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Abstract—Next-generation cyber physical systems (CPS) face
a variety of challenges in terms of networking, interoperability
and scalability in the presence of heterogeneous devices. Recent
advances in software-defined networking (SDN) make it a vi-
able approach towards addressing these issues by introducing
programmability and flexibility in the network. However, the
elasticity of scale required by CPS raises some concerns about
the control-overhead of the OpenFlow protocol.

In this paper, we propose a dynamic traffic engineering
scheme, DynamiTE, in software-defined cyber physical systems
(SD-CPS). Our aim is to minimize the control overhead at
the SDN controller by minimizing the number of PACKET-IN
messages. We propose a greedy heuristic approach to deter-
mine the optimal number of switches required to have higher
ternary content-addressable memory (TCAM), termed as candi-
date switches, compared to the other switches in the network.
In such a scenario, a fully occupied switch directly forwards
a new incoming flow to a candidate switch without sending a
PACKET-IN message to the SDN controller. Further, a packet-
tagging method is applied to notify the SDN controller about
the congestion occurred at the fully occupied switch. Simulation
results show that DynamiTE is capable of reducing the number
of PACKET-IN messages by 10% compared to the OpenFlow-
based reactive forwarding schemes (OFS). Further, the number
of packets experiencing congestion in the network is reduced by
38%, compared to the randomized forwarding scheme (RFS).

Index Terms—Traffic engineering, Software-defined networks,
Heuristic optimization, Packet-tagging, Cyber physical system

I. INTRODUCTION

Cyber physical systems (CPS) refer to the convergence of
computing, control, and communication technologies to de-
velop the next generation engineered systems. The field of CPS
integrates the dynamics of physical processes with abstractions
of mathematical modeling and software to achieve autonomous
control and sensing systems that are efficient, reliable, secure,
robust, and scalable [1]. Next generation CPS typically include
heterogeneous devices, which pose challenges in terms of
networking, interoperability, and scalability. Moreover, in a
large-scale environment, the interaction between systems are
much more complex compared to the small-scale ones [1]. To
support such requirements, improved software and networking
model that addresses the above mentioned issues in a simpli-
fied manner is required. Recent advances of software-defined
networking (SDN) make it a viable approach to address such
networking, interoperability, and scalability issues.

OpenFlow [2], the de-facto standard used to realize SDN,
introduces programmability into the network by abstracting

the control plane from the data plane through the use of rule-
based forwarding. A switch forwards an incoming flow based
on the flow-rule decided by SDN controller. The flow-rules
are typically placed in a flow-table at the switch using the
OpenFlow protocol. To achieve wire-speed packet processing,
the switches typically store such rules in ternary-content-
addressable memory (TCAM)1. However, the size of the
TCAM available at a switch is limited due to high energy
consumption and associated cost [3]. As a result, few thousand
rules can be inserted utilizing the TCAM. In the context of
CPS, which require high elasticity of scale, the constrained
memory presents a fundamental challenge in realization of
software-defined CPS (SD-CPS).

On receiving a new traffic, the switch sends a PACKET-IN
message to the controller. Consequently, the controller imple-
ments the flow-rules at the switches based on the available rule
capacity, while considering other parameters as well. If rule-
capacity is fully utilized at the switch, an existing flow-rule
is deleted, and the new one is inserted without considering
the status (i.e., active or passive) of the existing flow-rule.
As a result, once the switch receives a packet associated with
the deleted flow-rule again, it sends the PACKET-IN to the
controller, and the same procedure is followed. Consequently,
control message overhead increases, as the flow-rules are
deleted and inserted in a round-robin manner.

Fig. 1: An example of the
scheme proposed by Qiao
et al. [4]

Recently, Qiao et al. [4] pro-
posed a scheme in which a switch
randomly forwards the traffic to
one of its outgoing ports, instead
of sending the PACKET-IN to the
controller, while its rule capacity
is fully utilized. Therefore, con-
trol overhead between switches
and controller is reduced to a
certain extent. Figure 1 presents
such a scenario, where the fully
occupied switch has three differ-
ent options to forward the traffic.
However, as depicted in Figure 2,
the scheme proposed by Qiao et
al. [4] has the following limitations: a) as the outgoing port

1Ternary content-addressable memory (TCAM) is a fast processing memory
present at SDN-enabled switches, which helps to search all available rules
against an incoming traffic in a single clock cycle.
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Fig. 2: Motivating scenario: Forwarding traffic to a randomly
selected port may end up with — a) longest path from source
to destination; and b) another fully occupied switch

for an incoming packet is chosen randomly, the packet may
be forwarded through the longest path, instead of the shortest
one; and b) the randomly chosen switch may also be fully
occupied. In such a case, the packet is further forwarded to
a switch, which is again randomly chosen. Eventually, the
packet reaches to the desired destination. In such a scenario,
the controller may also be unaware of such traffic flow in the
network as PACKET-IN is not sent to the former.

To deal with such a problem, we propose a dynamic traffic
engineering scheme in an SDN-enabled network with an aim
to forward the traffic in an adequate manner, while addressing
the above mentioned issues. It is noteworthy that our primary
objective is to address the second issue, as mentioned in Figure
2. Addressing longest path issue is considered as secondary
objective in this work. An optimization problem is formulated
in the form of integer linear programming (ILP) to deter-
mine the minimum number of candidate switches required
to forward the traffic for all possible affected2 switches in
the network. We propose a greedy heuristic approach to solve
the optimization problem in polynomial time, as finding an
optimal solution to the problem is NP-hard. Further, a packet-
tagging approach is applied to notify the controller about the
congestion occurred at a fully occupied switch. Simulation
results show that the proposed scheme is capable of reducing
number of PACKET-IN and congestion in the network, while
placing optimal number of candidate switches.

The rest of the paper is organized as follows. Section II
presents the state-of-the-art in dynamic traffic engineering
in SDN. Detailed system model and problem description
are presented in Section III. Further, the proposed approach
for dynamic traffic engineering in SDN-enabled networks is
presented. Section IV presents the simulation results to show
the effectiveness of the proposed scheme. Finally, Section V
concludes the paper while presenting some future research
directions.

2Henceforth, we will use the term ‘affected’ for the switches, whose TCAM
is fully utilized.

II. RELATED WORK

In this Section, we present the state-of-the-art for traffic
engineering in SDN which can be applied to address the chal-
lenges present in CPS. Several schemes exist in the literature
for traffic engineering [4]–[12]. For example, the benefits of
incorporating software-defined networking concepts in traffic
engineering is studied in [6]. The authors showed that the
SDN-based approach is capable of forwarding network traffic
in an optimal manner, while leveraging the global view of the
network. Additionally, the authors formulated an optimization
problem for controller placement to place flow-rules at the
SDN switches deployed in the network. Caria et al. [5]
analyzed the performance of network migration for traffic
engineering in SDN for a given network topology. The authors
proposed an algorithm to select optimal number of switches,
which are required to be substituted by SDN switches, so that
the need for network capacity upgradation is minimized. The
proposed scheme consists of two phases — a) candidate paths
selection, and b) optimization of the candidate paths. In the
candidate path selection phase, all possible alternative paths
are determined for a given network topology. In the second
phase, the optimized paths are selected from all possible al-
ternative paths. Consequently, the authors showed that optimal
traffic engineering can be obtained while substituting a subset
of the general switches by SDN switches.

Segment routing is another important aspect in traffic en-
gineering by simplying the forwarding mechanisms. More
particularly, a source node is able to specify a unicast for-
warding path using the segment routing rather than specifying
a shortest path, through which the packet will traverse. It is
noteworthy that the segment routing was designed for SDN,
while providing simplicity and better utilization of network
resources in packet forwarding. Authors in [7]–[9] proposed
a segment routing-based traffic engineering scheme in SDN-
enabled networks, in which an architecture for segment routing
is also presented. In segment routing, the SDN switches for-
ward a packet to its next-hop switch without sending PACKET-
IN to the controller. Thus, frequent rule placement at the
switches can be avoided. Such an approach is useful while
rule capacity of an SDN switch is nearly/completely utilized.

However, detailed analysis of the existing approaches on
traffic engineering reveals that there is a need to propose a
dynamic traffic engineering scheme to deal with the issues
mentioned in Section I. Therefore, we propose a dynamic
traffic engineering scheme for optimally forwarding network
traffic in SD-CPS.

III. DYNAMIC TRAFFIC ENGINEERING

We consider an SDN architecture consisting of SDN-
enabled switches/routers, controller, heterogeneous con-
strained networks/devices, and end-users. Typically, the het-
erogeneous constrained networks/devices are connected to the
backbone network through IoT gateways. Figure 3 shows
the network architecture considered in this work. Figure 3(a)
shows a schematic architecture of SDN consisting of hetero-
geneous devices. Further, Figure 3(b) depicts the software-



(a) A schematic architecture of software-defined network

(b) A schematic architecture of Software-defined cyber physical
systems

Fig. 3: Network architecture

defined cyber physical systems, while considering different
applications and application programming interfaces (APIs)
[13]. In this work, our primary focus is traffic engineering at
the backbone networks, while considering incoming heteroge-
neous traffic from devices present in CPS. The SDN switches
simply forward an incoming traffic to another switch, based
on the flow-rule decided by the SDN controller. If a flow-
rule associated with a traffic does not exist at the switch, the
switch sends a PACKET-IN to the SDN controller. Typically,
the PACKET-IN message contains Header of the message
with fields length, flow-table ID, and data. After receiving
the PACKET-IN, the controller places adequate flow-rules at
the switch, and the traffic is forwarded based on the decided
policies.

Candidate Switch: We define an SDN switch, S, as can-
didate switch (CS), C, if it satisfies the following properties:

• Stcam > Γ, where Stcam and Γ denote the TCAM
memory size of the SDN switch S and a predefined
threshold memory size, respectively.

• The switch has more than one neighbor in its one-hop

distance, i.e., |Sneigh| > 1, where |Sneigh| defines the
number of neighbor switches in one-hop distance.

Assumption 1. We assume that the network is fully SDN-
enabled, i.e., all the switches are SDN switches. For simplicity,
we consider a single SDN controller, which controls all the
switches in the network. However, multiple controllers can be
placed to control the switches by forming network clusters.

Assumption 2. All the SDN switches support OpenFlow
protocol [2] for flow-rule placement. Therefore, we utilize the
benefits of the OpenFlow protocol for the proposed traffic
engineering and packet-tagging approaches.

A. Problem Statement

Let there be an SDN-enabled backbone network consisting
of a set of SDN-enabled switches, which is represented as S =
{S1, S2, . . . , Sn}, n ∈ Z+. Our objective is to find out the
minimum number of switches from S that need to be replaced
with CS, so that the traffic from a fully occupied switch can be
forwarded to the CS without generating the PACKET-IN at the
former. The set of CS is represented as C = {C1, C2, . . . , Ck},
where k ∈ [0, |S|] and C ⊆ S. Mathematically,

Minimize |C|
subject to ∑

j∈S\C

βi,j ≥ 1, for each i ∈ C, (1)

∑
i∈C

βi,j = 1, for each j ∈ S\C, (2)

where Equation (1) denotes that there exists at least one
CS located at one-hop distance to which the traffic can be
forwarded from a fully occupied switch, j ∈ S\C. βi,j is a
binary variable used to capture the availability of such CS,
i ∈ C, from a switch, j ∈ S\C. Mathematically,

βi,j =


1, if there exists a link between

switch, j ∈ S\C, to CS, i ∈ C
0, Otherwise

(3)

Equation (2) ensures that the number of active links between
a fully occupied switch, j ∈ S\C, to CS, i ∈ C, is one, so that
redundancy of CS is avoided.

B. Greedy Heuristic Algorithm

The optimization problem presented in Section III-A is
an integer linear programming (ILP) problem consisting of
binary variables. Finding an optimal number of CS required
to forward the traffic from a fully occupied in the network is
an NP-hard problem [14]. Consequently, we propose a greedy
heuristic approach to solve the optimization problem in poly-
nomial time. We consider two attributes associated with each
switch S ∈ S as S.flag and S.neigh. S.flag denotes whether
a switch is considered to be a CS, and S.neigh denotes the
number of neighbors of S. Algorithm 1 presents the proposed
greedy heuristic algorithm. Time complexity of the proposed
greedy algorithm consists of three phases – adjacency matrix



Algorithm 1: Greedy Heuristic Algorithm
Input: Set of switches, S; Adjacency matrix, M; An

array, A, with size |S|
Output: Set of CS, C

1 Set C = φ, S.flag = 0 ∀S ∈ S;
2 Sort all the switches S ∈ S in descending order

according to the number of their neighbors using M, and
put them in A;

3 for i = 1 to |S| do
4 if A[i].f lag == 0 && A[i].neigh > 1 then
5 C = C ∪ {A[i]};
6 for j = i+ 1 to |S| do
7 if βA[i],A[j] == 1 then
8 A[j].f lag = 1;

9 Return C;

formation, sorting and greedy algorithm. The running time
complexities for adjacency matrix formation and sorting are
O(|S|2) and O(|S|log|S|) having |S| number of switches in the
network. The running time complexity for greedy approach
is O(|S|2). Therefore, total running time complexity of the
proposed algorithm is

(
O(|S|2) + O(|S|log|S|) + O(|S|2)

)
⇒

O(|S|2).

Fig. 4: Example: greedy heuristic approach for CS selection
for a given network

Example: Figure 4 shows an example of selecting CS for a
given network using greedy heuristic approach. In the exam-
ple, part of the Bandcon [15] network topology is considered.

C. Tagging the PACKET-IN Message

We consider a modified version of OpenFlow protocol for
sending PACKET-IN to the controller. Figure 5 shows different
fields present in a PACKET-IN generated from an SDN switch
according to OpenFlow protocol specification [16]. We use
another name as f-tag in the reason field, and the value is set
as 0X03 to notify the controller that a packet is received by
a CS from a fully occupied switch. It is noteworthy that the

Fig. 5: PACKET-IN message sent to the controller

TABLE I: Simulation parameters

Parameters Value
Network Topology AttMpls [15]
Rule Capacity 460 (HP S-2920) & 1526 (HP

S-3500) [3]
Source & Destination Uniform Random
Number of Packets 22000 – 32000
Flow-Rule Placement Exact-Match

f-tag is used by the CS only. This method helps the controller
to minimize the congestion at the fully occupied switch further
by placing the flow-rules in such a manner that new packets
are not forwarded to the particular fully occupied switch. It is
noteworthy that the proposed approach can easily be integrated
atop the existing SDN, in which OpenFlow is used as the
communication protocol between the switch and the controller.

IV. PERFORMANCE EVALUATION

To evaluate the performance of the proposed scheme, we
consider the AttMpls network topology [15]. The number
of nodes and links present in the network are 25 and 56,
respectively. Different parameters considered to conduct the
experiment are summarized in Table I.

We consider the rule-capacity of switch and CS as 460 and
1526 according to the hardware support of HP S-2920 and
HP S-3500 switches, respectively [3]. For flow-rule placement,
we consider exact-match for all packets in the network. It is
noteworthy that some of the packets have the same property,
i.e., all fields in two different packets may be same. Therefore,
a single flow-rule is applied for multiple packets in order to
take desired action. We first determine the number of CS re-
quired for a given network topology. Accordingly, we present
the results for number of CS required for different network
topology. Further, we evaluate the number of switches, which
are fully occupied, with different number of packets using the
AttMpls network topology.

To show the effectiveness of the proposed scheme, we
evaluate the number of PACKET-IN and number of congestion
scenarios in the network. It is noteworthy that we use the
AttMpls network topology to present the results for PACKET-
IN and congestion. Number of congestion scenarios repre-
sent the number of packets that experienced congestion at
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Fig. 6: Number of fully occupied switches with different
number of packets in AttMpls network

switches due to the rule-capacity constraints. We compared
the performance of the proposed scheme with two different
schemes — OpenFlow-based forwarding (OFS) and Random-
ized forwarding (RFS) [4]. In OFS, an existing rule is replaced
by a new one, if the rule-capacity of the switch is fully
occupied. On the other hand, in RFS, the packet is forwarded
to a randomly selected outgoing port without sending the
PACKET-IN to the controller. Henceforth, we use the terms
OFS and RFS to denote the existing schemes.

We evaluate the number of candidate switches required to
forward the traffic from a fully occupied switch in the net-
work according to the optimization problem and the proposed
solution presented in Section III. The required number of CS
in AttMpls network is 8. Therefore, eight switches are placed
as CS with higher TCAM, and remaining switches are placed
as normal switches with lower TCAM, as mentioned in Table
I.

A. Number of Fully Occupied Switches

Figure 6 shows the number of fully occupied switch with
different number of packets using AttMpls network. We see
that the number of fully occupied switch increases with an
increase in the number of packets in the network. Finally, all
the switches except CS are fully occupied with large number
of packets in the network, and they forward traffic to the CS.

B. PACKET-IN Message

Figure 7 shows the total number of PACKET-IN received by
the controller with different number of packets in the network.
We see that less number of PACKET-IN is sent to the con-
troller using the proposed scheme, DynamiTE (proposed), and
the existing scheme RFS. However, DynamiTE outperforms
the OFS scheme in terms of the number of PACKET-IN sent
to the controller. In DynamiTE and RFS, a switch does not
send the message to the controller, if the rule-capacity is fully
occupied. Therefore, the flow-rule associated with an active
flow is not deleted. In contrast, the switch always sends the
PACKET-IN on receiving a new packet without considering
the residual rule-capacity. Consequently, more number of
PACKET-IN is received by the controller using OFS than that
of using DynamiTE (proposed) and RFS. Therefore, with more
number of devices in the next generation CPS, it is expected to
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of packets in the AttMpls network

have more number of heterogeneous packets, which, in turn,
will generate more number of of PACKET-IN messages. From
this aspect, we believe that the proposed scheme is beneficial
to reduce the controller overhead in an SD-CPS.

C. Congestion

Figure 8 denotes the number of packets that experienced
congestion in the network using different schemes — Dyna-
miTE (proposed), OFS and RFS. We see that the number of
packets that experienced congestion is the same for DynamiTE
(proposed) and OFS. On the other hand, it is higher in case
of RFS than that with the DynamiTE (proposed) and OFS
schemes. In RFS, the packet is forwarded to a randomly
selected switch, which can be further congested. Consequently,
we have more number of congestion instances occurring
using the RFS scheme. Similar to the PACKET-IN (refer to
Section IV-B), congestion at switches will indirectly lead to a
higher end-to-end delay in packet delivery. However, modern
applications in CPS necessitate the packets to be delivered
in real-time. From the results, it is evident that the proposed
scheme is useful to reduce the end-to-end delay by reducing
the number of congestion in the network.

Finally, we see that the proposed scheme, DynamiTE,
outperforms the existing schemes — RFS and OFS — in terms
of the number of PACKET-IN and the number of congestion
instances in the network, respectively. The proposed scheme is



capable of reducing the number of PACKET-IN and congestion
in the network by 10% and 38%, respectively.

V. CONCLUSION

In this paper, we proposed a dynamic traffic engineer-
ing scheme, DynamiTE, in an SDN-enabled cyber physical
system with an aim to minimize the number of PACKET-
IN messages and congestion instances in the network. We
proposed a greedy heuristic approach to determine optimal
number of switches required to be configured as candidate
switches. Further, we also proposed a packet-tagging approach
to notify the SDN controller that rule-capacity of a switch
is fully occupied. Through extensive simulation results, it
is evident that the proposed scheme is capable of reducing
the number of PACKET-IN received by the controller by
10%, compared to an OpenFlow-based forwarding scheme.
Further, the proposed scheme is also capable of reducing the
number of congestion instances occurring in the network due
to rule-capacity constraint by 38%, compared to the existing
randomized forwarding scheme. To summarize, the proposed
scheme is capable to addressing the challenges present in next
generation CPS in terms of traffic engineering.

The candidate switches have higher TCAM compared to
the other switches in the network. However, rule-space of the
candidate switches can also be fully utilized in the presence
of large number of packets in the network. Therefore, some of
the active flow-rules are required to be deleted from the candi-
date switches to insert new rules. Consequently, PACKET-IN
messages are generated. We plan to analyze such overflow
problem at the candidate switches as the future extension of
this work.
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