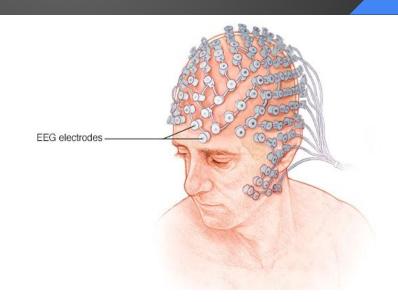
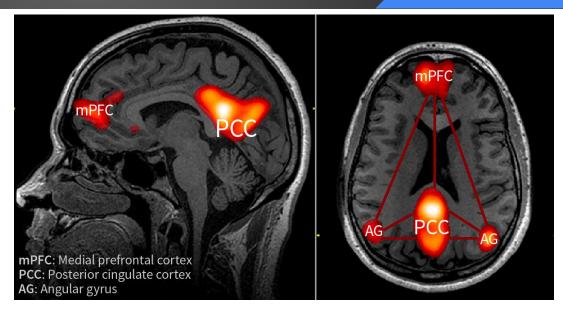
Default Mode Network identification with Electroencephalography

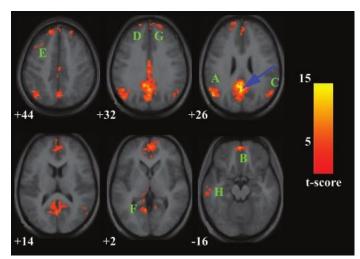
Sachin Kumar 15CS30025


Guided by: Professor Debasis Samanta

Electroencephalography (EEG)


Electroencephalography (EEG) is an electrophysiological monitoring method to record electrical activity of the brain.

EEG measures voltage fluctuations resulting from ionic current within the neurons of the brain.



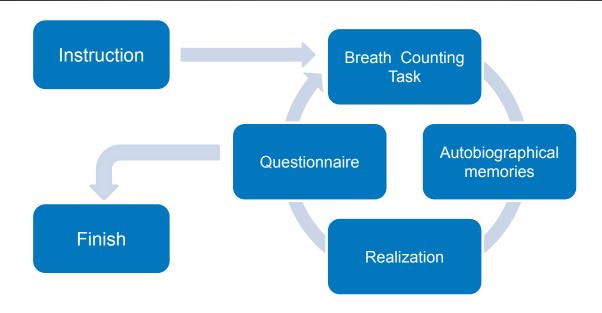
Default Mode Network (DMN)

DMN is most commonly active when a person is not focused on the outside world and the brain is at wakeful rest, such as during daydreaming and mind-wandering.

Identification of DMN with fMRI

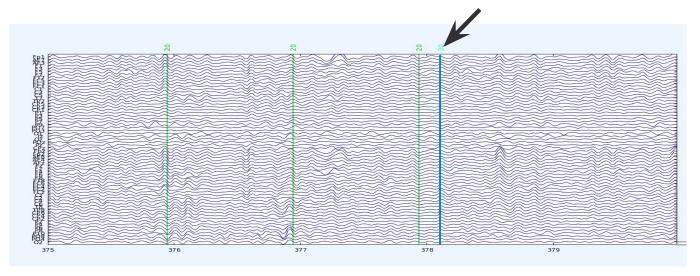
Michael D. Greicius , Ben Krasnow, Allan L. Reiss, and Vinod Menon "Functional connectivity in the resting brain: A network analysis of the default mode hypothesis"

Map of the resting-state neural connectivity.

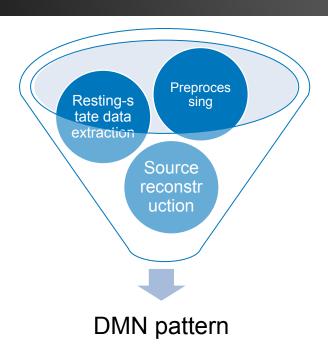

- With fMRI or PET, we can easily identify DMN
- There are limited patients that we can examine with fMRI or PET
- The blue arrow indicates the approximate location of the PCC peak
- A and C are approximate location of Angular Gyrus
- D and G shows the location of mPFC.

Objective

- show that the DMN can also be identified by electroencephalography (EEG)
- Induce a DMN pattern consistent with the pattern observed with PET and fMRI, by using resting-state EEG data.


- Advantages over fMRI analysis :
 - Portable, cheap and a wider range of patients can be observed.

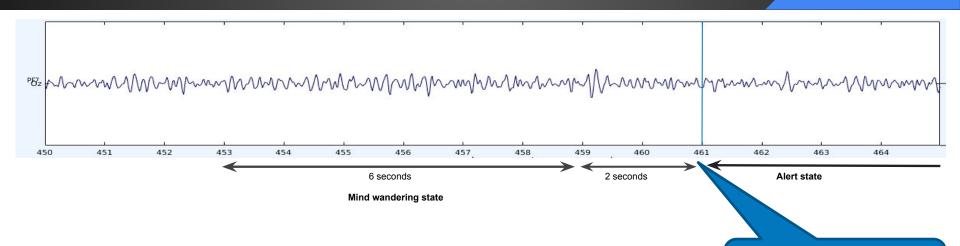
Experimental procedure of Data Collection



Data set

- Data set have 64 channels
- sampling rate 1024 Hz
- The black arrow shows the time stamp when subject realized that he/she lost.

Data analysis


Steps of data analysis

- Preprocessing data
 - Downsampling data
 - Garbage channel rejection
 - Band Pass filtering (4-16 hz)
- Mind wandering data extraction
- Source reconstruction

Preprocessing

- Down-sampling
 - Sampling rate of original data was 1024 Hz
 - Very difficult to process this much of data further
 - Re sampled to 256 Hz
- Band Pass filtering
 - By comparing source activation levels, we found a pattern in θ and α band power changes in PCC, mPFC and AG that is highly consistent with the DMN.
 - we are focusing on the θ -band (3.5Hz-7Hz) and α -band (8-14 Hz)

Mind wandering data extraction

Subject realised that he/she lost

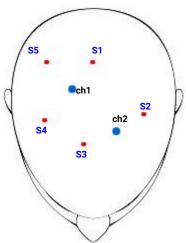
Source reconstruction

Noise Head model Average covariance epochs computation calculation

sources computation

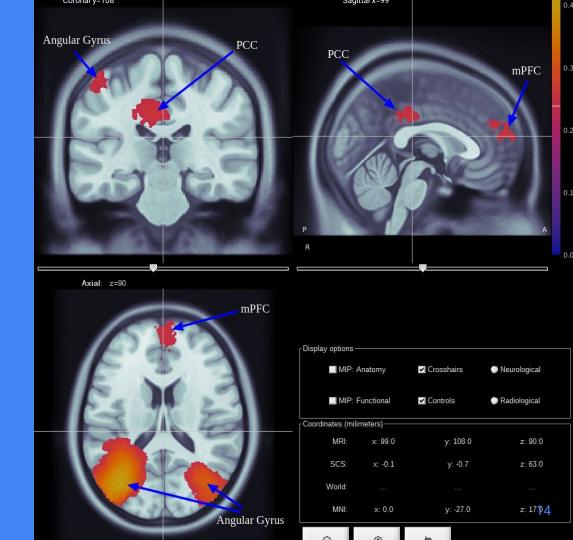
Source reconstruction continue ...

Averaging Epochs:


CH1	E _{1,1} E _{1,2} E _{1,3} E _{1,4} E _{1,4} E _{1,30}	$E_{1,av} = (E_{1,1} + + E_{1,30})/30$
CH2	$E_{2,1}$ $E_{2,2}$ $E_{2,3}$ $E_{2,4}$ $E_{2,4}$ $E_{2,30}$	$E_{2,av} = (E_{2,1} + + E_{2,30})/30$
CH3	$E_{3,1}$ $E_{3,2}$ $E_{3,3}$ $E_{3,4}$ $E_{3,4}$ $E_{3,30}$	$E_{3,av} = (E_{3,1} + \dots + E_{3,30})/30$
CH64	E _{64,1} E _{64,2} E _{64,3} E _{64,4} E _{64,4} E _{64,30}	$E_{64,av} = (E_{64,1} + + E_{64,30})/30$
'		

Source reconstruction continue ...

Noise covariance


- Instrumental noise has been captured with EEG using two and more minutes of empty room measurements.
- Noise recordings were collect on same day as the subject's recordings.

Source computation

Result

Figure displays the sources that we found to show a statistically significant modulation on the group-level. We find the most prominent modulation of band power in the posterior cingulate cortex (PCC), which constitutes a hub of the DMN. In addition, we observe band power modulation in the medial prefrontal cortex (mPFC) and in Angular Gyrus.

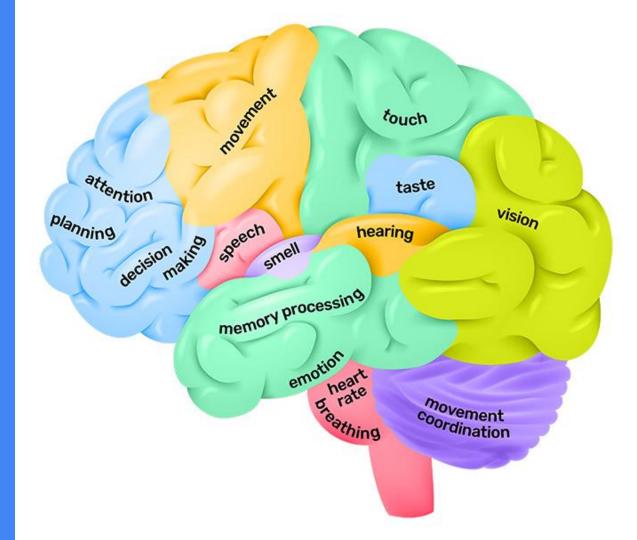
Conclusion

1

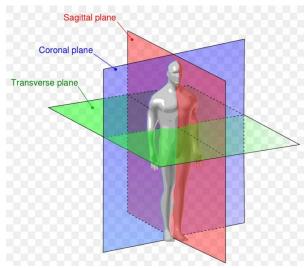
 Identified a pattern of EEG band power modulation consistent with the characterization of DMN with PET and fMRI

2

• this EEG-based identification of DMNs enables us to study the oscillatory properties of DMNs that are not accessible by PET or fMRI.


1

our work makes it possible to study DMN changes in the patient


References

- 1. Michael D. Greicius, Ben Krasnow, Allan L. Reiss, and Vinod Menon "Functional connectivity in the resting brain: A network analysis of the default mode hypothesis" 2002
- 2. Romain Grandchamp 1,2 *, Claire Braboszcz 1,2 and Arnaud Delorme "Oculometric variations during mind wandering"
- 3. P. Fransson and G. Marrelec, "The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis," Neurolmage, vol. 42, no.3, pp. 1178-1184, 2008
- 4. https://en.wikipedia.org/wiki/Resting-state-fmrl#Functional
- 5. https://qbi.uq.edu.au/brain/brain-anatomy/lobes-brain
- 6. "Brain Connectivity Analysis: A Short Survey" ,By E.W. Lang, A. M. Tom´e, I. R. Keck, J.M. G´orriz-S´aez, and C. G. Puntonet, Hindawi Publishing Corporation Computational Intelligence and Neuroscience, 2012
- 7. "Functional and Effective Connectivity: A Review", By Karl J. Friston, Brain Connectivity, Volume 1, Number 1, 2011
- 8. "Dynamic causal modelling", By Friston KJ, Harrison L, Penny W. 2003, Neuroimage: 19:1273–1302
- 9. "Functional connectivity in the resting brain: A network analysis of the default mode hypothesis", By Michael D. Greicius, Ben Krasnow, Allan L. Reiss, and Vinod Menon, Proc Natl Acad Sci, USA, 2003

Thanks!

Appendix

https://favpng.com/png_view/free-anatomy-images-anatomy-sagittal-plane-anatomica l-terms-of-location-coronal-plane-png/d4u0 SKtU