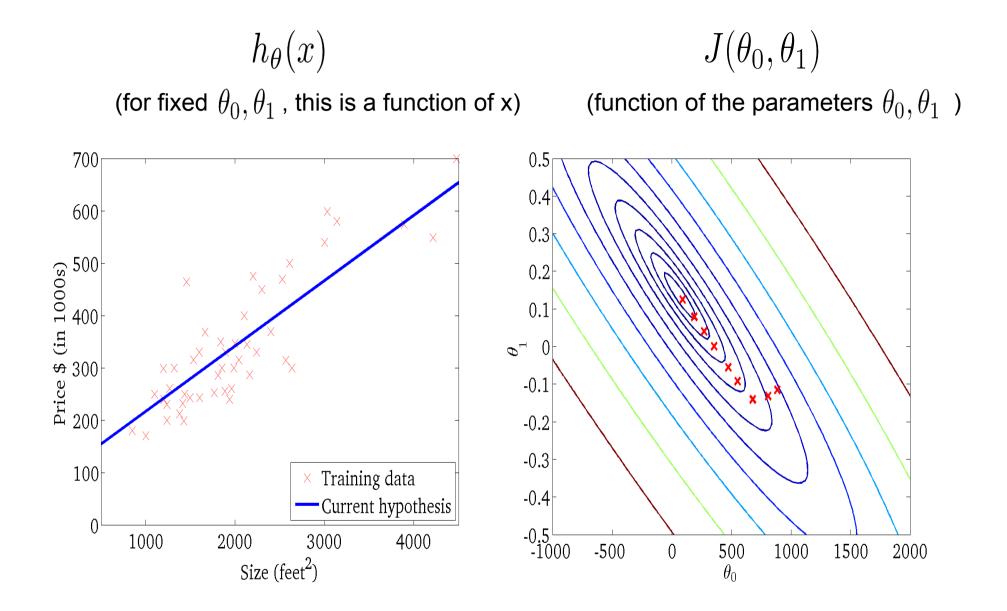












Linear Regression for multiple variables

Multiple features (variables).

Size (feet ²)	Number of bedrooms		Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
		•••		

Multiple features (variables).

Size (feet ²)	Number of bedrooms		Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Notation:

n = number of features $x^{(i)}$ = input (features) of i^{th} training example. $x_j^{(i)}$ = value of feature j in i^{th} training example. Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

For multi-variate linear regression: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

For convenience of notation, define $x_0 = 1$.

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$ Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

$$\begin{aligned} & \text{Repeat} \left\{ \\ & \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n) \\ & \\ & \text{(simultaneously update for every } j = 0, \dots, n) \end{aligned} \end{aligned}$$

Gradient Descent

Previously (n=1): Repeat { $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$ $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$

(simultaneously update $\, heta_0, heta_1\,$)

. . .

New algorithm $(n \ge 1)$: Repeat { $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$ simultaneously update θ_j for $j = 0, \dots, n$

Gradient Descent

Previously (n=1): Repeat { $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$ $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$ (simultaneously update θ_0, θ_1)

New algorithm $(n \ge 1)$: Repeat { $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$ simultaneously update θ_i for $j = 0, \ldots, n$ $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$ $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$ $\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$

Practical aspects of applying gradient descent

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g.
$$x_1$$
 = size (0-2000 feet²)
 x_2 = number of bedrooms (1-5)
 $x_2 = \frac{x_1 = \frac{\text{size (feet}^2)}{2000}}{5}$

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g. x_1 = size (0-2000 feet²) x_2 = number of bedrooms (1-5)

Mean normalization:

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (Do not apply to $x_0 = 1$).

Other types of normalization:

$$x_1 = \frac{size - 1000}{2000}$$
$$x_2 = \frac{\#bedrooms - 2}{5}$$
$$-0.5 \le x_1 \le 0.5, -0.5 \le x_2 \le 0.5$$

Is gradient descent working properly?

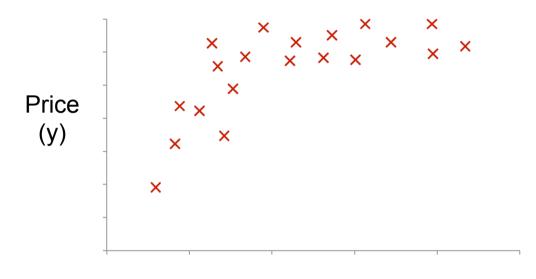
- Plot how J(θ) changes with every iteration of gradient descent
- For sufficiently small learning rate, J(θ) should decrease with every iteration
- If not, learning rate needs to be reduced
- However, too small learning rate means slow convergence

When to end gradient descent?

- Example convergence test:
- Declare convergence if J(θ) decreases by less than 0.001 in an iteration (assuming J(θ) is decreasing in every iteration)

Polynomial Regression for multiple variables

Choice of features



Size (x)

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2(size)^2$$
$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2\sqrt{(size)}$$
$$h_{\theta}(x) = \theta_0 + \theta_1x_1 + \theta_2x_2 + \theta_3x_3$$
$$= \theta_0 + \theta_1(size) + \theta_2(size)^2 + \theta_3(size)^3$$