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Machine decision making

Refers to data-driven algorithmic decision making
o By learning over data about past decisions

To assist or replace human decision making

Increasingly being used in several domains
o Recruiting: Screening job applications

o Banking: Credit ratings / loan approvals

o Judiciary: Recidivism risk assessments

o Welfare: Welfare benefit eligibility

o Journalism: News recommender systems



Raise concerns about their unfairness

o Implicit biases in search and recommender systems

How Google Shapes the
News You See About the
Candidates

Who would Google vote for? An analysis of

political bias in internet search engine results Donald Trump Accuses

Google of Bias in Search
Engine Results

How Google's search algorithm spreads
false information with a rightwing bias



Raise concerns about their unfairness

Discrimination in predictive risk analytics

Artificial Intelligence's White Guy Problem - The New York Times
https://www.nytimes.com/2016/06/26/.. ./artificial-intelligences-white-guy-problem.html

Jun 25, 2016 - Sexism, racism and other forms of discrimination are being built into the machine-
learning algorithms that underlie the technology behind many ...

Racism is Poisoning Online Ad Delivery, Says Harvard Professor - MIT ...
https://www.technologyreview.com/.../racism-is-poisoning-online-ad-delivery-says-ha... ¥

Feb 4, 2013 - So begins Latanya Sweeney at Harvard University in a compelling paper arguing that
racial discrimination plagues online ad delivery.

Machine Bias

There's software used across the country to predict future criminals. And it's biased
against blacks.




Raise concerns about their unfairness

Opacity of algorithmic (data-driven) decision making
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Are the unfairness concerns justified?

How we engineer machine decisions

Imperative programming:

o You describe the procedure for making decisions
Not what you want from the decisions

Declarative programming:

o You declare the outcome goals of your decision making
Not how you want to make decisions

o Leveraging machines to find optimal decision procedure



Imperative vs. Declarative Engineering

Imperative Declarative

Is one programming style better than other?



The excitement about AI/ML

Can get away with lazy declarative engineering
o Get some training data — examples of past decisions
o Declare a default goal — decision prediction accuracy

Miraculously, lazy engineering appears to work!
a But, does it really work?



The achilles heels of lazy AI/ML

Even assuming no training data biases, AI/ML decisions

Optimize for a single decision outcome goal, ignoring
o Fairness: Equal prediction accuracy for all salient social groups
o Worst-cases: Lower bound worst-case prediction accuracy
o Norms: Should use or not use data in a specific manner

Optimal for a static NOT an evolving society, because
o Training data becomes unrepresentative
o Feedback loops are not accounted for in the first place
o Decision outcome goals change over time!



Can we guard the achilles heels?

Can we account for fairness & other norms in ML
decision making?

o Maybe! Even with declarative engineering
Declare multiple decision outcome objectives when training

Can we design ML decision making for an evolving
society?
o Not sure! Need more imperative / procedural engineering



The talk: Focuses on discrimination

Discrimination is a specific type of unfairness

Well-studied in social sciences
Political science

Moral philosophy

Economics

Law

Majority of countries have anti-discrimination laws
Discrimination recognized in several international human rights laws

o O O O

But, less-studied from a computational perspective



Part 1:

Why is a computational perspective
on discrimination needed?




‘ Why, a computational perspective?

Datamining/ML is increasingly being used to detect
discrimination in human/machine decision making

o Examples: NYPD stop and frisk, Airbnb rentals

A Harvard Business School
study found that

than identical
guests with White names.

#AirbnbWhileBlack | ShareBetter.org




Case study: Recidivism risk prediction

COMPAS recidivism prediction tool
o Built by a commercial company, Northpointe, Inc.

Estimates likelihood of criminals re-offending in future

o Inputs: Based on a long questionnaire
o Outputs: Used across US by judges and parole officers

Are COMPAS' estimates fair to salient social groups?



'Is COMPAS fair to all groups?

race - Black - White

COMPAS decnle score
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2 Northpointe: In each estimated risk level, false
discovery rates for blacks & whites are similar

0 So YES!




Is COMPAS fair to all groups?

Black Defendants White Defendants
Low High Low High

Survived 990 805  Survived 1139 349
Recidivated 532 1369  Recidivated 461 505
P rate: 44.85 P rate: 23.45
FN rate: 27.99 N rate: 47.72

o ProPublica: False positive & false negative rates are
considerably worse for blacks than whites

2 So NO!



Who is right about COMPAS?

o Both! Depends on how you measure fairness!
2 How many fairness measures can one define?

o How many different error rate measures can one define?

Predicted Label

- Discovery Rate

Omission Rate

g=1 y=-1 |
neE Plg#yly=1)
_§ | True positive False negative False
E = Negative Rate
ndl Bn P(§ # yly = —1)
=1 False positive True negative False
K Positive Rate

Pig#ylg=1) | PE#yl§=-1) P(y # y)
False False Overall

Misclass. Rate




But, aren’t the measures similar?

NO! They present inherent trade-offs!

When base recidivism rates for blacks & whites differ,

no non-trivial solution to achieve similar FPR, FNR,
FDR, FOR!

No non-trivial solution can be simultaneously fair
according to both ProPublica & Northpointe analyses!



Why, a computational perspective?

Formal interpretations of discrimination can help us
understand the notions better

Reveals non-intuitive inherent trade-offs between
multiple measures of discrimination and their utility

Another example: Fairness of random judge selection

a Suppose you have N fair / unfair judges
They have equal FPR / FNR / FOR / FDR for different racial groups

o Does assigning cases to judges randomly affect fairness?



Part 2:

Computational Interpretations
(measures) of Discrimination www 17




Defining discrimination

A first approximate normative / moralized definition:

wrongfully impose a relative disadvantage on persons
based on their membership in some salient social group
e.g., race or gender

Challenge: How to operationalize the definition?

o How to make it clearly distinguishable, measurable, &
understandable in terms of empirical observations




Need to operationalize 4 fuzzy notions

1. What constitutes a relative disadvantage?
>. What constitutes a wrongful imposition?
3. What constitutes based on?

4. What constitutes a salient social group?



Need to operationalize 4 fuzzy notions

. What constitutes a relative disadvantage?

I ronaful imnociti
> What constitutes a-wrongful-imposition?



Operationalizing discrimination

Consider binary classification using user features

F, F, F., y 4 Decision

User, X11 | Xq2 Xim | Zi Accept

User, X, 1 Xom | 2 Reject

User; | x; Xsm | 24 Reject
4

User, [ x| xia |~ | Xom | 2 l Accept

Decision outcomes should not be relatively
disadvantageous to social (sensitive feature) groups!



Relative disadvantage measure 1:
Disparate treatment
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Measures the difference in outcomes for users, when their
sensitive features are changed



Relative disadvantage measure 1:
Disparate treatment
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Feature 1

Measures the difference in outcomes for users, when their
sensitive features are changed



Measures direct discrimination

Based on counter-factual reasoning
o Most intuitive measure of discrimination

To achieve parity treatment: Ignore sensitive features,
when defining the decision boundary

Situational testing for discrimination discovery checks
for disparate treatment

More formally: P(jx, z) = P(g|x)



Relative disadvantage measure 2:
Disparate impact
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Feature 1

Measures the difference in fraction of positive (negative)
outcomes for different sensitive feature groups



Relative disadvantage measure 2:
Disparate impact

Feature 2
o
o
o

Feature 1 QO\Y

B2

Measures the difference in fraction of positive (negative)
outcomes for different sensitive feature groups



Measures indirect discrimination

Observed in human decision making

Indirectly discriminate against specific user groups
using their correlated non-sensitive attributes
o E.g., voter-id laws being passed in US states

Notoriously hard to detect indirect discrimination

o In decision making scenarios where ground truth on intent
IS unknown or ground truth on outcomes may be biased



Detecting indirect discrimination

Doctrine of disparate impact
a A US law applied in employment & housing practices

Proportionality tests over decision outcomes

o E.g., in 70’s and 80’s, some US courts applied the 80% rule
for employment practices
If 50% (P1%) of male applicants get selected at least 40% (P2%) of
female applicants must be selected

o UK uses P1 —P2; EU uses (1-P1) / (1-P2)
a Fair proportion thresholds may vary across different domains



A controversial measure

To achieve parity impact: Select equal fractions of
sensitive feature groups

More formally: P(H=1]z=0)=P@{H=1z=1)

o Critics: There exist scenarios where disproportional
outcomes are justifiable
o Supporters: Provision for business necessity exists

Though the burden of proof is on employers
Law is necessary to detect indirect discrimination!



Relative disadvantage measure 3:
Disparate mistreatment
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Feature 1

Measures the difference in fraction of accurate outcomes
for different sensitive feature groups



Relative disadvantage measure 3:

Disparate mistreatment
4

Feature 2

! LV
Feature 1 Q B2

Measures the difference in fraction of accurate outcomes
for different sensitive feature groups



Measures indirect discrimination

In decision making scenarios, where we have unbiased
ground truth outcomes

To achieve parity mistreatment: Provide accurate
outcomes for equal fractions of sensitive feature groups

More formally: P(§ #ylz =0) = P(§ # ylz=1)

o The above overall inaccuracy rate measure can be further
broken down into its constituent FPR, FNR, FDR, and FOR



Summary: 3 discrimination measures

i. Disparate treatment: Intuitive direct discrimination
o To avoid: P(9|x,z) = P(g|x)

>. Disparate impact: Indirect discrimination, when
ground-truth may be biased

o Toavoid: pP(g=1|z=0)=P(g=1lz=1)

3. Disparate mistreatment: Indirect discrimination, when
ground-truth is unbiased

o Toavoid: P(g#y|lz=0)=P(y#ylz=1)



Part 3:

Mechanisms for Non-discriminatory
Machine Learning pastats 177




Can machines even discriminate?

Aren’t machine decisions inherently objective?
o Don't algorithms simply process information?
o Don't people with same features get the same treatment?

In contrast to subjective human decisions

Doesn’t that make them fair & non-discriminatory?

Objective decisions can be objectively unfair &
discriminatory!



How machines learn

By training over historical data
Example task: Predict who will return loan

F, F, F y 4 Past
Outcomes
Userl X1,1 X1’2 Xl,m Zl Returned
User, | X, , Xom | % Defaulted
User3 X3’1 X3’m Z3 DefaUIted
User, | X1 | Xao | | Xam | %0 Returned

Learning challenge: Learn a decision boundary (W)
in the feature space separating the two classes



Predict who will return loans

Z 9Jnjea

Feature 1



Predict who will return loans

Feature 2

Feature 1

Optimal (most accurate / least loss) linear boundary
But, how do machines find (compute) it?



Learning (computing) the optimal boundary

Define & optimize a loss (accuracy) function

a The loss function captures inaccuracy in prediction
N N

Lw)=> (yi—w'x;) L(w) =) —logp(y;|xi, W)

1=1 =1
o Minimize (optimize) it over all examples in training data

minimize L(w)

Central challenge in machine learning

o Finding loss function that capture prediction loss, yet be
efficiently optimized
o Many loss functions used in learning are convex




Predict who will return loans

Feature 2

Feature 1

Optimal (most accurate / least loss) linear boundary

But, how do machines find (compute) it?
o The boundary was computed using min > (y; — dw(x;))?



How machines learn to discriminate

Feature 2

Feature 1

Optimal (most accurate / least loss) linear boundary



How machines learn to discriminate

Feature 2
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Feature 1

Optimal (most accurate / least loss) linear boundary

Makes few errors for yellow, lots of errors for blue!
o Commits disparate mistreatment: P(y # y|z = 0) # P(§ # y|z = 1)



How to learn to avoid discrimination

Specify discrimination measures as constraints on
learning

Optimize for accuracy under those constraints
minimize L(w)

subject to P(j # ylz = 0) = P(§ # ylz = 1)

The constraints embed ethics & values when learning

No free lunch: Additional constraints lower accuracy
o Tradeoff between performance & ethics (avoid discrimination)



A few observations

Any discrimination measure could be a constraint
minimize L(w)
subject to  P(g|x, z) = P(g|x)
PH=1z=0)=PH=1z=1)
P(g#ylz=0)=P(@g#ylz=1)

Might not need all constraints at the same time
o E.g., drop disp. impact constraint when no bias in data

o When avoiding disp. impact / mistreatment, we could
achieve higher accuracy without disp. treatment




Key technical challenge

How to learn efficiently under these constraints?

minimize L(w)
subject to P(g=1/z=0)=P(yg=1|z=1)

minimize L(w)
subject to P(j #ylz=0) =P #ylz=1)

Problem: The above formulations are not convex!
o Can't learn them efficiently

Need to find a better way to specify the constraints
o So that loss function under constraints remains convex



Specifying disparate impact constraints
Instead of requiring: P(j=1]z=0)=P(§=1|z=1)
Bound covariance between items’ sensitive feature

values and their signed distance from classifier’s
decision boundary to less than a threshold

1 T
s wx<c
N1 |




Learning classifiers w/o disparate
impact

o Previous formulation: Non-convex, hard-to-learn
minimize L(w)
subject to P(g=1/z=0)=P(yg=1|z=1)

2 New formulation: Convex, easy-to-learn
minimize L(w)
1 N
subject to N Z (z; —z2)wlx; <c

15
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A few observations

Our formulation can be applied to any convex-
margin (loss functions) based classifiers

o hinge-loss, logistic loss, linear and non-linear SVM

Can easily change our formulation to optimize for
fairness under accuracy constraints

o Useful in practice, when you want to be fair but have
business necessity to meet a certain accuracy threshold



Learning classifiers w/o disparate

mistreatment

New formulation: Convex-concave, can learn
efficiently using convex-concave programming

minimize L(w)
subject to _Nl zz L 9w (Vi Xi) +
—Nl Zz_l Jw (y ) +

N
]M\/'l Zﬁvll gw(Yi, Xi) < ¢
% Zzzll gW(yZ7X’L> Z —C

All misclassifications gw (Y, x) = min(0, ydw (x)),

. I+y
False positives gw (Y, x) = min <0, Tydw(x)> , OF

. I —
False negatives gw(y,x) = min (0 Tyd w(X )) ,



Evaluation: Recidivism risk estimates

Recidivism: To re-offend within a certain time

COMPAS risk assessment tool

o Assign recidivism risk score to a criminal defendant
o Score used to advise judges' decision

ProPublica gathered COMPAS assessments
o Broward Country, FL for 2013-14

o Features: arrest charge, #prior offenses, age, ...
o Class label: 2-year recidivism



Key evaluation questions

Do traditional classifiers suffer disparate mistreatment?

Can our approach help avoid disparate mistreatment?



Disparity in mistreatment

Trained logistic regression for recidivism prediction

Race FPR FNR
Black 34% 32%
White 15% 55%

False positive: Non-recidivating person wrongly
classified as recidivating

False negative: Recidivating person wrongly
classified as non-recidivating



Key evaluation questions

Do traditional classifiers suffer disparate mistreatment?
o Yes! Considerable disparity in both FPR and FNR

Can our approach help avoid disparate mistreatment?



Removing disparate mistreatment

Traditional classifiers without constraints
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Removing disparate mistreatment

Introducing our FPR and FNR Constraints
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Key evaluation questions

Do traditional classifiers suffer disparate mistreatment?
o Yes! Considerable disparity in both FPR and FNR

Can our approach help avoid disparate mistreatment?
o Yes! For a small loss in accuracy



Summary: Discrimination through
computational lens

Defined three measures of discrimination
o disparate treatment / impact / mistreatment
a They are applicable in different contexts

Proposed mechanisms for mitigating each of them

o Formulate the measures as constraints on learning
o Proposed proxy functions that can be efficiently learned



Part 4:

From Parity to Preference-based
Discrimination Measures nies 47)




Recap: Defining discrimination

A first approximate normative / moralized definition:

wrongfully impose a relative disadvantage on persons
based on their membership in some salient social group
e.g., race or gender



Recap: Operationalize 4 fuzzy notions

1. What constitutes a relative disadvantage?
>. What constitutes a wrongful imposition?
3. What constitutes based on?

4. What constitutes a salient social group?



Need to operationalize 4 fuzzy notions

- What constitutesa-relative disadvantage?

>. What constitutes a wrongful imposition?
- \What constitutes based on?

2. \Mhatconstitutesa-salient social- group?



Revisit relative disadvantage measure 1:
Disparate treatment

Parity treatment: Changing sensitive feature should
not change outcomes

Equivalent to having same boundary for all groups

Do there exist scenarios where group-conditional
boundaries are not wrong?



Relative disadvantage measure 4:
From Disparate treatment to Preferred treatment

Feature 2

Feature 1 QB <

Disparate treatment: Measures the difference in outcomes for
users, when their sensitive features are changed



Relative disadvantage measure 4:
From Disparate treatment to Preferred treatment

Feature 2

Feature 1 QB <

Preferred treatment: Measures the increase in positive
outcomes for users, when their sensitive features are changed



Measures envy-free discrimination

Preferred treatment allows group-conditional boundaries

Yet, ensure they are envy-free
o No lowering the bar to affirmatively select certain user groups

Can be defined at individual or group-level

More formally:
Py =1|X,0 Wee) 2Py = 1| Xpep, W,2y)

V4

P(y=1[X,2, W,o1) 2 P(y = 1| X,=y, W,0)



Learning preferred treatment classifiers

Minimize L,_o(W;p) + L,=1(W;=y)

Subject to
Py =1[Xpo Woo) 2Py =1 Xo Wpey)
Py =1|Xseq, Woey) 2Py = 1] Xy, Wiep)

Preferred treatment subsumes parity treatment
o Every parity treatment classifier offers preferred treatment

Preferred treatment constraint is weaker than parity
o Suffers lower cost of fairness



Revisit relative disadvantage measure 3:
Disparate mistreatment

Parity mistreatment: Provide accurate outcomes for
equal fractions of sensitive feature groups

Do there exist scenarios where differences in
outcome accuracies for groups are not wrong?



Relative disadvantage measure 5:
From Disparate to Preferred mistreatment

Feature 2

Disparate mistreatment: Measures the difference in fraction of
accurate outcomes for different sensitive feature groups



Relative disadvantage measure 5:
From Disparate to Preferred mistreatment

Feature 2

X

Preferred mistreatment: Measures the difference in fraction of accurate
outcomes relative to parity for different sensitive feature groups



Measures bargained discrimination

Inspired by bargaining solutions in game-theory

Disagreement (default) solution is parity!
o Both groups try to avoid tragedy of parity

Selects pareto-optimal boundaries over group accuracies

More formally:
P()’);é y | Xz=01 VV) 2 P(y# y | Xz=01 Wparity)

P()’);éy | Xz=1f VV) 2 P(}’);éy | Xz=1f Wparity)



Summary: From parity to preference-based
measures of discrimination

Refined our three measures of discrimination
o Disparate treatment / impact / mistreatment
o Preferred treatment / impact / mistreatment

The new measures allow group-conditional, envy-free,
pareto-optimal boundaries
o Can also be combined with one-another and parity measures

Proposed mechanisms for mitigating each of them
o Formulated the measures as constraints that can be learned



Part 4:

Open Challenges Towards
Non-Discriminatory Decision Making




Beyond binary classification

How to learn

Fair regression

o Applicable principle: Non-Discrimination
Fair multi-class classification

o Applicable principle: De-Segregation
Fair set selection

o Applicable principle: Fair Representation

Fair ranking
o Applicable principle: Fair Scheduling



From distributive to procedural fairness

Current fairness notions based on outcomes

Ignores fairness of the process of making decisions
o Today’s recidivism risk prediction tools use features like
Juvenile crime history, family criminality, work/social environment

o Raise concerns about their usage because of

Privacy norms, their non-volitional nature, reliability of assessment,
relevance to decision, vicious causal cycle

How can we account for these factors in decisions?



Foundations for Fair Machine Decision Making

Distributive fairness: Fairness of outcomes

o Non-discriminatory, de-segregation, fair representation,
fair sharing

Procedural fairness: Fairness of process

o Privacy of inputs, diversity of decision processes, evolution
of decision processes

Informational fairness: Transparency of outcomes
and process

o Understandability for designers, controllability for end
users, and verifiability for regulators



Our works

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez and Krishna P.
Gummadi. Fairness Constraints: A Mechanism for Fair Classification. In FAT-ML
2015, AISTATS 2017

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez and Krishna P.
Gummadi. Fairness Beyond Disparate Treatment & Disparate Impact: Learning
Classification without Disparate Mistreatment. In FAT-ML 2016, WWW 2017

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, Krishna P.
Gummadi, and Adrian Weller. From Parity to Preference-based Notions of
Fairness for Classification. In FAT-ML 2017, NIPS 2017

Nina Grgi¢-Hlaga, Muhammad Bilal Zafar, Krishna P. Gummadi and Adrian Weller.
The Case for Process Fairness in Learning: Feature Selection for Fair Decision
Making. In NIPS Symposium on ML and the Law, 2016.

Fair classifier implementation at:

fate-computing.mpi-sws.org
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