Improving Unsupervised Query Segmentation using Parts-of-Speech Sequence Information

Rishiraj Saha Roy, Yogarshi Vyas, Niloy Ganguly (IIT Kharagpur) Monojit Choudhury (Microsoft Research)

Unsegmented Query Log

Lexicon L_o

Word Association Score (WAS) calculation (Mishra et al. WWW'2011)

> **POS Tagging** The_DT rolling_VBG stones_NNS

Query segmentation is the pro-

cess of breaking down Web search queries into their constituent structural units, thereby aiding the retrieval process. This study connects two orthogonal approaches to segmentation or chunking of text fragments – those that rely on purely statistical word association measures and those that try to incorporate linguistic information, used commonly for Natural Language chunking.

Other n-gram

POS tagged Query Log

POS tagged Lexicon L_i

Penn Tree bank tagset (36 tags) Stanford log-linear POS tagger [Toutanova et al. 2003]

Universal POS tagset (12 tags) [Petrov et al. 2012] Stanford log-linear POS tagger

Unsupervised POS induction (405 tags) [Biemann, 2006]

POS Transfer

N-gram Computation

Our initial experiments show that POS tagging does improve query segmentation. Although we do not observe any performance benefits of using a specific POS tagset or tagging approach over others, we do observe that tagset and taggers designed for POS tagging English text help improve the segmentation of a complementary set of queries than the ones which are benefitted by unsupervised POS induction. Thus, appropriately combining these two approaches is expected to lead to better segmentation.

Example Clusters from Bie-S

Cluster 1: bake, casserole, dessert, fry, meatballs, Cluster 2: athletics, baseball, cycling, football, Cluster 3: army, citizenship, customs, defence, Cluster 4: battlefield, diablo, godfather, hitman,

For each POS *n*-gram (or POS pattern) P_i (say, DT-VBG-NNS), we count the number of times P_i appears in L_i , denoted by $count(P_i,i)$

POS tagged Other *n*-gram

Scored POS pattern list

Augmented Lexicon

Other n-gram

We define a score for P_i as follows:

 $score(P_i, i + 1) = score(P_i, i)\ln(e + \alpha e^{-i/\ln(1+count(P_i, i))})$

Here, iteration $i \ge 0$ and α is a tuning parameter. We define $score(P_i, 0) = 1$.

Score augmentation

The WAS for every unique n-gram w is augmented as:

 $score(\mathbf{w}, i + 1) = score(\mathbf{w}, i) \times score(P_{POS(\mathbf{w})}, i)$

POS(w) = index j of the underlying POS pattern of w. score(w, 0) = WAS(w) L_{i+1} is constructed by including all w for which $score(\mathbf{w}, i) \ge \delta$ (user defined threshold).

Iterate till convergence ($L_{i+1} \equiv L_i$)

Segment queries using the final

Example Segmentations

Tagset Segmented query

picture | in | picture | lcd tv (0.61) Orig

PTB/UTS picture in picture | lcd tv (0.79)

		lex	lexicon (Mishra et al. WWW'2011)			Bie-S Orig	picture in picture lcd tv (0.75) samsung i900 omnia free games (0.69)				
Segmented auery log		IR Performance of the segmented queries (Mishra et al. WWW'2011)					All tags Orig All tags	samsung i900 omnia free games (0.81) richard burns rally pc cheats (0.67) richard burns rally pc cheats (0.75)			
		Metric	Orig	PTB	UTS 0.751*	Bie-S	Numb	Imber of Winning and losing queries			
IR-based Evaluation		nDCG@10	0.747	0.753	0.752	0.752	PTB	67 (+0.048) 57 (+0.055)	150 162	33 (-0.060) 32 (-0.068)	
		MRR	0.587	0.601	0.598	0.602	Bie-S	67 (+0.042)	140	43 (-0.050)	

Contact: rishiraj@cse.iitkgp.ernet.in, monojitc@microsoft.com