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Abstract—In this paper, we propose a mobility-aware flow-
table implementation scheme with an aim to maximize overall
network performance in software-defined IoT. The proposed
scheme consists of two components — path estimator and
flow-manager. The path estimator predicts future locations of
end devices present in the network, and delivers info to the
flow-manager. Based on predicted locations, the flow-manager
implements forwarding rules at access devices (ADs) in the
network, so that adequate actions for incoming requests can
be taken immediately without asking the controller. We use
order-k Markov predictor to predict the next possible locations
of the end devices. We consider a practical scenario of an
IoT environment, in which both static and mobile devices are
present. Extensive simulation results show that the proposed
scheme is beneficial for improving network performance in
terms of energy consumption and message overhead for flow-
table implementation, while predicting the future locations of
the devices. We show that the proposed scheme is capable of
enhancing the overall network performance approximately by
50%.

Index Terms—Software-Defined Networking, Internet of
Things, Wireless Access Network, Flow-Table, Mobility, Markov
Predictor

I. INTRODUCTION

Due to the advent features of software-defined networking
(SDN) [1], it is getting interests among the researchers to
support real-time application-specific requirements. In SDN,
network-specific control strategies are defined by a centralized
controller, while decoupling the control-plane from the for-
warding devices, known as data-plane. Concurrently, internet
of things (IoT) is an emerging technology to digitize every-
thing for the betterment of connected world [2]. Consequently,
main backbone of the IoT is to connect every network devices
together and to control them in a unified manner. Thus,
SDN-based solution approaches are one of the most feasible
solutions to meet such requirements, while leveraging global
view of the network.

Typically, an IoT environment consists of both stationery
and mobile devices, which monitor different parameters in
the environment, and communicate with access devices (ADs)
to exchange their real-time information. Therefore, a flow-
table is maintained at each of the ADs in order to take
adequate actions for incoming requests from end devices1.

1In this paper, the term ‘user’ and ‘end device’ are used to denote the same
component.

In such a scenario, the flow-table rules need to be optimally
managed at the ADs, depending on the presence of end devices
and their requests. However, existing SDN-based solution
approaches for flow-table implementation either considered the
static behavior of the network or mainly focused on backbone
networks, where dynamic behavior of the network is very
low. Consequently, there is a need to have an optimal flow-
table implementation strategy in software-defined IoT (SDIoT)
networks for efficient network management, while considering
users’ quality-of-experience (QoE). To address such issues,
two solution approaches are feasible to update the flow-
table for information forwarding — a) reactive – ADs inform
controller after receiving requests, and the controller defines
forwarding rules; b) proactive – controller defines forwarding
rules proactively based on the end device’s mobility patterns,
and instructs the ADs to update their flow-table rules.

In this paper, we propose a mobility-aware flow-table im-
plementation scheme for software-defined IoT environments
with an aim to maximize overall network performance, while
considering end users’ movement in the network. The pro-
posed scheme consists of two components — path estimator
and flow-manager. The path estimator uses order-k Markov
predictor [3], [4] to predict the future locations of end devices
based on the past history of visited locations and time of
arrivals. Further, based on the predicted future location, the
flow-manager defines the forwarding rules. Finally, the ADs
adapt the forwarding rules defined by the flow-manager to
take adequate actions for incoming requests from end devices.
Extensive simulation results show that the proposed scheme
is beneficial to update the forwarding rules in an adaptive
manner, while minimizing energy consumption and message
overhead in the network. In brief, the contribution in this paper
are as follows:

• We propose a mobility-aware flow-table implementation
scheme to maximize QoE of users, while minimizing
energy consumption and message overhead in the net-
work. The problem is challenging because of the presence
of heterogeneous devices and capacity constraints of the
network devices.

• The proposed scheme consists of two components — path
estimator and flow-manager. The path estimator predicts
future locations of users and flow-manager implements
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forwarding rule at ADs. The order-k Markov predictor is
used to predict the future locations.

• Simulation results show that the proposed scheme is
beneficial for improving the network performance, while
considering movement of the users in the network.

The rest of the paper is organized as follows. Section II
discusses existing works in the context of forwarding rule
placement in SDN. Section III presents overall system archi-
tecture. We present the mobility-aware flow-table implementa-
tion scheme in Section IV. Section V shows the performance
of the proposed scheme. Finally, we conclude the paper in
Section VI, while presenting some future research directions.

II. RELATED WORK

There are several existing works in the literature which fo-
cus on forwarding rule management at network switches [5]–
[13]. Li et al. [5] proposed an optimal rule placement scheme
for the backbone network switches from the aspects of SDN.
The authors addressed the issues with capacity constraints of
the ternary content-addressable memory (TCAM) available at
switches. The rules are replaced with a new one depending on
the traffic pattern and devices’ availability. On the other hand,
Giroire et al. [6] proposed an energy-aware routing scheme
using SDN technology. In such a scheme, unused links in
the network are put into sleep mode to save energy, while
considering quality-of-service (QoS) of the network. Similarly,
Markiewicz et al. [7] proposed an optimal energy consump-
tion technique for SDN-enabled network, while considering
dynamic traffic in the network.

Vawter et al. [8] proposed an optimal traffic management
policies to minimize unwanted traffic in the network, while
maximizing network performance. The authors developed a
test-bed to analyze the network performance of such SDN-
enabled network. Huang et al. [9] proposed a joint opti-
mization approach for optimal rule placement and traffic
engineering in the network. Heuristic algorithm is used to
optimized the network performance. Similarly, in [10], the
authors proposed an optimal rule partition and allocation
scheme in the backbone network switches. The rules at the
switches are handled in an efficient manner, depending on the
status of the network. Therefore, the rules are managed in
a proactive manner to minimize network delay and buffers
at the switches. Li et al. [11] proposed a rule placement
strategy to deal with predictable and unpredictable flows in
the network, which is different from the traditional packet-
driven rule caching approaches.

Zhang et al. [12] proposed an integer linear programming
(ILP)-based scheme to optimize rule placement policies at
network switches, while considering given firewall policy
and capacity constraints of the switches. On the other hand,
Ma et al. [13] proposed a network function virtualization
(NFV) scheme, depending on the dynamic requirements of
the network. In such a scheme, issues related to traffic-aware
middleboxes placement in the network are addressed.

However, detailed analysis of the existing works reveals
that there is a research lacuna on rule placement policies in

the context of IoT, in which both static and mobile devices
are present. Due to the presence of mobile devices in the
network, the ADs need to frequently update the forwarding
rules for incoming requests to take adequate actions. However,
the existing solution approaches did not consider the dynamic
behavior of the network in the presence of mobile devices in
an SDIoT environment. Therefore, in this paper, we propose
a mobility-aware forwarding rule management policies at the
access devices in SDN-enabled network.

III. SYSTEM MODEL

In this Section, we present the proposed architecture and
problem statement for flow-table implementation in an SDIoT.
Figure 1 presents a schematic view of an IoT environment
enabled with SDN. We consider that the IoT environment
consists of heterogeneous devices (such as sensors, mobile
devices, and peripheral devices), which communicate with
access points (APs) and base stations (BSs) to exchange
real-time information. Additionally, we also consider that the
end devices can be both stationery and mobile in nature,
as considered in IoT. The AP and BS forward data traffic
based on forwarding rules decided by a centralized SDN
controller, as depicted in Figure 1. Therefore, the flow-table
rules are dynamically updated by the controller, depending on
application-specific requirements of IoT users.

Fig. 1: Proposed architecture of software-defined IoT

The data traffic accessed by the AP and the BS are further
forwarded through the backhole communication network (i.e.,
routers and switches). Based on the received data, the con-
troller takes adequate decisions for implementing forwarding
rules at the backhole communication networks and access
networks. Consequently, the AP and BS adapt the flow-table
rules and take adequate actions for an incoming data traffic
from the end devices. For simplicity, we do not focus on the
forwarding issues present in the backbone networks.

A. Problem Statement

As shown in Figure 1, forwarding rules at the AP and the
BS are dynamically changed, depending on users’ positions
and requirements. Due to the resource constraint nature of
the access devices (ADs), limited forwarding rules can be
entered in the flow-tables associated with the devices [14].



Fig. 2: Illustrative example: (a) Scenario 1: ADs are capable of handling requests from all devices associated to them; (b)
Scenario 2: ADs are incapable of handling requests due to capacity constraint, in the presence of mobile devices; (c) Scenario
3: Adjusted flow-table with rules, which is capable of handling requests from all devices

Let consider a wireless network comprises of multiple ADs
(combination of BSs and APs), which is denoted by the set
A = {A1, A2, . . . , An}, where n ∈ N . Let also consider that
maximum R number of rules can be entered in each AD due
to the capacity constraints. Mathematically,

r∑
i=1

Aj(Ri) ≤ R j ∈ N (1)

On receiving a new request, two solutions are feasible: a) the
request is discarded; b) the request is entered, while removing
an old entry, while the capacity is full.

Let also consider that d ∈ N number of end devices
are present in the network, which is denoted by the set
D = {D1, D2, . . . , Dd}. Each device may have multiple rules
associated with it, depending on different requests. Therefore,
total rule-space handled by the ADs in the network cannot be
more than the total capacity. Mathematically,

d∑
j=1

r∑
k=1

Dj,k ≤
n∑

i=1

r∑
l=1

Ri,l (2)

where Dj,k denotes number of rule-space of jth device. The
number of rule-space handled by ith AD is denoted as Ri,l.

We consider an accuracy factor (Fi) for an AD i ∈ A,
which is denoted as follows:

Fi =
Ri,present

Ri,total
(3)

where Ri,present denotes the number of different forwarding
rules present at ith AD, and Ri,total denotes required number
of forwarding rules at the AD to handle all requests. The
objective is to maximize the accuracy for all ADs in the
network in order to improve overall network performance.
Mathematically,

maximize
n∑

i=1

Fi

subject to 0 ≤ Fi ≤ 1

(4)

Problem: The forwarding rule is required to be updated
adequately in order to improve the network performance.
Consequently, the ADs adapt the rules associated with an
end device defined by the controller in its table. However,
the ADs may not have adequate forwarding rule information
due to the mobile nature of the end devices. Additionally,
rule for a particular request may be replicated in the network.
Moreover, due to the resource constraint nature of the ADs,
new requests may not be served, while the rule-space capacity
is full. Therefore, it is required to have an adaptive flow-table
implementation scheme, which manages the forwarding rules
adequately to maximize the accuracy (Fi) for an AD ∈ A.

B. Illustrative Example

Figure 2 presents an illustrative example consisting of three
different scenarios. We consider a network consisting of an
AP and a BS, and few heterogeneous devices such as sensor,
smart phones, and PDA. Depending on the positions and
requirements, forwarding rules are defined at the AP and the
BS, as shown in Figure 2. We consider that both the AP and
the BS has limited rule-space capacity.

In scenario 1, the flow-table at the AP consists of rules
associated with S1 and M1, and the BS consists of rules
associated with M2 and P1. Therefore, the rule-space at both
the ADs are well-utilized, and there is no problem to take
adequate actions for incoming requests from end devices.

Let consider that M1 and P1 move to the vicinity of the
BS and AP, respectively. Therefore, the rules are required to
be modified. However, on receiving request from M1 and P1,
the ADs cannot allocate the rule-space to serve the request as
the capacity is full. So, we need to remove the existing rule(s)
which is (are) no more required, and need to insert new rule(s)
to serve the request.

Scenario 3 presents the modified flow-table rules, in which
rules are added/removed based on end devices’ positions and
requirements. This can be done a reactive manner, i.e., after
receiving request, rules can be added/removed. Consequently,
network delay is increased, while considering the reactive



process. To address this issue, we propose mobility-aware
flow-table implementation scheme (which is proactive) to
adequately implement the forwarding rules with an aim to
maximize the network performance in an SDIoT environment.

IV. MOBILITY-AWARE FLOW-TABLE IMPLEMENTATION

The proposed framework is presented in Figure 3, and it is
placed at the controller end. Consequently, the computational
complexity is avoided at the ADs. The proposed model con-
sists of different components — path estimator, flow manager,
database, and flow-table — as presented in Figure 3. Path
estimator predicts the future locations of end devices based
on history data (refer to Section IV-A). Further, based on the
predicted locations, the flow manager decides the flow-table
rules (refer to Section IV-B), and the table is implemented on
the associated ADs in order to provide seamless connectivity.

Fig. 3: Proposed framework for flow-table implementation

A. Path Estimation

We use order-k, O(k), Markov predictor [3], [4] to estimate
the future locations of end devices. The model consists of
different tuples: < S,A, P,R >, where
• S: Set of states of meaningful places visited by users

(i.e., end devices), which is represented as S =
{s1, s2, . . . , sn}, n ∈ N .

• A: Set of actions taken on a particular state, i.e., time
duration (d) before handoff2 occurs. Therefore, A is
represented as A = {a1, a2, . . . , an}, n ∈ N .

• P : Probability of transition from one state to another
state. Therefore, Pij(a1) represents the probability of
transition from state si to state sj , i 6= j, when action a1
is taken.

• R: Reward factor, which defines the prediction accuracy
on whether handoff occurs after the time duration d.

For a given movement history set of a user, which is denoted
as H = {(s1, t1), (s2, t2), . . . , (sn, tn)}, the path estimator
estimates both time and location of next handoff. s denotes
the state or location of the user, and t denotes the time of
arrival to the state s. In order to predict the location and time
of next handoff, we need to calculate the probability that a
handoff will occur in the next ∆t time period, while the current
location and duration of stay at the location are given.

From H, we extract the state history set S =
{s1, s2, . . . , sn}, and from S the order-k3 location contexts

2Handoff is considered as the change in associated ADs to an end device
3Current k (k = 3) instances are considered.

C = S(n − k + 1, n) = {Sn−k+1,Sn−k+2,Sn}. Now, we
search for instances of the context c.

Therefore, for the given current context c, the path estimator
predicts the duration of stay Ds at possible s locations which
follow c. Mathematically,

Ds = {di|di = ti+1−ti, where S(i−k+1, i+1) = cs} (5)

For each Ds, we calculate the conditional probability Ps(t ≤
d < t + ∆t) that the user will move to location s within
∆t time after the current elapsed time t. Consequently, for
given context c and elapsed time t, the probability of each
user moving to each possible location s within ∆t time is
calculated as follow:

P (s|c, t) = P (s)Ps(t ≤ d < t + ∆t|c, t) (6)

where P (s) is the probability of every possible next location
s, which can be calculated as follows:

P (sn+1 = a|H) ≈ P̂ (sn+1 = a|H) =
N(ca,H)

N(c,H)
(7)

where N(ca,H) denotes the number of occurrence of ca in
the history set H. Accordingly, the Markov predictor predicts
the most likely location s will be visited at n + 1 time as
follows:

sn+1 = argmax
a∈A

(P (sn+1 = a)) (8)

B. Flow-Table Implementation

As discussed in Section IV-A, the predicted next location is
sn+1, which is collected by the flow manager from the path
estimator. The flow manager checks whether a handoff will
occur for the next location sn+1 from current location sn,
which is denoted by an indicator variable as follows:

I =

{
1, if handoff occurs
0, otherwise

(9)

For I = 1, the flow manager inserts a new rule to the flow-
table of an AD to be associated in the next time period, and
deletes the rule from the currently associated AD. Conse-
quently, the flow-table rules are managed in a reliable and
efficient manner, so that accuracy factor (F) is maximized.
It is noteworthy that the objective is to predict the associated
ADs for end devices instead of determining exact locations.

C. Proposed Algorithm

The algorithm for path estimation is presented in Algorithm
1. It is noteworthy that the presented algorithm is for one
end device. However, the path estimator estimates the next
locations for all end devices associated with different ADs in
the network in a similar manner.

Algorithm 2 presents different steps followed by the flow
manager to implement forwarding rules in the associated ADs.
The steps are repeated for all ADs in the network.



Algorithm 1: Algorithm for Path Estimator
Input: History set H, current context c
Output: Next predicted location sn+1

1 Extract the state of location history set S from H;
2 Predict Ds at possible locations s according to Equation

(5);
3 Calculate P (s|c, t) according to Equation (6);
4 Predict next location sn+1 according to Equation (8);
5 Return sn+1;

Algorithm 2: Algorithm for Flow Manager
Input: Next location sn+1, current location sn
Output: Implement flow-table according to handoff

1 Check for handoff according to Equation (9) for location
change from sn to sn+1;

2 if I == 1 then
3 Decide new rule R;
4 Insert R to newly associated AD after ∆t time;
5 Delete R from currently associate AD;
6 else
7 Do not change the rule;

V. PERFORMANCE EVALUATION

A. Simulation Settings

We evaluate the proposed scheme in a discrete event simu-
lator with different simulation parameters, as shown in Table
I. We use the Gauss-Markov mobility model [15] for the
mobile nodes in the network. Energy consumption for rule
management is considered as the energy spent for transmit,
receive, and computation at the ADs. Different performance
metrics — prediction accuracy, message overhead, and energy
consumption — are used to show the effectiveness of the
proposed scheme. Henceforth, we use the term Mobi-Flow
to denote the proposed scheme. On the other hand, the term
‘conventional’ is used to represent the existing scheme, where
mobility of the end devices are not taken into account.

TABLE I: Simulation Parameters

Parameter Value
Number of Nodes 200
Mobility Model Gauss-Markov Mobility [15]
Number of ADs 25
Transmit Power [16] 2.2 W
Receive Power [16] 1.35 W

B. Results and Discussion

As discussed in Section IV, we evaluate the prediction
accuracy of predicted locations for all nodes in the network.
Figure 4 shows the prediction accuracy of associated ADs for
individual nodes. We see that Mobi-Flow significantly predicts
the associated ADs for individual nodes in the network.
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Fig. 4: Prediction accuracy for individual nodes
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Fig. 5: Prediction accuracy for different number of nodes in
the network

Similarly, Figure 5 presents the overall prediction accuracy
in the network for different number of nodes in the network.
In all cases, we get above 65% accuracy in the network.
Intuitively, we can say that the customers’ satisfaction factor
also increases with the proposed scheme.

It is also important to measure message overhead in the
network for rule-management at the ADs. We evaluate the
message overhead as the number of messages exchanged
between flow-manager and ADs for incoming requests from
end-devices. Figure 6 presents the total message exchanged
in the network for rule management at the ADs. We also see
that the message overhead is minimized significantly, as the
forwarding rules are placed at ADs well-before getting any
new requests depending on the predicted locations. In contrast,
in the ‘conventional’ one, ADs ask to the flow-manager for
every new incoming requests from end-devices, which, in
turn, maximizes the message overhead in the network for rule
management. Mobi-Flow reduces the message overhead by
approximately 45% over the conventional approaches.

Figure 7 depicts total energy consumption for rule manage-
ment in the network. Energy consumption for rule manage-
ment depends of the number of messages exchanged between
flow-manager and ADs in the network. As the proposed
scheme significantly reduces the message overhead in the
network (as shown in Figure 6), energy consumption is
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also minimized. We see that Mobi-Flow reduces the energy
consumption by approximately 55% over the conventional
schemes, in which devices’ mobility is not considered.

VI. CONCLUSION

In this paper, we proposed a mobility-aware flow-table
implementation scheme with an aim to maximize overall
network performance of SDIoT. We used order-k Markov
predictor-based scheme to predict the future locations of end
devices in the network. Simulation results showed that the
proposed scheme significantly reduces the message overhead
and energy consumption for rule management approximately
by 45% and 55%, respectively, while predicting the future
locations of the devices in the network.

We plan to evaluate the proposed scheme in a real test-
bed as the future extension of this work. In addition to this,
future extension of this work also includes the maximization
of prediction accuracy further.
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