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Machine decision making 
q  Refers to data-driven algorithmic decision making 

q  By learning over data about past decisions   

q  To assist or replace human decision making 

q  Increasingly being used in several domains 
q  Recruiting: Screening job applications 
q  Banking: Credit ratings / loan approvals 
q  Judiciary: Recidivism risk assessments 
q  Welfare: Welfare benefit eligibility 
q  Journalism: News recommender systems 



Raise concerns about their unfairness 
q  Implicit biases in search and recommender systems 



Raise concerns about their unfairness 
q  Discrimination in predictive risk analytics 



Raise concerns about their unfairness 
q  Opacity of algorithmic (data-driven) decision making  



Are the unfairness concerns justified? 
How we engineer machine decisions 

q  Imperative programming:  
q  You describe the procedure for making decisions 

q  Not what you want from the decisions 

q  Declarative programming:  
q  You declare the outcome goals of your decision making 

q  Not how you want to make decisions 

q  Leveraging machines to find optimal decision procedure 



Imperative vs. Declarative Engineering 

q  Is one programming style better than other? 



The excitement about AI/ML 
q  Can get away with lazy declarative engineering 

q  Get some training data – examples of past decisions 
q  Declare a default goal – decision prediction accuracy 

q  Miraculously, lazy engineering appears to work! 
q  But, does it really work? 



The achilles heels of lazy AI/ML  
Even assuming no training data biases, AI/ML decisions 

1.  Optimize for a single decision outcome goal, ignoring 
q  Fairness: Equal prediction accuracy for all salient social groups 
q  Worst-cases: Lower bound worst-case prediction accuracy 
q  Norms: Should use or not use data in a specific manner     

2.  Optimal for a static NOT an evolving society, because 
q  Training data becomes unrepresentative 
q  Feedback loops are not accounted for in the first place 
q  Decision outcome goals change over time! 



Can we guard the achilles heels? 
q  Can we account for fairness & other norms in ML 

decision making? 
q  Maybe! Even with declarative engineering 

q  Declare multiple decision outcome objectives when training 

q  Can we design ML decision making for an evolving 
society? 
q  Not sure! Need more imperative / procedural engineering 



The talk: Focuses on discrimination 
q  Discrimination is a specific type of unfairness 
q  Well-studied in social sciences 

q  Political science 
q  Moral philosophy 
q  Economics 
q  Law 

q  Majority of countries have anti-discrimination laws 
q  Discrimination recognized in several international human rights laws 

q  But, less-studied from a computational perspective 



Why is a computational perspective 
on discrimination needed? 

Part 1: 



Why, a computational perspective?  
Datamining/ML is increasingly being used to detect 
discrimination in human/machine decision making 

q  Examples: NYPD stop and frisk, Airbnb rentals 



Case study: Recidivism risk prediction 
q  COMPAS recidivism prediction tool 

q  Built by a commercial company, Northpointe, Inc. 

q  Estimates likelihood of criminals re-offending in future 
q  Inputs: Based on a long questionnaire 
q  Outputs: Used across US by judges and parole officers 

q  Are COMPAS’ estimates fair to salient social groups? 



Is COMPAS fair to all groups? 

q  Northpointe: In each estimated risk level, false 
discovery rates for blacks & whites are similar 

q  So YES! 



Is COMPAS fair to all groups? 

q  ProPublica: False positive & false negative rates are 
considerably worse for blacks than whites 

q  So NO! 



Who is right about COMPAS?  
q  Both! Depends on how you measure fairness! 
q  How many fairness measures can one define? 

q  How many different error rate measures can one define? 



But, aren’t the measures similar? 
q  NO! They present inherent trade-offs! 

q  When base recidivism rates for blacks & whites differ,  
no non-trivial solution to achieve similar FPR, FNR, 
FDR, FOR! 

q  No non-trivial solution can be simultaneously fair 
according to both ProPublica & Northpointe analyses! 



Why, a computational perspective? 
q  Formal interpretations of discrimination can help us 

understand the notions better 
 
q  Reveals non-intuitive inherent trade-offs between 

multiple measures of discrimination and their utility 

q  Another example: Fairness of random judge selection  
q  Suppose you have N fair / unfair judges 

q  They have equal FPR / FNR / FOR / FDR for different racial groups 

q  Does assigning cases to judges randomly affect fairness? 



Computational Interpretations 
(measures) of Discrimination [WWW ‘17] 

Part 2: 



Defining discrimination 
q  A first approximate normative / moralized definition: 

 
 
wrongfully impose a relative disadvantage on persons 
based on their membership in some salient social group 
e.g., race or gender 

q  Challenge: How to operationalize the definition? 
q  How to make it clearly distinguishable, measurable, & 

understandable in terms of empirical observations 



Need to operationalize 4 fuzzy notions 
1.  What constitutes a relative disadvantage? 

2.  What constitutes a wrongful imposition? 

3.  What constitutes based on? 

4.  What constitutes a salient social group? 



Need to operationalize 4 fuzzy notions 
1.  What constitutes a relative disadvantage? 

2.  What constitutes a wrongful imposition? 

3.  What constitutes based on? 

4.  What constitutes a salient social group? 



Operationalizing discrimination 

q  Consider binary classification using user features 

F1 F2 … Fm Z 

User1 x1,1 x1,2 … x1,m Z1 

User2 x2,1 x2,m Z2 

User3 x3,1 x3,m Z3 

… … … … 

Usern xn,1 xn,2 
… 

xn,m Zn 

Decision 

Accept 
Reject 
Reject 

… 

Accept 

Decision outcomes should not be relatively 
disadvantageous to social (sensitive feature) groups! 



Relative disadvantage measure 1:  
Disparate treatment 

Feature 1 

Fe
at
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Measures the difference in outcomes for users, when their 
sensitive features are changed 

B1 

B2 



Relative disadvantage measure 1:  
Disparate treatment 
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Measures the difference in outcomes for users, when their 
sensitive features are changed 
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Measures direct discrimination 
q  Based on counter-factual reasoning 

q  Most intuitive measure of discrimination 

q  To achieve parity treatment: Ignore sensitive features, 
when defining the decision boundary 

q  Situational testing for discrimination discovery checks 
for disparate treatment 

q  More formally:  



Relative disadvantage measure 2:  
Disparate impact 

Feature 1 
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Measures the difference in fraction of positive (negative) 
outcomes for different sensitive feature groups 

B 



Relative disadvantage measure 2:  
Disparate impact  

Feature 1 

Fe
at

ur
e 

2 

Measures the difference in fraction of positive (negative) 
outcomes for different sensitive feature groups 

B1 

B2 



Measures indirect discrimination 
q  Observed in human decision making 

q  Indirectly discriminate against specific user groups 
using their correlated non-sensitive attributes 
q  E.g., voter-id laws being passed in US states 

q  Notoriously hard to detect indirect discrimination 
q  In decision making scenarios where ground truth on intent 

is unknown or ground truth on outcomes may be biased 



Detecting indirect discrimination 
q  Doctrine of disparate impact 

q  A US law applied in employment & housing practices 

q  Proportionality tests over decision outcomes 
q  E.g., in 70’s and 80’s, some US courts applied the 80% rule 

for employment practices 
q  If 50% (P1%) of male applicants get selected at least 40% (P2%) of 

female applicants must be selected 

q  UK uses P1 – P2; EU uses (1-P1) / (1-P2)  
q  Fair proportion thresholds may vary across different domains 



A controversial measure 
q  To achieve parity impact: Select equal fractions of 

sensitive feature groups 

q  More formally:  

q  Critics: There exist scenarios where disproportional 
outcomes are justifiable 

q  Supporters: Provision for business necessity exists 
q  Though the burden of proof is on employers 
q  Law is necessary to detect indirect discrimination! 



Relative disadvantage measure 3:  
Disparate mistreatment 
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Measures the difference in fraction of accurate outcomes 
for different sensitive feature groups 

B 

✔ 

✖ 
✔ 

✖ ✖ 

✔ 

✔ ✔ 
✔ 

✖ 

✖ 

✖ ✖ 
✖ 

✖ 
✖ 

✖ 
✔ 

✔ 
✔ 

✔ 

✖ 

✖ 

✖ 

✖ 
✖ 

✖ 
✖ 

✖ 
✖ 



Relative disadvantage measure 3:  
Disparate mistreatment 
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Measures indirect discrimination 
q  In decision making scenarios, where we have unbiased 

ground truth outcomes 

q  To achieve parity mistreatment: Provide accurate 
outcomes for equal fractions of sensitive feature groups 

q  More formally:  

q  The above overall inaccuracy rate measure can be further 
broken down into its constituent FPR, FNR, FDR, and FOR 



Summary: 3 discrimination measures 
1.  Disparate treatment: Intuitive direct discrimination 

q  To avoid: 
 

2.  Disparate impact: Indirect discrimination, when 
ground-truth may be biased 

q  To avoid: 

 
3.  Disparate mistreatment: Indirect discrimination, when 

ground-truth is unbiased 
q  To avoid:  



Mechanisms for  Non-discriminatory 
Machine Learning [AISTATS ‘17] 

Part 3: 



Can machines even discriminate? 
q  Aren’t machine decisions inherently objective? 

q  Don’t algorithms simply process information? 
q  Don’t people with same features get the same treatment? 

q  In contrast to subjective human decisions  

q  Doesn’t that make them fair & non-discriminatory? 

q  Objective decisions can be objectively unfair & 
discriminatory! 



How machines learn 

q  By training over historical data 
q  Example task: Predict who will return loan 

q  Learning challenge: Learn a decision boundary (W) 
in the feature space separating the two classes  

F1 F2 … Fm Z 

User1 x1,1 x1,2 … x1,m Z1 

User2 x2,1 x2,m Z2 

User3 x3,1 x3,m Z3 

… … … … 

Usern xn,1 xn,2 
… 

xn,m Zn 

Past 
Outcomes 

Returned 

Defaulted 

Defaulted 

… 

Returned 



Predict who will return loans 



Predict who will return loans 

q  Optimal (most accurate / least loss) linear boundary 
q  But, how do machines find (compute) it?  



q  Define & optimize a loss (accuracy) function 
q  The loss function captures inaccuracy in prediction 

q  Minimize (optimize) it over all examples in training data 
 

q  Central challenge in machine learning  
q  Finding loss function that capture prediction loss, yet be 

efficiently optimized 
q  Many loss functions used in learning are convex 

Learning (computing) the optimal boundary 



Predict who will return loans 

q  Optimal (most accurate / least loss) linear boundary 
q  But, how do machines find (compute) it? 

q  The boundary was computed using 



How machines learn to discriminate 

q  Optimal (most accurate / least loss) linear boundary 



How machines learn to discriminate 

q  Optimal (most accurate / least loss) linear boundary 
q  Makes few errors for yellow, lots of errors for blue! 

q  Commits disparate mistreatment:  ≠ 



How to learn to avoid discrimination 
q  Specify discrimination measures as constraints on 

learning 
q  Optimize for accuracy under those constraints 

q  The constraints embed ethics & values when learning 

q  No free lunch: Additional constraints lower accuracy 
q  Tradeoff between performance & ethics (avoid discrimination) 



A few observations 
q  Any discrimination measure could be a constraint 

q  Might not need all constraints at the same time 
q  E.g., drop disp. impact constraint when no bias in data 
q  When avoiding disp. impact / mistreatment, we could 

achieve higher accuracy without disp. treatment 



Key technical challenge 
q  How to learn efficiently under these constraints? 

 
q  Problem: The above formulations are not convex! 

q  Can’t learn them efficiently 

q  Need to find a better way to specify the constraints 
q  So that loss function under constraints remains convex 



Specifying disparate impact constraints 
q  Instead of requiring:  

q  Bound covariance between items’ sensitive feature 
values and their signed distance from classifier’s 
decision boundary to less than a threshold 

 



Learning classifiers w/o disparate 
impact 

q  Previous formulation: Non-convex, hard-to-learn 

q  New formulation: Convex, easy-to-learn 



A few observations 
q  Our formulation can be applied to any convex-

margin (loss functions) based classifiers 
q  hinge-loss, logistic loss, linear and non-linear SVM 

 

q  Can easily change our formulation to optimize for 
fairness under accuracy constraints 
q  Useful in practice, when you want to be fair but have 

business necessity to meet a certain accuracy threshold 



Learning classifiers w/o disparate 
mistreatment 
q  New formulation: Convex-concave, can learn 

efficiently using convex-concave programming 

All misclassifications 
 
False positives 
 
False negatives 



Evaluation: Recidivism risk estimates 
q  Recidivism: To re-offend within a certain time 

q  COMPAS risk assessment tool 
q  Assign recidivism risk score to a criminal defendant 
q  Score used to advise judges' decision 

q  ProPublica gathered COMPAS assessments 
q  Broward Country, FL for 2013-14 
q  Features: arrest charge, #prior offenses, age,... 
q  Class label: 2-year recidivism 



Key evaluation questions 
q  Do traditional classifiers suffer disparate mistreatment? 

q  Can our approach help avoid disparate mistreatment? 



Disparity in mistreatment 
q  Trained logistic regression for recidivism prediction 

q  False positive: Non-recidivating person wrongly 
classified as recidivating 

q  False negative: Recidivating person wrongly 
classified as non-recidivating 

Race FPR FNR

Black 34% 32%

White 15% 55%



Key evaluation questions 
q  Do traditional classifiers suffer disparate mistreatment? 

q  Yes! Considerable disparity in both FPR and FNR 

q  Can our approach help avoid disparate mistreatment? 



Removing disparate mistreatment 
q  Traditional classifiers without constraints 



Removing disparate mistreatment 
q  Introducing our FPR and FNR Constraints 



Key evaluation questions 
q  Do traditional classifiers suffer disparate mistreatment? 

q  Yes! Considerable disparity in both FPR and FNR 

q  Can our approach help avoid disparate mistreatment? 
q  Yes! For a small loss in accuracy 



Summary: Discrimination through 
computational lens 

q  Defined three measures of discrimination 
q  disparate treatment / impact / mistreatment 
q  They are applicable in different contexts 

q  Proposed mechanisms for mitigating each of them 
q  Formulate the measures as constraints on learning 
q  Proposed proxy functions that can be efficiently learned 



From Parity to Preference-based 
Discrimination Measures [NIPS ‘17] 

Part 4: 



Recap: Defining discrimination 
q  A first approximate normative / moralized definition: 

 
 
wrongfully impose a relative disadvantage on persons 
based on their membership in some salient social group 
e.g., race or gender 



Recap: Operationalize 4 fuzzy notions 
1.  What constitutes a relative disadvantage? 

2.  What constitutes a wrongful imposition? 

3.  What constitutes based on? 

4.  What constitutes a salient social group? 



Need to operationalize 4 fuzzy notions 
1.  What constitutes a relative disadvantage? 

2.  What constitutes a wrongful imposition? 

3.  What constitutes based on? 

4.  What constitutes a salient social group? 



Revisit relative disadvantage measure 1:  
Disparate treatment 

q  Parity treatment: Changing sensitive feature should 
not change outcomes 

q  Equivalent to having same boundary for all groups  

q  Do there exist scenarios where group-conditional 
boundaries are not wrong? 



Relative disadvantage measure 4:  
From Disparate treatment to Preferred treatment 

Feature 1 

Fe
at
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Disparate treatment: Measures the difference in outcomes for 
users, when their sensitive features are changed 

B1 

B2 



Relative disadvantage measure 4:  
From Disparate treatment to Preferred treatment 

Feature 1 

Fe
at
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Preferred treatment: Measures the increase in positive 
outcomes for users, when their sensitive features are changed 

B1 

B2 



Measures envy-free discrimination 
q  Preferred treatment allows group-conditional boundaries 

q  Yet, ensure they are envy-free 
q  No lowering the bar to affirmatively select certain user groups 

q  Can be defined at individual or group-level  

q  More formally: 
 P(ŷ = 1 | Xz=0, Wz=0) ≥ P(ŷ = 1 | Xz=0, Wz=1) 
 P(ŷ = 1 | Xz=1, Wz=1) ≥ P(ŷ = 1 | Xz=1, Wz=0) 

 



Learning preferred treatment classifiers 
 Minimize  Lz=0(Wz=0) + Lz=1(Wz=1) 
 Subject to 
  P(ŷ = 1 | Xz=0, Wz=0) ≥ P(ŷ = 1 | Xz=0, Wz=1) 
  P(ŷ = 1 | Xz=1, Wz=1) ≥ P(ŷ = 1 | Xz=1, Wz=0) 

 
q  Preferred treatment subsumes parity treatment 

q  Every parity treatment classifier offers preferred treatment 

q  Preferred treatment constraint is weaker than parity 
q  Suffers lower cost of fairness 



Revisit relative disadvantage measure 3:  
Disparate mistreatment 

q  Parity mistreatment: Provide accurate outcomes for 
equal fractions of sensitive feature groups 

 
q  Do there exist scenarios where differences in 

outcome accuracies for groups are not wrong? 



Relative disadvantage measure 5:  
From Disparate to Preferred mistreatment 
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Disparate mistreatment: Measures the difference in fraction of 
accurate outcomes for different sensitive feature groups 
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Relative disadvantage measure 5:  
From Disparate to Preferred mistreatment 
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Preferred mistreatment: Measures the difference in fraction of accurate 
outcomes relative to parity for different sensitive feature groups 
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Measures bargained discrimination 
q  Inspired by bargaining solutions in game-theory 

q  Disagreement (default) solution is parity! 
q  Both groups try to avoid tragedy of parity 

q  Selects pareto-optimal boundaries over group accuracies 

q  More formally: 
 P(ŷ ≠ y | Xz=0, W) ≥ P(ŷ ≠ y | Xz=0, Wparity) 
 P(ŷ ≠ y | Xz=1, W) ≥ P(ŷ ≠ y | Xz=1, Wparity) 

 



Summary: From parity to preference-based 
measures of discrimination 

q  Refined our three measures of discrimination 
q  Disparate treatment / impact / mistreatment 
q  Preferred treatment / impact / mistreatment 

q  The new measures allow group-conditional, envy-free, 
pareto-optimal boundaries 
q  Can also be combined with one-another and parity measures 

q  Proposed mechanisms for mitigating each of them 
q  Formulated the measures as constraints that can be learned 



Open Challenges Towards  
Non-Discriminatory Decision Making 

Part 4: 



Beyond binary classification 
How to learn 

q  Fair regression 
q  Applicable principle: Non-Discrimination 

q  Fair multi-class classification 
q  Applicable principle: De-Segregation 

q  Fair set selection 
q  Applicable principle: Fair Representation 

q  Fair ranking 
q  Applicable principle: Fair Scheduling 

 



From distributive to procedural fairness 

q  Current fairness notions based on outcomes 

q  Ignores fairness of the process of making decisions 
q  Today’s recidivism risk prediction tools use features like  

q  Juvenile crime history, family criminality, work/social environment 

q  Raise concerns about their usage because of 
q  Privacy norms, their non-volitional nature, reliability of assessment, 

relevance to decision, vicious causal cycle 

q  How can we account for these factors in decisions? 



Foundations for Fair Machine Decision Making 

q  Distributive fairness: Fairness of outcomes 
q  Non-discriminatory, de-segregation, fair representation, 

fair sharing  

q  Procedural fairness: Fairness of process 
q  Privacy of inputs, diversity of decision processes, evolution 

of decision processes  

q  Informational fairness: Transparency of outcomes 
and process 
q  Understandability for designers, controllability for end 

users, and verifiability for regulators 



Our works 
q  Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez and Krishna P. 

Gummadi. Fairness Constraints: A Mechanism for Fair Classification. In FAT-ML 
2015, AISTATS 2017 

q  Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez and Krishna P. 
Gummadi. Fairness Beyond Disparate Treatment & Disparate Impact: Learning 
Classification without Disparate Mistreatment. In FAT-ML 2016, WWW 2017 

q  Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, Krishna P. 
Gummadi, and Adrian Weller. From Parity to Preference-based Notions of 
Fairness for Classification. In FAT-ML 2017, NIPS 2017 

q  Nina Grgić-Hlača, Muhammad Bilal Zafar, Krishna P. Gummadi and Adrian Weller. 
The Case for Process Fairness in Learning: Feature Selection for Fair Decision 
Making. In NIPS Symposium on ML and the Law, 2016. 

Fair classifier implementation at:
 
fate-computing.mpi-sws.org
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