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ABSTRACT

The co-evolution of the Web and commercial search engirmesbttee inability of
such search engines to process natural language (NL) gogstiave resulted in
search queries being formulated in a syntax which is morept®nthan a bag-of-
words model, but more flexibly structured than sentencefocaing to NL gram-
mar. In this thesis, we take the first steps to understandithicgie syntactic struc-
ture of Web search queries in an unsupervised frameworkapply the acquired
knowledge to make important contributions to InformationriReal (IR). First, we
develop a query segmentation algorithm that uses queryttogsscover syntac-
tic units in queries. We find that our algorithm detects saveyntactic constructs
that differ from NL phrases. We proceed to augment our methitid Wikipedia
titles for identifying long named entities. Next, we deyelan IR-based evalua-
tion framework for query segmentation which is superior tevpusly employed
evaluation schemes against human annotations. Here, wetehbsubstantial IR
improvements are possible due to query segmentation. Wedineelop an algo-
rithm that uses only query logs to generate a nested (orrhlecal) query segmen-
tation, where segments can be embedded inside bigger segnaportantly, we
also devise a technique for directly applying nested seggtien to improve doc-
ument ranking. Subsequently, we use segment co-occurgtatstics computed
from query logs to find that query segments broadly fall imto tlasses — content
and intent. While content units must match exactly in the dosnts, intent units
can be used in more intelligent ways to improve the qualityezrch results. More
generally, the relationship between content and intenhsegs within the query is

vital to query understanding. Finally, we generate largemes of artificial query



Xiv

logs constrained by-gram model probabilities estimated from real query logs. W
perform corpus-level and query-level comparisons of maggelerated logs with
the real query log based on complex network statistics armvtsourced) user
intuition of real query syntax, respectively. The two agmioes together provide
us with a holistic view of the syntactic complexity of Web s#aqueries which is

more complex than what-grams can capture, but yet more predictable than NL.

Keywords: Query understanding, Query syntax, Query segmentatioeryQuo-

tent, Query complexity
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Chapter 1

Introduction

A Web search engine is popularly perceived aa/iadow to the Web millions of users
around the world interact everyday with search enginestisfgaliverse information needs.
Web users communicate their information need to a searcinetigroughqueries Over
the years, as the Web has grown larger with more and mordeateaiormation now avail-
able online, requirements of users have also become morpleonThese two processes
are highly intertwined, and the co-evolution of the Web aedrsh engines has resulted
in user queries being formulated in a unique linguisticestyharkedly distinct from the
parent natural language (NL) in which the Web documents angposed. The fact that
search engines do not really “understand” or “process” Niiged average Web users to
specify their queries in a language that has a syntax farlemtipan NL, but perhaps more
complex than the commonly assumed bag-of-words model.

1.1 Motivation

Despite substantial progress in the field of informationeeal (IR) in the last thirty years,
commercial search engines like Bing and Google still relywigan the degree of query
term match to assess the relevance of documents. In othelswardocument that con-
tains a higher number of query words is likely to be more r@i¢vo the query. This idea
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Figure 1.1: Long queries pose a challenge to commercial Web searchesngin

follows from thebag-of-words modeWwhere both the query and the document are treated
as unordered sets of constituent terms. In practice, tmsipte is used only to select the
candidate set of relevant documents, and the final rankisaf lissults is produced by using
more sophisticated algorithms like PageRaB [to assess the importance of the website
hosting the document) or by leveraging additional userrmttdion like clicks, page dwell
times and reformulationd.p9. This approach generally works quite well for short querie
(say, up to about three words) and frequent queries (aleoreef to athead queriesfor
which the search engine quickly learns about the preferageégfrom user behavior. How-
ever, quality of search results degrade noticeably wheqtleees are relatively infrequent
(also calledtail querieg and slightly longer (say, four to ten words). We note thagrgu
terms being rare, by itself, is not a sufficient criterion tse difficulty for a search engine,
as it is quite possible that the pages containing these tarenalso quite rare and hence
leave no scope for confusion. But when the queries are lomgpassible that some of the
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words of the query are frequent and also reside on populasiteshbwhich subsequently re-
sults in upward shifting of non-relevant pages in the finakeal list. The lack of sufficient

user information caused by the rarity (of the query as a wWhiblerefore makes matters
difficult for the search engine. Obtaining the ideal rankgrucial to user satisfaction be-
cause it is known that the searcher usually examines onliofh&ew results properly, and
only glances over the lower results, a phenomenon usuatiywkras theosition biag54].

We present our case with a representative example in Figré& he figure shows re-
sults obtained through the Bing search engine for the queryf fi ce gui de book
buy onl i ne (issued on 28 February 2014). We note that two types of eand usu-
ally presented in response to a user querganic (or natural) results, anplaid results (or
advertisements). While the former are retrieved from theltMdfide Web by the search
engine’s usual algorithm, sponsors pay search engines tbajeadvertisement pages dis-
played when certain keywords appear in the query. In thesamres, we are concerned only
about organic search results. Coming back to our examplepseree that theser intent
behind the query is to buy a reference book for using Micrto&dfice, online. However,
results at ranks one, three and six all intend to sell the d8ift Office software instead,
and hence are clearly non-relevant to the user. This is dalngehe fact that the non-
relevant pages also contain most of the query wordsiker osof t , of fi ce, buy and
onl i ne, and these pages come from a trusted websitelitkee. microsoft.com

Such challenges can be addressed if one tries to look degpehe query, and iden-
tifies structural relationships that were previously cvekied due to the oversimplification
of the bag-of-words model. By the identification of “struetrelationships”, we refer to
processes that involve locating sets of words that are Miytedated. Also, it is important
to understand dependencies between these sets of wordeegiiact to the original user
intent. Revisiting our example, it is intuitive that the abgwoblems could be minimized
if one knew that theri cr osoft of fi ce gui de book was the actual object of inter-
est, and noti crosoft of fi ce itself. Also, inside the unitmi crosoft office
andgui de book are expressions whose words could not be permuted fredigiddcu-
ment. Next, the guide book is thepic of the query and the wordsuy onl i ne are added
by the user to formulate his/her intent more specificallyr &ample, the user would not
be interested to ead the book online. So, knowing the topic of the query along \tli
user intent, the search engine could understand that ortghimg the wordsrn cr osof t ,
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of fi ce, buy andonl i ne, without the wordyui de or book (or its synonyms), would
not be meaningful. Further, words likeity andonl i ne need not even match in the doc-
ument — for example, the catalogue page of a relevant book @@mmerce store would
be a very relevant result.

The fundamental goal of this research is to carefully soizei the proposition stated
above througlsyntactic analysis of querieand to leverage our findings to improve IR.
Wherever applicable, we will focus amsupervisedechniques that are generally appli-
cable to queries from all domains. Supervised techniqu¥&¥ai query analysis typically
face the non-trivial challenge of building a good humarelal training corpus that has
appropriate coverage from several query domal&g[ A complete linguistic study en-
compasses the dimensionsstfucture functionanddynamicq8,51]. Structure, in turn,
deals with aspects of syntax (study of principles by whiahieseces are constructed) and
semantics (study of meanings associated with sentendé)9. We have observed in-
teresting conceptual similarities and differences betvssarch queries and NLs on all the
three perspectives, which we shall discuss in this chaBtetrin this thesis, we prefer to in-
vestigate deep into a single aspect, and focus on queryxsyrtas, we aim to understand
syntactic relationships between individual words and gsoof words within queriés But
before we proceed, it is necessary to describe our querydtay d

1.2 The Bing query log data

For all our experiments, we use a query log sampled from Bingtrali in May 2010.
This raw data slice consists o6.7)// (M = Million) queries. Each query is accompanied
by a clicked URL, a unique hash of the URL, and the click countr(ber of times the
URL was clicked by users for the query). A random snhapshotefitita showing distinct
queries is presented in Figute2 We subsequently extractéd.9) queries from the raw
data such that the queries were composed of ASCII charaatysand were of length
between two and ten words. The justification for imposingtarfivased on query length
is as follows. One word queries do not show evidence of syraa# very long queries

1By queries search querigsWeb search querieendWeb querieswe will refer to the same concept.
2http://www.bing.com/?cc=guAccessed 19 May 2014.
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Figure 1.3: Query length distributions on our query log.

(having more than ten words) are typically machine gendratessages or excerpts from
NL text, and need separate query processing techniquese a@nel.7)M unique queries
among the extractedl.9M queries — but in order to preserve the log properties arisirig
of the natural power law frequency distribution of queri#g(, duplicates were retained
for all experiments. The length distribution (defined imterof number of words per query)
for our extracted set af1.9M queries is shown in Figure.3. The mean query lengths for
this set are3.58 words (all queries) and.77 words (distinct queries).



6 Chapter 1 Introduction

Ideas

Tdeas

Medium

Feedback of
User 1 affects
User 2

— lo
L

Queries

—

Feedback of
User 2 affects

User 1
Medum
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1.3 Functional aspects of Web search queries

We will now present a comparison between queries and NLs Btoctural, functional
and dynamical perspectives. We present a synthesis of tleatsaeas emerging from
these three orthogonal perspectives on queries that poihtet strong parallels between
Web search queries and a rudimentary language systemjefitead aprotolanguage At
the very outset we want to note that there is a fundamenftardifce between the function
of human language and that of queries: while human langusageed for communication
between two human beings (presumably) having very simadgnitive capabilities, queries
are used as the means of communication between a human dsesaarch engine, which
are incomparable not only in terms of their cognitive cafi@ds, but also in their biological
and cultural history of language use. This asymmetry batwle®communicating agents in
the context of queries can raise serious doubts about o firagosition of queries being
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a distinct language. However, we believe that there is arradtive and perhaps a more
realistic interpretation of this communicative behavighich is to assume that ultimately
queries are actions of the users on a shared environmeesezied by the search engine.
While the users might believe that they are communicating thearmation need to the
search engine through their queries which responds witlhveisgwhich of course is true),
the search engine’s response is dependent completely actibas and responses of other
users in the past (Figufed). This is especially true for modern commercial searchresggyi
which extensively rely on user queries, URL clicks and expleedbacks on relevance of
documents for learning and improvement of the search mod#isis, we can visualize
this situation as an indirect communication between two dnosers mediated through a
shared environment (or channel) which is the search endiisea well-known fact that the
channel (such as the structure of our articulatory and péweédevices) has a profound
effect on the structure and dynamics of the evolving languag

Web search queries are small fragments of texts (symbadds)atte used to commu-
nicate the information need of an individual to a search magin this regard, the basic
function of queries is similar to that of languages, whichrasmission of information.
Hockett P3] proposed thirteen design features of a communicatioresystNLs possess
all these features and in this section we see that a largeenwhthese features are present
in queries as well. Some of these features, sudeasanticityarbitrariness discreteness
andduality of patterning are exhibited in queries by virtue of the fact that the bodd
blocks of queries are, after all, words — which are also thechanits of NLs. However,
with respect to some of the other features, NLs and queresaralogous in their function.
We discuss the other design features here.

Vocal-auditory channel: All spoken human language is produced using the vocal tract
and auditory channel. While the role of vocal-auditory cledns currently irrelevant for
gueries, they are produced and perceived by writing (tyyamgl reading of text.

Broadcast transmission and directional reception:Human language can be heard if
it is within the range of another person’s auditory chanmelditionally, a listener, who
shares the same time and space of the speaker, has the @bd#yermine the source of
a sound by binaural direction finding. In the case of Web $eajoeries issued by a user
are recorded in the search engine log files. The engine usss thgs to generatpiery
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completiondor another user. This way, a query can be potentially brastdo millions of
new users. A new user caghooseo be receptive of these completions (similar to signals)
by enabling this specific feature on their search engine.

Rapid fading: Waveforms of spoken language dissipate over time and doersigp.
A hearer can only receive specific auditory information atttime it is spoken. This feature
is related to the modality of language, and as queries arslyrtaixtual, they are therefore
less ephemeral than spoken language.

Interchangeability: A person has the ability to both speak and hear the same signal
Anything that a person is able to hear, s/he has the abilitgpooduce through spoken
language. Similarly, users have the ability to understartiraformulate somebody else’s
qguery. If a person has seen a query, s/he can also use thgt quer

Total feedback: Speakers have the ability to hear themselves speak. Thtbigylthey
are able to monitor their speech production and internaltzat they are producing through
language. Searchers also know what queries they have jssug@dan monitor them and
internalize their uses.

Specialization: Human language sounds are specialized for communicatian,ig,
humans speak mainly to transmit information. Query wordsai@ specialized for specific
information needs of the user.

Displacement:NL has the ability to refer to things in space and time and comoate
about things that are currently not present. Queries alew #he users to seek information
about past and future events or objects.

Productivity: NL allows for the creation of new and unique meanings of atiees
from previously existing utterances and sounds. Likewgse@ye-existing set of distinct
words (around.2)M in our dataset) can be combined to formulate unseen queries.

Traditional transmission: Human language is not completely innate and acquisition
depends in part on the learning of a language. Searcherdsmatearn how to formulate
gueries from search experts, search engine guidelinede dngoks 183, search engine
feedback and mimicking other users.
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Thus, from a purely functional perspective, Web searchigseare very similar to NL.

1.4 Structural aspects of Web search queries

Barr et. al. R2] were one of the first to study the linguistic structure of Vgelarch queries.
They examine the applicability of part-of-speech taggmd:nglish Web queries and the
value of such tagging for enhancing search results. Thew shat 70% of all words in
gueries are nouns, followed by adjectiv@sl (1) and prepositions3(7%). They also show
that a very large percentage of queries are noun phrasesicanehstructured collections
of terms. They manually label a set of queries with these tagsain a Brill tagger, and
achieve only about0% accuracy, the poor figure reflecting the unique syntactigcstr
ture of queries. They also try to classify search queriesgnammatical classes based on
the syntax of part-of-speech tag sequences. They alsarszeuthe practical applicabil-
ity of leveraging query-trained part-of-speech taggerdRoapplications. They show that
part-of-speech information can be a useful feature in nmeckéarned search result rank-
ing. Their experiments also include the potential use oftdgger in selecting words for
omission or substitution in query reformulation. They dade that leveraging the unique
linguistic structure of web-search queries can improveckeaxperience. This thesis deals
with structural aspects of search queries, and Secdhhrough2.4 provide a more de-
tailed review of this space.

1.5 Dynamical aspects of Web search queries

Search engines ammplex adaptive systertisat are able to communicate with humans
and evolve at two levels — algorithms and models. Searcmeadiave come a long way
since the first generation search systed#5. Even though search engine companies
rarely publish parts of their internal algorithms, the hugkime of Web IR literature over
the last decade is an indication enough that search algwittave evolved. Algorithmic
evolution for search engines include more sophisticatechina learning algorithms for
ranking and use of a higher number of features for retrieMaése changes are analogous
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to agents undergoing anatomical modifications over seyegak — like the unique structure
of the vocal tract and the descended position of the laryirumans §7).

Evolution of the model, on the other hand, is informatiort thea search system learns
from user interactions to present better results in theréutuModels are learnt by the
search engine through constant user feedback and preésrgathered during the course
of Web searches. More and more Web data is crawled to maker loeitument models.
More query logs are used to build better query analysis nsod@uery log analysis can
be used to study individual search behavior, query dupdioat user sessions and query
correlations 204]. Clickthrough data109 229 and pseudo-relevance feedba287] are
also used by search engines to enrich their models of redevan

This evolution of models is similar to the cultural transsns of language. Adaptation
of the search engine is a population-level phenomenon,ennéividual users are agnos-
tic to the fact that their interactions with the search eagimdeed affect the response of
the search engine for other users and vice versa. Culturarriasion for the language of
gueries can be considered from two aspects: Experts teganbiices how to search, and
new users learning search tips and tricks from the colled¢nowledge of the Web, or rel-
evant books183 - like traditional language transmission. An individgatompetence in
language is derived from data which is itself a consequehttedinguistic competence of
other individuals 206]. Modern theories of cultural evolution recognize thaterdl tradi-
tions are socially transmitted from person to person betvegw within generation2[L2.
Individual click data and search engine usage affect thénengs a whole. Users un-
knowingly affect the response of the engine towards othersyeffectively transmitting
information of some kind through the engine (Figard).

Incorporation of user feedback has tremendously improkiedoerformance and per-
ception of the popular commercial search engines. While ldp@righmic components of
a search engine rarely make any attempt to understand NLrople&g queries, search
engines can intelligently process very complex queriesijudearning from past user be-
havior. This gives an average user the impression that grelsengine is indeed getting
smarter, and consequently they are motivated to formulatee momplex queries. This
results in a population-level snowball effect leading tcréase in the structural complexity
of the queries.
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Summary of linguistic analogy. We have highlighted some similarities that Web
search queries are observed to share with an evolving lgeggaing evidence from three
different aspects. First, the function and some of the biasitures of queries are similar
to that of NL. Second, the structure of the queries are in éetithat of a random bag-of-
words model and a full-fledged NL form. Nevertheless, thigay seems to be evolving in
complexity. Third, the evolutionary dynamics of querieamalogous to models of cultural
evolution for language. Although this evolution is actyah outcome of the interactions
between the users via the search engine, it seems as thausgstith engine is itself evolv-
ing in this process. Given this context, it is an interestiagearch problem to understand
the linguistic syntax of queries, which may lay down stegpstones for obtaining new
insights on the evolution of human language.

1.6 Obijectives and approach of the thesis

The concrete objectives of this thesis are three-fold, aadtated below:
(1) To discover the syntactic units of Web search queries.

Web search queries have evolved to follow a unique syntatiicture that represents
user intent in a way distinct from NL document syntax. We wigstliscover this underlying
syntactic structure by analyzing large volumes of quergl&pecifically, we wish to detect
relationships between words within a query, and to undedstew such relationships can
be utilized to produce a more informed representation ofjtrexy than the simple bag-of-
words model.

(2) To understand the roles played by such units in search quees.

Once we discover the syntactic units of search queries, sk teiunderstand the roles
these units play with respect to the search process. Formgamouns and verbs play
different roles in a typical NL sentence, and understanthiege roles is vital to the correct
interpretation of the sentence. Similarly, we expect thiét@nt classes of units in queries
will have different roles, and appropriate interpretatmmthese roles will give us new
insights into better query understanding and intelligefrieval.
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(3) To understand the complexity of syntactic structure in Web search queries.

Even though it has been a common perception that Web seaecieghave been grow-
ing in syntactic complexity, a precise quantification of aene has been lacking in the lit-
erature. In this thesis, we wish to objectively measure tdmepiexity in query syntax from
multiple perspectives. Such a study opens up the avenuenfigrstanding the change
in query complexity over several years. This would, in tenable us to understand the
evolution of linguistic syntax for search queries.

The specific approaches that have been followed in the thesashieve the above
objectives are stated below:

(1) Unsupervised query segmentation using query logs, antkieffectiveness at im-
proving information retrieval.

Syntactic units of search queries must be discovered wiitkittempting to project docu-
ment structure onto queries. This process of dividing @sdnto their constituent syntactic
units is called query segmentation, and all segmentatiproaghes till date have relied on
some form of document resources to accomplish this taskt, ISexh algorithms do not
specify how to independently apply the knowledge of discedequery segments to re-
trieval, and thus do not leave scope for a generic IR-basddati@n across algorithms.
Finally, almost all segmentation algorithms restrict tlsehaes to non-hierarchical struc-
ture, i.e. they try to simply partition a query into a non-dapping sequence of words.
We try to address these issues in the following ways: (i) @edan unsupervised query
segmentation algorithm that primarily uses query logs adriput resource; (ii) Propose
an IR-based evaluation framework for query segmentatiaij;Design an algorithm for
hierarchical or nested query segmentation that can discafeer query structure, again
relying only on query logs; and, (iv) Propose an approactdéierministically applying
the knowledge of hierarchical query segmentation to impmycument ranking.

(2) Unsupervised role induction of discovered query segmés

Query segmentation is the first step to query understandind,its scope goes be-
yond simple multiword expression detection. The intuithext stage would be to deduce
the roles discovered segments perform in search queribsregpect to the retrieval and
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ranking processes. Past approaches to such role indu@i@nrhostly dealt with specific
types of queries, like noun phrase queries and named engtyes, or were supervised ap-
proaches restricted to domains like jobs and movies. Ouoapp here will try to perform
the following tasks: (i) Propose a classification schemeaytary segments based on their
roles in the query, that would be generally applicable foerggs from all domains; and,
(i) Develop a lightweight and unsupervised technique &reling query segments based
on our taxonomy.

(3) Analysis of syntactic complexity of search queries.

There has been no quantifying study that discusses thectgntamplexity of search
gueries. The approach that we take to close this researcis gadollows: (i) Investigate
the perplexity of some simple query generation models teerstdnd the syntactic com-
plexity of queries; (ii) Further, investigate the propestiof word co-occurrence networks
built real and generated queries to obtain a corpus-levéérstanding of syntactic com-
plexity; and, (iii) Examine human intuition about queryé¢ syntax using crowdsourcing
experiments with real and generated queries.

1.7 Contributions of the thesis

In this thesis, we have developed and evaluated unsupér@ggoaches to query segmen-
tation and segment role induction. We have also tried to tifyahe syntactic complexity
of Web search queries using multiple perspectives. Theafgpeontributions are summa-
rized below.

(1) Development and evaluation of flat and nested query segmgtion algorithms
that rely on query logs and a named entity list:

We have proposed an unsupervised method of flat query segtioenthat uses Web
gueries as the primary resource, which helps discover siyatanits of queries that often
differ from NL phrases. We have enhanced this technique Witkipedia titles to detect
relatively rarer named entities. Next, we overcame sevenateptual challenges to design
and implement the first IR-based evaluation framework forygsegmentation, that es-
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tablished the usefulness of segmentation in IR. Finally, axelproposed an unsupervised
algorithm for nested query segmentation and the first gfyate use the nested query rep-
resentation for improving IR performance. We have showhttiatree structure inherent

in the hierarchical segmentation can be used for effecéiM@anking of results.

(2) Development and evaluation of a framework for classifyig query segments as
content or intent:

We have proposed that all query segments can be classifieshtntor intent. While
content segments must match exactly in documents, intet# c@n act as indicators of
user intent and can be used in other ways (like restrictimgrarranking retrieved pages)
to improve result quality. Simple counts and entropies afdxam-occurrence distributions,
estimated from only query logs, can be used for effectivaipassised labeling of content
and intent units. A taxonomy for mined intent units has be@sgnted, providing readers
with a qualitative analysis of the nature of such units. Weeltaed to consolidate ongoing
works on associating intents with query words by providinggerarching framework.

(3) Proposal of a framework for understanding syntactic conplexity of queries:

We have provided corpus and query level setups for examiwimgther queries can
be said to be a distinct linguistic system. We have builfiardl logs based on statisti-
cal language models, and subsequently used complex netmakls and native speaker
intuition (general Web search users), to quantify theiratgn from real data. Our com-
bined approach is successful in bringing out the fact thgtam statistics are inadequate
for modeling queries, and the ideal generative model hambibie both syntactic and se-
mantic constraints specific to Web queries. Finally, oveesults obtained can indeed be
considered positive cues in favor of acceptance of our raignypothesis of Web search
gueries evolving into a distinct language.

Thus, to summarize the contributions of this thesis in alsisgntence, we have (i)
developed and evaluated unsupervised algorithms for fldtrested query segmentations,
(ii) developed and evaluated a framework for labeling quegnsents as content or intent,
and (iii) developed a framework for understanding syntactmplexity of search queries
based on word co-occurrence networks and Web user intuition.
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1.8 Organization of the thesis

The rest of the thesis is organized as follows.

In Chapter 2, we provide a review of past literature, while identifyingsearch gaps
and scope for further work.

In Chapter 3, we develop an unsupervised flat query segmentation digoritsing
guery logs and enhance it with Wikipedia titles. We also sie\an IR-based evaluation
framework for flat query segmentation, and show that thegseg algorithm has the best
retrieval performance.

In Chapter 4, we develop an unsupervised nested query segmentationtiahgand
show how improvements in document ranking can be obtainegppyopriately leveraging
the tree representation of the query arising out of the satatien.

In Chapter 5, we present the concepts of content and intent segmentg alibim in-
depth discussions, and provide an unsupervised labelmategy based on segment co-
occurrence statistics computed from query logs.

Chapter 6 presents a framework for understanding the syntactic cexitglof search
gueries by comparing corpus-level and query-level stesidietween real and language
model-generated artificial query logs.

Finally, Chapter 7 concludes the thesis by summarizing the contributions adidat-
ing a few issues for future work that have been opened up bsttitges in this thesis.






Chapter 2

Literature Review

Scientific and engineering innovation, coupled with desirggahardware costs and increas-
ing commercial benefits, have made search engines extrgoeisrful over the last two to
three decadedl (. Almost all Web users today regularly visit a search engiage and
have their queries “answered” within a few millisecondsu3jnot surprisingly, the same
span of time has seen a significant amount of research bentycted on almost every as-
pect of Web-based retrieval. The general area of this theqigsery analysisan important
aspect of Web IR Research on query analysis tries to infer as much informatsopossi-
ble from the small number of words contained in the input guler the next few sections,
we outline relevant research on thgntacticaspects of query analysis, that are concerned
with learning the relationships among query words and h@sédtcan be exploited for bet-
ter retrieval. While initial research assumed the simple-dfagords independence model
used in Boolean retrieval, the field has since progressedperiementing with advanced
techniques that include dependence models, query segmantnd intent analysis. Most
of these works include ideas that specifically suit the cdraé (Web) IR and are not di-
rectly borrowed from natural language processing (NLP)s Tieed for basic independent
analysis for query understanding strengthens the hypistbésjueries possessing unique
linguistic style.

As stated in Chaptet, the objectives of this thesis are to develop algorithmsevad-

10ther vital facets include Web crawling, document indexigd user interface design.
17
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uation frameworks for query segmentation and segment nalection, and to study the
syntactic complexity of Web search queries. Hence, we piiynsurvey past research in
related areas and highlight scope of further work. We naeiththis thesis, we only deal
with unstructuredext queries and documents. Researcktomcturedandsemi-structured
retrieval (like retrieval from relational databases and XML retrigv&/, 167)) is out of the
scope of this work.

2.1 The bag-of-words model and beyond

Boolean model

One of the earliest retrieval models in IR is tBeolean retrieval moddl193. In this
model, the query is formulated as a Boolean expression ofsyavich means that the
query words are combined with Boolean operators like NOT, Adtid OR. An example
of a query in the Boolean model would lpmdonna AND (1ife OR bi o), which
would imply that the user is looking for documents with themteradonna, and any one
ofthetermd i f e orbi 0. The Boolean model treats each query (and each text document)
as an unordered set of words, or, more commonlyag-of-words In effect, only the
presence or absence of each query term (as specified in thedBogliery) matters. Thus,
in Boolean retrieval, a document either matches a query, @oes not, and there is no
concept of document ranking.

Vector space model

Thevector space mod¢l9§ is a notable improvement over the Boolean model where
documents can be ranked in response to a query. The rankpegfa@med with respect to
the term weightof the matched query words in the documents. Concretelyy eyszry
or every document is viewed as ardimensional vector, wherne is the size of the corpus
vocabulary. The'" entry in the vectors of the query and the document contaims$ethm
weight of the vocabulary term with indexin the query and the document, respectively.
One component of the term weight is tte¥m frequency(TF) of the word (in the query

2Throughout this workwordsandtermsare used interchangeably.
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or in the document, as applicable). However, certain wordg be present in almost all
the documents and hence may not have much discriminatingmpeith respect to the
ranking. To scale down the weights of such terms in the vectbe term weight includes a
second factor called the inverse document frequency (IDRg.IDF of a term with respect
to a corpus is defined as the logarithm of the ratio of the totaethber of documents in
the corpus to the number of documents that contain the telms,Tvery common terms
will have a low IDF. The term weight is usually a product of ffoéten normalized) TF
and the IDF, and such retrieval models are often referred tasang the TF-IDF ranking
scheme. Theimilarity scorebetween the query and the document is usually defined to be
the cosine similarityof the query and document vectors. Documents with higheneos
similarity with the query are ranked higher in the final résuThe vector space model and
the TF-IDF ranking scheme are extremely popular in IR anéséwther applications/[
18,91, 132 180 214, and their variants are in active use even todag, 96, 146 163.
Nevertheless, the vector space model still considers & @sem bag-of-words, and ignores
the significance associated with relative word ordering.

Term weighting

An important concept associated with the vector space medetrm weighting that
assigns different weights to different query terms. This $sgnificant improvement within
the bag-of-words framework, and term weighting has sinemlv@al in almost all IR appli-
cations. For example, Robertson and Jord@&5]| Salton and Buckley195, Kwok [127]
and Greiff [79], define progressively improved expressions for term wanghbased on
various usage statistics in the corpus. Term weighting kas lequally important iprob-
abilistic models of IRike the Okapi BM25 111,112 186, where documents are ranked
by probabilistic estimates of whether they have contemverit to the information need,
given the query and the document representations. Ternhtugggcan also be used for the
reductionof descriptive verbose queries by neglecting terms witreloweights 125 131],
but alternative approaches have proven to be more effeatitres task 27, 124|.

Language models

Statisticallanguage modeléLM) are one of the early mechanisms to allow direct in-
corporation of query term order into the retrieval procd§$[207]. In the LM framework,
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each document is treated as a sample text from a languageaahdjuery as a text gen-
eration process. Document ranking is performed based gortiabilities of generating a
query from the LMs of the retrieved documents. An LM basicalbmputes a probability
distribution over any sequence of words drawn from a voaalgulThus, a document is a
good match to a query if the document model is likely to geteettze query, which will in
turn happen if the document contains the query words frettyugi¥(. The simplest prob-
abilistic LM, theunigram modeldoes not take into account conditioning by word context,
and estimates probabilities of each term independentiyickleit is conceptually equiva-
lent to the bag-of-words representation. Howelsegram language modetsondition word
probabilities on the previous term and hence use the nofiolative word ordering. For a
trigram mode] the probability of a new word depends on the probabilitiehe preceding
two words. Specifically, Song and Crof2(Q7] report performance improvements on two
datasets using word pairs along with the unigram model, mdidates that further benefits
may be obtained using the trigram model.

Lafferty and Zhai 12§ were the first to proposguery language modelsThey show
that combining past work on document models with query geiver LMs can lead to
substantial IR benefits. Such benefits have been shown to be sigmificant for short
gueries. Estimating a model for each query, they evaluaé.hin an IR setup with the
goal of minimizing the total risk involved. Moreover, theyggest that LMs for queries
can be used in modeling user preferences, query contexisngyy and word senses. The
concept of (query) LMs has remained popular and has sinae Ui in a variety of real
applications §4,99,137,216, where usually the bigram and trigram models suffice.

Dependence models

Even though the idea that modeling term dependencies inndeats is useful for IR
was around since 198396 235, it was not until after twenty years that dependencies
betweenquery termsegan being considered. One of the pioneering works was lopne
Gao et al. 74], who extend the earlier language modeling approddtt,[207] based on
the unigram model by relaxing the independence assumpkioey introduce a query term
dependence or linkage factor as a hidden variable, and nioeldlependencies as acyclic,
planar and undirected graphs. According to their generatigdel, a query is created from
a document in a two-step process. First, the linkages arerged, and second, each query
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term is generated sequentially, constrained by the leerkddes. Their unsupervised ap-
proach for learning and applying query term dependencié¢R ggnificantly outperform
the probabilistic modelsifi1, 112 189 and the traditional unigram and bigram-based lan-
guage modelsl]76,207,211] on publicly available data.

Another influential work on query term dependence modelsetbaon Markov Ran-
dom Fields (MRF) 119, is by Metzler and Croft148. Their framework allows use of
advanced text features like phrases (word sequences) lghivey the document score
in response to a query based on the occurrences of singls,terdered phrases, and un-
ordered phrases in the document. They propose three mddetsxdependence: the inde-
pendence model (bag-of-words), the sequential dependeodel (SDM) (adjacent query
words are dependent on each other), and the full dependests (FDM) (all query words
are dependent on each other). The SDM is thus similar to trari LM [207]. While both
SDM and FDM improve significantly over the independence md@IeM is generally seen
to perform better for longer queries, while FDM is usuallytbefor shorter queries. This
seems to indicate that long range dependencies are notregyeint in search queries, and
the more computationally efficient SDM is preferred more @esrgps become longer.

Subsequent work by Bendersky et &8] explore the noun phrase dependence model
(NDM) (wherenoun phrasesn queries are considered as features for the MRF retrieval
model [L48) and the two-stage dependence model (TDM) (where nounspkrlbonger
than two words are subdivided into smaller expressions)MNIDd TDM assume all terms
within the boundaries of a noun phrase chuktp be dependent upon each other, and
no dependencies to exist between chunks. The TDM is obsénvaatperform the earlier
models, while requiring even less computation time tharSb#/. Like the MRF model,
term dependence has also been successfully incorporatethenDivergence From Ran-
domness (DFR) retrieval model7l. In another interesting work, term dependence has
been used in query reduction for verbose quedi€§][ Verbose queries are usually similar
to NL sentences, and the authors use syntactic featuresctedrfrom dependency parses
of verbose queries to rank terms in order of their importance

Term proximity models

In our last topic in this section, we will look at term proxiymimodels which reward
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Table 2.1: Corpus details for term dependence and proximity models.

Corpus Paper Used TREC Queries #Queries Avg. Length
WSJ87-92 Hou et al97] 1999 Ad Hoc Track 50 5.4
AP88-89 Hou et al.97] 1999 Ad Hoc Track 50 5.4
Robust Hou et al.97] 2004 Robust Track 100 4.1
WT10g Hou et al. 97] 2001 Ad Hoc Track 50 4.9
He et al. B§| 2000-'01 Web Track 100 4.2
Zhao et al. 246 2000-'01 Web Track 100 4.2
TRECS8 Zhao et al.746| 2004 Robust Track 250 2.7
GOVv2 He et al. 88] 2004-'06 Terabyte Track 150 3.1
Zhao et al. 24§ 2004-'06 Terabyte Track 150 3.1
Blog06 He et al. 88| 2006-'08 Blog Track 150 2.1
Zhao et al. 24§ 2006-'08 Blog Track 150 2.1
ClueWeb Category B He et al. 20184 2009 Relevance Feedback Track 50 2.1
ClueWeb 2009 Vuurens and de Vrig2f] 1992-'99 Ad Hoc, 2011-'13 Web Tracks550 3.5

documents that contain query terms close to each othernéisamnt deviation from the
lines of work presented earlier that rely directly and iedtty on occurrence frequencies
(or probabilities) of words and-grams. The underlying assumption in term proximity
models is that relevant documents will have several querglsvoccurring nearby one an-
other. There is no generally agreed-upon definition of tgonoXimity”; one can compute
the smallest span that contains all the query words in therdeat, or one can aggre-
gate the average distance between all the matched query tentme document. Tao and
Zhai [217) first explore the concept of term proximity and perform arthah exploration
of five such intuitive heuristics. To show the utility of teproximity in IR, they integrate

a term proximity factor into the BM25 probabilistic retri¢vaodel [189 and the KL-
divergence retrieval model 2§ and report statistically significant improvements. They
conclude that the minimum distance between any two pairsaitihed query words is
maximally correlated with document relevance. Cummins aiRidddan [56] examine
seven more proximity functions, and use a genetic progragmamework tdearn their
best combination function, which is subsequently integtanto a retrieval model. Their
findings agree with those of Tao and Zh2i[] regarding the best correlation of minimum
document distance of query term pairs with relevance, layt @mphasize the importance
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of consideringall pairs of query terms. Their results show improvements féin Bbort and
long queries over the chosen baselines. More recently, lde B8] continue in the same
paradigm of incorporating a proximity function into a proiistic retrieval model. Their
proximity functions based on window-baseejram frequency counts and co-occurrence
probabilities show improvement over BM25d9,, its bigram and trigram variants, and the
MREF retrieval model 14§.

Bai et al. R0] raise an important question of identifying lengths of semges within
which term proximities should be considered. They focusamglqueries and find that
the proximity of sequences of three to five words is the mdsicéfe, and suggest that
sequences of such length are indicativeisér intent They also show improvement when
n-gram sequences are appropriately weighted in proportcineir frequency in query
logs. Song et al.Z08 propose a different approach of using query term proxijratyd
do not look at pairwise term closeness in the document. adstihey first group sets of
guery words into non-overlapping sequences, and view thegeences as providing con-
text for the constituent terms. The relevance contributiba query term occurrence in the
document is measured by how many query terms occur in itexband how compact the
span[217] is. They replace term frequency in the BM25 modH#§ by the accumulated
relevance contribution of the span containing the term.allebf the collections used by
some of the most recent literature on dependence and ptgxmadels is presented in
Table2.1

2.2 ldentifying syntactic units

Having seen how query representation has progressed fesirtiple bag-of-words model
to incorporating term dependence and proximity, we will newvey the research that
tries to identify syntactic units inside a query. By syntacthits, we refer to groups or
sequences of words that are coherent from some perspdetivexample, they may either
be named entities like names of people, places or objectsiword expressions or noun
phrases of English or simply expressions that, if treated asit, help in the retrieval of

more relevant pages. Breaking a query into such syntactts isi(ideally) beneficial to

the search engine; it is not necessary that they will alway® hvell-defined meaning, or
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appear “well-formed” to a human user. We have already hadpges of such attempts
in the research covered so far, for example, in the work by Besky et al. 28], where
in order to infer a two-stage dependence model, the querjete® be partitioned into a
noun phrase and the remaining part of the query, or in Sonf 2G8, where grouping
words into coherent sequences was essential for modelinggeoximity. Here we will
first cover works on named entity recognition and noun phdasection, before we move
on to the relatively popular and more general theme of quegynentation.

Named entity recognition

Named entities like names of people and movies in queriessanbe viewed as syn-
tactic units, and identifying them can help significantlyinmproving IR precision or gen-
erating good query suggestions. We note that techniquestfie general topic of named
entity recognition in NL documents are hardly applicabléi@context of queries, because
of reasons like lack of capitalization, adequate contexd, grammatical syntax. Research
has been performed on named entity recognition in querieR@), with Guo et al.§1]
first bringing the problem into focus, who report thats of search queries contain named
entities. They propose a probabilistic approach to idgmtiém using query log data as the
only resource, based on the Latent Dirichlet Allocation eld85]. Further, the authors
also automatically classify the detected entities intapfimed classes likeovies games
andmusic Subsequently, Du et al68] note that query sessions data contain valuable
context information and use it to improve upon the methogpsed by Guo et al8l].

Noun phrase detection

Identifying noun phrase units likgear of the horse,present political
scene orthe wall of shane is often useful for better retrieval and other applica-
tions like query expansion. Just as for named entity redmgmithe lack of grammar and
context make the task non-trivial for queries. The effest®ss of such syntactic query
parsing for IR was first promoted by Zh&#39, who provides a probabilistic model for
detecting noun phrases in queries. The author shows thatimginoun phrases along with
words systematically produces better retrieval performeariJsually, noun phrase detec-
tion techniques involve the use of an English part-of-spaagger (POS) trained on NL
corpora p8,82,243, due to the lack of large volumes of human POS annotated/dogs.
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While the efficacy of such a method may seem questionable,rHetga. B2] report99%
precision and0% recall for two such taggers when evaluated on a test set0ofqueries.
This is possibly explained by the highly skewed class distron of query words, where
70% of the words are nouns, and adjective§%@tcome a distant second.

Bendersky et al.78] and Hagen et al.g2] use noun phrase detection as a step towards
guery segmentation (discussed later), and show direct Heflie of the process. Lima
and Pedersorbp] provide a fresh perspective and generate a syntactic patbe query
using an EM algorithm based on a probabilistic context-ffeemmar. The parsed query
is then used for noun phrase recognition. However, theimgrar consisting o800 hand
written rules, and the complexity of the overall algorithmake their approach diffcult
to be representative and operational at Web scale. This may fpossible reason why
the paper, presenting the very novel idea ajwery grammardid not spark substantial
research, apart from the work by Manshadi and 143 where the authors formulate a
probabilistic phrase structure grammar for tagging produeries. Carvalho et al5f]
adopt a purely statistical approach and use wogtam statistics for finding noun phrases,
and show improvements in retrieval performance when phkasavledge is incorporated
into the retrieval model.

Query segmentation

Query segmentation is by far the most prominent line of netetowards the goal of
syntactic partitioning of query words, with more than twepapers published till date that
are directly on the topic. Even though this “volume” of resdamay not be enough to make
this an independent “field” in query analysis, it nevertBsléighlights the recognition
of the need for such techniques from researchers arounddhd.wQuery segmentation
partitions the entire query into a sequence of non-oventapwords, and is not restricted
to finding named entities or noun phrases. An example of asetgd query isv ndows
xp | home edition | hd video | playback, where the pipes|( represent
segment boundaries.

Query segmentation was proposed by Risvik et B85, where the authors use fre-
guencies and mutual informatioBd] of n-grams learnt from Web documents and query
logs to come up with meaningful segmentations for queriethé next ten years, we see a
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plethora of work on Web search query segmentation usingsévesources like Wikipedia
titles [28,82,84,216, Web documents?9,99,185 216,240, Googlen-grams P8 82-84],
clickthrough data 120, 137], and search result snippet87]. Distinct algorithmic ap-
proaches like eigenspace similari4{), conditional random fields238, support vector
machines29] and expectation maximizatiold 37,216 have been used to accomplish this
task, often using word co-occurrence statistics and nazedhfrequenciesy7,82-84,114,
168 185. The concept of query LMs, as presented earlier, have asa hised to perform
qguery segmentatiordp, 137,216. Unsupervised method87,82-84,114, 137,168 185,
216,240 have outnumbered supervised techniqugs; 29,238 241,247, as the latter re-
lies on human annotations for training which is quite expent® obtain in large volumes.
Moreover, it is always difficult to achieve good query coggrdrom various domains in
the datasets used for supervised learnit@f]. Query segmentation has also been applied
to domains other than Web search, like e-Commel@6 [L68 and patent searci7§].

Query segmentation has generally been evaluated by camgptme machine output
against a set of queries segmented by humaas3p, 84, 137,216 241, 242.. The basic
assumption underlying this evaluation scheme is that hgraam capable of segmenting
a query in a “correct” or “the best possible” way, which, ifpéoited appropriately, will
result in maximum benefits in IR performance. This is propabbtivated by the exten-
sive use of human judgments and annotations as the goldasthndthe field of NLP
(like POS labeling and phrase boundary identification). El®v, this idea has several
shortcomings. Among those who validate query segmentati@amst human-labeled data,
most 29, 37,83, 84, 137,216 240-247 report accuracies on a corpus f0 queries re-
leased by Bergsma and Wang2n07 (BWCO07) [29] sampled from the006 AOL query
log [170. BWCO7 facilitated comparison of various segmentation algors based on
matching metrics against human annotations. However, BWCiB&red from limitations
like consisting of noun phrase queries only, containinggsghvambiguous queries (no con-
sensus among annotators 419 of the queries), and having a few spelling and character
encoding errors. As Hagen et aB4] rightly note, none of the above reasons should be
regarded as “shortcomings” in the work by Bergsma and Wangegheir goal was simply
to evaluate their noun phrase segmentation algorithm oneselawhich they would make
publicly available, andhot to create a benchmark dataset corpus, which it subsequently
became. Subsequently, Hagen et & create a much larger and cleaner dataset of about
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50,000 queries (Webis-QSeC-10), also sampled from2bi@ AOL log, which is two or-
ders of magnitude greater than BWCO7 and free from all the drekgb@entified with
BWCO7. The queries in Webis-QSeC-10 are accompanied by tenadiomst each and
collected through crowdsourcing, and then thoroughlyraelaand filtered in a series of
principled steps to be as representative of the entire Iqgmpasible. Currently, about%
of this dataset is publicly available

2.3 User intent and role annotation

In this section, we discuss methods for understanding ugent, another dimension of
guery analysis, which has attracted a fairly large amountséarch. The intention be-
hind a query (like finding some specific site, or performingoatine transaction) is vital
to inferring the kind of pages that the user would be intexégt viewing. Originally, after
Broder’s seminal paper on intent classificatid@][twelve years back, the notion of intent
was associated with the query as a whole. In recent yearfpthe has shifted to identi-
fying specific words in queries that explicitly carry useteint. Role annotation is closely
associated with this line of research, where query wordsramked up according to the
part they play in the query.

Query-level intent

Broder 0] classifies user intent behind most queries as bgifagmational naviga-
tional, or transactional Informational queries are issued to find information on @do
and are the classic type of queries handled traditionallyRyystems. But for Web
search engines, users often have other special needs #ngsalnavigational queries
(queries issued for finding a specific URL to navigate to) anddactional queries (used
to find places on the Web for performing transactions likeimgyor selling items, and
uploading or downloading files). Even though informatiogaéries still formed the ma-
jority (about 73%), navigational (abou26%) and transactional (aboBdt%) ones had a
fair share. This taxonomy was well-accepted by the commiwand Broder’s paper was
followed by several attempts at manual and automatic ¢leason into the above intent

Shttp://www.webis.de/research/corppeccessed 31 May 2014.
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classes{6,129 133175 190. We briefly outline a few of these here.

Jansen et al1j04 built an automated classifier which classifies queriestiise broad
classes with an accuracy of abgutt. They also state that there are queries with vague or
multiple intent, giving rise to a need for probabilistics$#fication. Ashkan et al1p] focus
on commercial queries (a subset of transactional queneshich the user is interested in
making an immediate or a future purchase. Other transadtopreries are said to be of a
non-commercial nature. In this work, the researchers dlaahadvertisement clickthrough
data, when combined with the associated query log infoonaéind the content of the
search engine result pages, can be effective in identifysgy intent in the context of
commercial queries. Predicting advertisement click rédeguture queries is provided as
a potential application. Baeza-Yates et 4b|[use various supervised and unsupervised
techniques like support vector machines (SVM1$ and probabilistic latent semantic
analysis (PLSA) 95] for examining user intent. The goal or motivation behindueny
is classified into informational, non-informational, anehl@guous. Queries are chosen
from various categories like business, computers, spartd,science. They claim that
supervised methods perform well given user goals and queegories, but unsupervised
techniques help in subsequent validation, refinement, aledtson of the one which best
suits the users’ needs. Proper intent identification alsa&mifications on the appropriate
evaluation of the search syste®[l, 197. Over the years, researchers have identified the
need to have finer intent classes like jobs, products, tawetipeopled8, 134.

Word level intent

The search query is a translation of the user’s intent intooat Sequence of keywords.
This imposes great value on every word in the query from thepeetive of a search
engine. Recent research has started focusing on specifis Watare direct indicators of
user intent, and trying to identify and leverage them fotdyetesult quality. ldentifying
such words as performing the roles of intent carriers carebeead asole annotationfor
the query words. Wang et aR25 were one of the first to explore this line of thought,
where they refer to such words gsery aspectvords (such agi ct ures, vi deo,
downl oad, |yrics, ganes andnovi e). They propose that each aspect represents
one particular user information need. These are oftenngflicit by users, which leads
to underspecified queries. They mine these aspects fromhssessions data, and suggest



2.3 User intent and role annotation 29

that using them can help users in (re-)formulating theirigseetter.

Yin and Shah 231] and Yin et al. P33 use of the termsntent phrasesand intent
wordsfor the above class of words. They focus on named entity ga@vhere one part of
the query is the named entity, and the other part (intent wonghrase) indicates generic
and popular user intent for that class of entities. Theydbosdefine intent words for a
category as those words that-appearwith many entities of a category in user queries.
For examplepi ct ures, novi es andsongs are some of the intent words for the
categoryact or s). The goal in Yin and Shah2B1]'s work is to automatically build a
taxonomy of such intent words specific classeBom query logs, while Yin et al.Z33
try to extract structured information about the query egifrom users’ search trails (post-
search browsing behavior).

Li [135 propose that noun phrase queries are composeadtent headsand intent
modifiers For example, the quel i ce i n wonderl and 2010 cast can be said
tobe composed @l i ce i n wonder| and, 2010 andcast , wherecast is proposed
to be thei nt ent head (main user intent), while the other parts are termedratsent
nodi fi ers. The author usesupervisednmethods based on Markov and semi-Markov
conditional random fields to identify these units and anteotheir roles. They evaluate
their approach on queries frotlree domains- jobs, movies and national parks.

Yu and Ren 236 present two intent roleskernel-objectglike harry potter and
onega wat ch) andmodifiers(like gane andsong), for query words to better interpret
guery syntax. They term queries with an identifiable kerrgéct and modifier asole
explicit queriesand focus on detecting such queries and labeling querysnamcording to
their framework. They show that a supervised classifierdhasdeatures like query length,
presence or absence of named entities and interrogativésvean achieve a precision of
about90% on identifying role explicit queries. The authors then usarsh sessions data
to mine candidate modifiers. Subsequently, they proposeplified wordn-gram role
model which estimates the generating probability of a edlplicit query from a query
log and then performs intent role annotation, achievingentban73% in terms of word
annotation accuracy. Thus, while named entities, nounsrdaaedt modifiers in past work
would generally be the kernel, aspect words, intent words@mases, and intent heads
would usually be the modifiers in Yu and Ren’s framework.
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In a work recently published in the speech commur),[the authors employ search
query click logs to extract intent information using weaklypervised methods. They use
clicked URLs for supervision and extend knowledge graphedas relational informa-
tion. The posterior probabilities estimated from the grephmodel can map discovered
intents (likepl ay andshow trai | er for movies) to search queries. These queries are
subsequently used as additional training examples to anigbo®tstrapped relation iden-
tification models.

An associated line of research with a significant volume akwothe last few years in-
volvesentities, attributes, classes, instances, and relat[@ns02 156,159-161,184,221],
with notable work being done by Pasca et 4b% 156, 159-161, 221]. While entities re-
fer to items like people, places, movies and books, ate#are specific properties of the
relevant entities (like age, area, cast and title). Emtiti@n be generalized to classes (the
entity aspi ri n belongs to the classedi ci ne). Specific entities belonging to a class
are also referred to as instances of that clasp{ r i n in this case). Finally, a relation
articulates the connection between an entity and any oftiibates. For example, the re-
lationi s the capital of connects the attribute Paris with the entity France. In our
context, entities and attributes can be considered to les miayed by words or groups of
words in queries, analogous to named entities and intemtspBr231, 233, intent modi-
fiers and intent head4 89, or kernel objects and modifier@36. The general goal of the
line of work on entities and attributes is to building stwretd representations of knowl-
edge from the huge amount of unstructured data on the Welxt Apen enabling search
engines to present users with a more informed set of resliks)yould facilitate identifica-
tion of interesting relationships among various entitied ean be helpful in a large set of
Web search applications. In general, most of the supenasddinsupervised approaches
rely on the approximate matching of relevant distributiqretterns or template<|165
in queries and Web documents for extracting entitié¥?[155 156 161,172 221] and at-
tributes P,157160,162184). Finally, Lin et al. [L38 associate intent witkierbsor actions
in queries likebuy anddownl oad, and define actions as “empirically observable, direct
manipulation or information request on an entity”.

Query intent can also be represented through a sketcets like spatial and time sen-
sitivities, genre, topic and scopéd, 154. These are aspects that can be attributed to the
guery as a whole. Proper identification of such facets has sleewn to improve the per-
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formance of query intent classificationd).

2.4 Deeper syntactic analysis

In this section, we will briefly look at research that has bdeacted at understanding the
linguistic syntax of Web queries. Linguistic analysis andatation of queries based on its
parent NL, like POS taggin@®PR, 26,772,169, has been an important direction of research.
These studies reveal interesting syntactic propertiegrands, such as more than% of

the query words are noun23] and NL question queries are on the rid&§.

POS tagging for queries

Use of POS tagging fagquery analysiss not a very recent idea. Allan and Raghavan,
in 2002 [L0], showed how to use POS patterns to mitigate the problem bigrty for
very short queries. In their study, they find frequent POSepa$ near one-word queries
and convert them to clarification questions. These questimased on statistical language
models, are shown to reduce query ambiguity a substantmalbauof times. Barr et al2pP)
provided the first measurements on POS tagging of Web seassfeq. Examining a sam-
ple of 3,283 queries, they found that a large majority (ab@0t;) of all query words are
nouns, while adjectives are the second most used POS wittsamre o7%. The authors
also show that as expected, the Brill Taggé8][achieves a low accuracy of abotg%
when trained on NL, which improves to abd®’% when trained on queries. Nonetheless,
taggers trained on NL corpora have been shown to be usefulvariety of real scenar-
ios [25,28,82,152. Hagen et al. 2] report a precision 0§9% and a recall 000% when
the Stanford Taggel[l9 220 is used in the task of detecting noun phrase queries. Accu-
rate POS tagging of queries is still an active area of ree&ecently, Ganchev et all %]
show that transfer of POS tags from URL snippets retrievedhbysearch engine to the
guery words can significantly improve POS tagging accusacie

Understanding syntactic complexity

Mean query lengths have been slowly but steadily rising akeryears (from2.2
in 2000 [209 to 3.5 words in 2006 [170 to 3.77 in 2010 (own data)), which implies
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that the number of relatively longer queries has also beereasing. This is generally
believed to be an indication that queries are becoming moneptex as well. Techni-
cally though, length may not always be directly proportideacomplexity. For example,
the querieet er nal sunshi ne of the spotless m ndandcode to turn
text bl ue excel both have six words. But the latter is more complex than theéoy
which is simply the name of a movie and is thus easily proakss®wever, this brings
to light the lack of clarity on (syntactic) “complexity” itf, and there have not been any
studies till date that has defined or quantified such comgleXe note that a complex
guery is distinct from a complex search tag80¥f, and the latter can be solved with a se-
guence of “simple” queries. “Query complexity” is used iniiastent sense in Radinsky
and Ailon [179, where the authors refer to the complexity of the order @jgsathat need
to be judged by assessors. Also, here we refer to the complaxihe syntactic structure
of the query from a language perspective, and not in the adese of the term, which
referred to the degree of usage of advanced search opelikéoSND, MUST APPEAR

or PHRASE p2,105|.

Nevertheless, the notion of query complexity, in some gassasbe correlated with the
concept of query “difficulty”, and a few studies have beereclied at the latter topid P,
86,152 234]. For example, Hauff et al.8p] define a difficult query as one that has a
low IR performance (as measured by a metric like averagegioed197]). They provide
ways to predict the difficulty of a query, which can help tharsé engine in taking non-
standard avenues for difficult queries, like applying queqyansion, suggesting alternative
search terms, adjusting advertisements, or returnindtsesam specialized collections.
They show that their method, based on the discrepancy bettheequery and document
language models, outperforms past approaches, and ealitzt hypotheses on two large
Web collections. Mothe and Tangu¥42 propose dinguistic analysisof the query text
for predicting query difficulty. The authors find correlat®obetween morphological (like
number of words and average word length), syntactic (likeastic depth and span) and
semantic (like degree of polysemy) features of queriestlamdverage precision and recall
scores obtained by systems for these queries. Their reswdtsurage the use of linguistic
processing in IR system&30. Aligned with this line of thought, Liu et al.139 classify
gueries byreadability, or reading level and show that queries from users of different age
levels (like tenth grade, undergraduate and graduate) eagifbctively separated using
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an SVM [218 based on syntactic and semantic features. The authoredpose that
improvement in search experience can be obtained by matthénquery and documents
not only by content but also by level.

2.5 Model-generated queries

Biemann B2] showed the importance of model-generated sentencesdatisicovery and
understanding of NL syntax. A good generative model for Nhtgrces is able to synthe-
size realistic text with high probability. Such a model canaunt for several distinct syn-
tactic properties of language, which is more than simplya@ylad “time-linear sequence of
symbols”. The complexity of such a generative model is a cafia of the syntactic com-
plexity of the language itself. He introduced a random texteyation model that agrees
well with NL with respect to word frequency distribution, veblength, sentence length
and co-occurrence neighborhood. His model was not constitdy anyapriori probabil-
ity distribution — the corpus characteristics emerged feowo-level process involving one
parameter for the word generator and one parameter for tiiersse generator. His model
was the first random text generator that modelled sentengedaoies beyond inserting
a special blank character at random. Rather, sentences alelletbas a path between
sentence beginnings and sentence endings which imposesti@ss on the words at sen-
tence beginnings and endings. The model was proposed toitmple $ut plausible model
for the emergence of large-scale language characteristitsout assuming an underly-
ing grammar or semantics. The model-generated sentencedoumd to be non-sensical
in meaning, but maintained some of the distributional proge of NL corpora. Further,
Biemann showed that statistics of word co-occurrence nés\éd, 69| provide a reliable
framework for comparing real and model-generated corpora.

There have been attempts at question generation in89.1p( and in the general
IR framework [L4]. Azzopardi et al. focus on methods for building simulatestiges in
six European languages and explore their quality agaiasgueeries. Using probabilistic
guery generation from document language models, they exfdators which may influ-
ence the generation of queries, and propose a model withoiragrdocument and term
selection properties, showing that simulated queries eagelmerated that are comparable
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to real queries. The authors claim that building models argmg behavior provides a
deeper insight into the querying process so that bettaevatrmechanisms can be devel-
oped to support the user.

However, there has only been one major contribution thatlegpeed specifically to
synthetic Web search queries — the research presented haLi[#34]. Their generated
query lod (hamedQRU-J) contains2, 030 queries that were generated by applying a string
transformation method o0 base queries. The base queries were sampled from the query
sets used for the TREZD09 and2010 Web Tracks. As a guarantee of goodness, they report
that70% of these queries were actually found in a separate log frorg.Bin

The goal of the work by Li et al.1[34 was to create synthetic Web queries that would
benefit the community in research on query representatidruaderstanding. The QRU-
1 dataset was constructed based on the topics (queriesyvénatdeveloped during the
TREC 2009 and 2010 Web Tracks. For each of the hundred topézs insWeb Tracks
in these two years, the authors assign approximately twantjar queries. The similar
gueries assigned to the original TREC topic represent thes sasar intent, but are ex-
pressed in different forms, including synonyms, stemmiagations, spelling errors and
abbreviations. The synthetic queries in the QRU-1 datasetietomatically generated from
a model trained from Bing search log data with the title of tiRET topic as the input.
Subsequently, a manual cleaning of the artificial queries also performed and unlikely
queries are discarded, based on predetermined guidelinegguidelines were as follows:
(a) The generated query represents the same user inter® asgimal query. The original
TREC topics are often ambiguous, and may contain more thasemse. The generated
guery was to be retained if it represents any of the sensést &rjudged by the annotator
as representing a likely sense; (b) It is likely to be inpuulsgrs, including typographical
errors. Interestingly, the authors observed #igt of the remaining similar queries actu-
ally occur in another Bing search log. Since the specific g@sesiere generated artificially
instead of being directly collected from the search log at#hors claim that the privacy of
the searchers is not violated.

The dataset of synthetic queries can be used in tasks likgy gexsriting [244], query
suggestion43], query segmentatiorBf] and query expansior2Rg. As an example, the

*http://bit.ly/1cSHSfR Accessed 1 June 2014.
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authors demonstrate the usage of their queries for impgavia relevance of web search
results using query reformulatiod1(. To study the effectiveness of generated queries
for query reformulation, the authors record the retrieveaf@rmance of the most effective
formulation of the query (including the original topic artgenerated queries) for a given
TREC topic. Thus, they simulate the actions of an oracle useralways selects the best-
performing query among all the proposed candidates, araliles¢ the upper bound on
the retrieval effectiveness that can be achieved using Rig-Q dataset. They conducted
retrieval experiments using the web corpus ClueWeb CategayryBich is a set of ap-
proximately50 million pages. They use two retrieval models, the standar@Bkétrieval
model [L88 and the state-of-the-art sequential dependence mod@j$D4g. Retrieval
experiments are implemented using the Indri open-souarelsenginé and evaluated us-
ing the MAP, nDCG and ERR metricd6]. For each of these metrics, the authors reported
the following statistics for the retrieval models: (a) thesbline metric value achieved by
the original query; (b) the best metric value achievableitheethe original query or one of
the generated queries; (c) the percentage of generatei@s)tigat outperform the original
guery; and (d) the percentage of queries, whose performaregroved by using at least
one of the generated queries.

Their results demonstrate that the generated queries gafficantly improve the re-
trieval performance both for the retrieval models. By usimg®RU-1 dataset, the retrieval
effectiveness was improved for about two thirds of the eqggerihe authors note, however,
that not all of the generated queries are equally helpfuérdtore, automatic query selec-
tion for effective reformulation seems to be an importasessch topic. Even though the
guality of the generated queries were good, this is too salaly to be useful for practical
applications like attribute extractiod%9.

Pasca et al.159 introduce a weakly supervised approach for the acqursivioentity
attributes from query logs, by automatically expandinggseeof real queries from which
attributes are extracted widdditional synthetic querieshich have not yet been submitted
to the search engine. Expanding the input data produces @ gemeral approach, which
can be applied to existing methods for attribute acquisifrom query logs for increased
coverage. Application of past extraction patterns to thw set of queries permits the

Shttp://www.lemurproject.org/clueweb09.phpiccessed 16 November 2014.
Shttp://www.lemurproject.org/indri/Accessed 16 November 2014.


http://www.lemurproject.org/clueweb09.php/
http://www.lemurproject.org/indri/

36 Chapter 2 Literature Review

acquisition of additional attributes that would otherwize missed due to the absence of
real issued queries containing such instance-attribees.p

In order to generate new queries, Pasca aggregates knowiegjueo templates as-
sociated with known phrase fillers. The known phrase fillerselach template are then
expanded into new candidate phrase fillers. New queries emergted based on query
analysis alone, and is thus more scalable compared to a énttbased analysis. Among
the inferred queries, the ones of higher interest to atieibutraction are those derived from
a query template that fixes either a potential attribute artargial instance. In experiments
using a large set of anonymized search queries, the synthegries allow for the acquisi-
tion of accurate attributes over an evaluation setsahstances introduced previously.

2.6 Queries as a distinct language

In a series of studies that have been cited more than a ta2aboftimes, Jansen et al. and
Spink et al. 103 106,107,209 were the first to refer to Web search queries as a unique
language. In their papers, they provided the first measurenod several aspects of query
logs. They find that a small fraction of search terms are usédwery high frequency,
even though the size of the overall vocabulary is very lafdes large vocabulary is partly
created by a large number of spelling errors, non-Englishgeand Web URLSs. Interest-
ingly, they remark that general Web users “talk” in theirrsbas in their own way. They
emphasize the need for further study of both ends of the wankl frequency distribution,
and of other “linguistic characteristics of Web queriesisat user query language can be
anticipated and supported”. They also note that the digiah of topics in Web search
gueries does not resemble the distribution of the corredfipgnsubjects in Web pages.
Encouragingly, they emphasize that studies investigatieglinguistic aspects of search
gueries have potential to benefit IR systems and Websitdajswent.

In independent studies from those by Spink et al. and Janseah, ésuichard §0]
and Dessalles6)] note that Web search queries seem to resemble a “protcgedua
linguistic state that bridges the gap between a wholly alagtate and the full possession
of language 30]. This was motivated by their observation that users ofteterewords



2.7 Scope of further work 37

in grammatically incoherent orders when formulating thearch queries. Much more
recently, Huang et al.90] observe that search queries are composed in a very differen
linguistic style from that of the document body. They idgnthe scope for leveraging this
style discrepancy for search query processing on a larde,swad show improvements

in tasks like spelling correction and query segmentationgugnguage models estimated
from large volumes of query logs.

2.7 Scope of further work

In this chapter, we have provided a literature survey on Woé/ang perspectives on search
guery syntax. We have seen how IR systems that originalbtécequeries as bags-of-
words in the Boolean and vector space models, have gradealigtito incorporate relative
term ordering through language models, dependence moalélean proximity models.
Specifically, we have looked at past efforts on (i) identifysyntactic units in Web queries,
(i) annotating roles of syntactic units in queries anditihellationships to query intent, and
(i) understanding the syntactic complexity of searchrigge In (i), we first reviewed
research on named entity recognition and noun phrase tetéctqueries (where the aim
was to identify units that were typically named entities anoadin phrases), followed by
guery segmentation, which partitions the entire query man-overlapping sequences of
words. In (ii), we saw how the overall query intent is now lgeassociated with specific
words mentioned by the user, and surveyed attempts at atitatheinferring roles of such
words within queries (for example, intent heads, intenaphs and query modifiers). In
(ii), we found that a number of researchers in the past hasheated that queries possess
linguistic features of their own. Parallelly, we also sawatth group of researchers believe
that since essentially queries are borrowing from a paréntéchniques like POS tagging
that work for the parent NL should be applicable for queresvall. Finally, we looked at
principles of understanding the syntactic complexity of tékt, and the role that artificial
synthesis can play in determining such complexity. We notlireia few directions for
further work along each of these three lines.

Past approaches to query segmentation miss out on the usygteectic properties of
gueries due to a bias towards projecting NL syntax on to gaei better query segmen-



38 Chapter 2 Literature Review

tation algorithm that primarily relies on query logs to diger syntactic units in queries
needs to be developed and applied to document retrievalhid\stage when query seg-
mentation has been around for about a decade, the researshuroty would also be
benefited by a generic retrieval-based evaluation frameviboat can conveniently decou-
ple the algorithm and the evaluation modules. This is mtéivdy the fact that the end
user of segmentation is the search engine and human ammstatiay not always reflect
the best partitioning from an IR perspective. Finally, depenent of a nested, or hierar-
chical query segmentation strategy using query logs thatlsaover segments embedded
inside bigger segments, along with a mechanism for usinay itfiproving IR, can address
the problems of granularity and word adjacency requiremtrat are associated with flat,
or non-hierarchical segmentation.

There is a need to consolidate several proposals for a seégakemduction framework
that talks about related concepts but are applicable terdifit classes of queries. Such an
overarching framework should be generally applicable fbtymes of queries, and not
restricted to categories like noun phrase queries, namiy guoeries, or entity-attribute
queries. It has been proposed that the Web (document) spdagsar (query) space must
be modeled separatel§(QZ. Thus, to identify true user intent, a role induction framoek
must rely only on query logs, and must be able to label uniteercontext of a query with
minimum runtime overhead for query processing. It is alsefgrable if the framework
uses unsupervised learning to associate roles with segméimally, it is important to
make direct connections between the role induction styaded its application to improve
the quality of search results.

Several works that posit linguistic approaches to queryewstdnding (for example,
POS tagging) are based on the fundamental assumption teaesgjussued in a certain
language, say English, will borrow grammatical artifadtshat language (like nouns and
noun phrases). This assumption is biased for the followesson: a noun in English
is called a noun because it follows a particular syntactstridiution; it is quite unlikely
that the same word will behave as a noun in a query either ftepbint of statistical
distribution or its cognitive interpretation by the userbus, if queries are to be understood
linguistically, they should be analyzed from the first piples rather than superimposing
the grammatical syntax of NLs and thereby masking their syactic properties. On
the other hand, while some researchers have hypothesiaedubkries form a new and
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unique linguistic system, there is no systematic and cohgmgive study of the syntactic
properties of Web queries that can convincingly bring oug fact. The challenge, of

course, is to identify the unique syntactic features of artiNit make it different from any

random or artificially generated sequence of symbols. Talmlistic approach based on
the first principles is required that can provide an estinshtihe syntactic complexity of

search queries, and quantify its proximity to its parent NL.

With a detailed understanding of the state-of-the-art, w& move on to report our
contributions in this thesis. In the next two contributohapters, we study algorithms and
evaluation strategies for non-hierarchical and hieraallyjuery segmentation. Specifically,
Chapter3 proposes a (flat) query segmentation algorithm using quey &nd Wikipedia
titles, and develops a retrieval-based evaluation framieay assessing the potential of a
segmentation algorithm. In Chaptérwe devise a nested query segmentation algorithm
based on only query logs, and present a deterministic wagveirdging the hierarchical
guery syntax to improve document ranking. Chaptircuses on inducing and understand-
ing simple roles that segments perform in search queries.fiflal contributory chapter,
Chapter6, analyzes the syntactic complexity of search queries giusoand query-levels
using model generated datasets.






Chapter 3

Discovering Syntactic Units by Flat
Query Segmentation

3.1 Introduction

This chapter and the next deal with query segmentation asfthigues to use it for im-

proving retrieval and ranking. Specifically, this chapteals with flat, or non-hierarchical
guery segmentation, where we propose an algorithm basedeny tpgs and Wikipedia

titles, and a retrieval-based evaluation framework. The oleapter studies nested, or hi-
erarchical query segmentation, and a method for directilygus to improve document

ranking. A background study which brought forward the intance of the problems, as
well as the existing literature related to the problemsghasen presented in Chapger

Query segmentation is the process of dividing a query irdantividual syntactic
units [L37. To be specific, dlat segmentation strategy partitions the query into a se-
guence of non-overlapping words. For example, the searehyqi ngul ar val ue
deconposition online denp can be broken down into the constituent syntactic
units of si ngul ar val ue deconposition andonline deno. All Web docu-
ments containing the individual terrss ngul ar , val ue anddeconposi ti on are not
necessarily relevant for this query. Rather, one can alnhwalya expect to find the segment

41
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si ngul ar val ue deconposi ti on in the relevant documents. In contrast, although
onl i ne deno is a segment, finding the phrase or some variant of it may rettathe
relevance of the document. Hence, the scope of query segtisengoes beyond the de-
tection of multiword named entities. Rather, segmentagaal$ to a better understanding
of the query and is crucial to the search engine for improUgerformance.

Previous research has expressed and addressed the neksshfdication of these units.
Towards this end, various external resources such as Webgda9 99, 185 216, 240,
search result snippet87] and Wikipedia titles 28,82, 84,216 have been used. Although
these methods can help in retrieval, query expansion amy guggestion, we strongly be-
lieve that they miss out on the unique syntactic propertiegieries due to a bias towards
projecting NL syntax on queries. Thus, we think that the disgc syntax of queries is
distinct from that of the parent NL (i.e., English, in our egghe first step towards under-
standing this syntax is to understand the nature of the itoest word groups. These word
groups should be identified solely on the basis of queriesguse use of external resources
raises the risk of projecting NL syntax onto the queries;apdoper understanding of this
syntax coupled with automatic techniques for parsing itlead to significant performance
improvements in various IR tasks. In this work, we take that fiteps to unravel the syntax
of queries by proposing an unsupervised method for quemysetation that primarily uses
guery logs. As we shall see, the segments identified by ouradeto not necessarily align
with NL segments, yet it is clear that they are meaningful.

Next, we note that there is a broad consensus in the literéitat query segmentation
can lead to better retrieval performan@s,[29, 84, 137,216. However, most automatic
segmentation technique®d, 37,84, 137,216 240 have so far been evaluated only against
against queries segmented by human annotators. Such araappmplicitly assumes that
a segmentation technique that scores better against humatations will also automati-
cally lead to better IR performance. We challenge this aggiman multiple counts. First,
there has been no systematic study that establishes thigyqefahuman segmentations
in the context of IR performance. Second, grammatical symajueries is not as well-
understood as NL sentences where human annotations haseglprseful for training and
testing of various NLP tools. This leads to considerableriainnotator disagreement when
humans segment search queri2sg. Third, good quality human annotations for segmen-
tation can be difficult and expensive to obtain for a largeo$é¢st queries. Thus, there is
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a need for a more direct IR-based evaluation framework farsaésg query segmentation
algorithms. This is the second objective of this contrilbyichapter.

The rest of the chapter is organized as follows. In Sec3@we provide our algo-
rithm for query segmentation using query logs and Wikipeitles. Sectior8.3introduces
our evaluation framework and its design philosophy. Sec3id presents the dataset and
the segmentation algorithms compared on our frameworktide8.5 discusses the ex-
perimental results and insights derived from them. In $ec3i6, we discuss a few re-
lated issues about our dataset construction and intertaion@agreement. In Sectidh?,
we present ideas for bringing together the allied conceptgiery segmentation and NL
chunking. We conclude this chapter by summarizing our dautions and suggesting fu-
ture work in Sectior8.8.

3.2 Query segmentation algorithm

We are given a query log, which is a large collection of seapotries. Let us consider a
candidate MWEM = w; w, ws ... wy, Wherew,-s denote the words constitutinygt.
Let {¢1, q2, g3, - - ., qx} denote the subset of queries in the log that contain all thelsvo
of M, though not necessarily occurring together asaram. Our premise is that search
gueries can be viewed as bags of multiword expressions (M\W#sgh is to say that any
permutation of the MWES constituting a particular searchrgwall effectively represent
the same query. Thus, to test if an observegkam is an MWE, we could ask the question
if the constituents of an MWE appear together more frequehty they would under a
bag-of-words null model. We now formalize this intuitionamew test of significance for
detecting MWEs in Web search queries.

Let X; be the indicator variable for the eventf occurs in the query;”, and let
Prob[X; = 1] denote the probability of this event. Also, lete the length of query; in
words. Then, there ai¢, — n + 1) locations where\1 can be positioned it;, and for each
choice of location there aré; — n)! ways of permuting the remainin@ — ») non-MWE
words ofg;. Thus, we can write the probability @X; = 1] under the bag-of-words model
(our null model) as follows:
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- _—n)! - |
Probjx, = 1] = &=t 11)">< (b—n)! _ n Dl (3.1)

We defineX = ) . X, (which models the number of times the words.ef appear
together in the: queries). We use Hoeffding’s Inequalit94] to obtain an upper-bound
on the probability of X = N], whereN denotes the observed value¥fin the data (also
referred to as the frequency 6fl):

2N — E(X))?

Prob|X > N| < exp(— v

) =0 (3.2)

where, the expectatioB (X)) is given byE(X) = >, Prob[X; = 1]. We obtainj for
eachn-gram (or candidate MWEM and define-log.0 as the MWE score faM:

2(N — E(X))*

Score(M) = —log.d = .

(3.3)

If 6 is small, then the surprise factor is higher, indicating @aggr chance ai being
an MWE, and vice versa. We note that unigrams have a scoremfsace their observed
and expected frequencies are equal.

Since queries are generally shorter than NL sentences,bagrigms and trigrams are
considered{ = 2,3). For computational reasons, we compute the MWE scores only
for n-grams whose constituent words have each appeared in ableperies in the log
(wherea is a user-defined threshold). We addragram to the list of significant-grams
if its MWE score exceeds (a second user-defined threshold). In our experiments we use
a = 10 and = 0.6k (wherek is the number of queries in which all the words of the
n-gram occur, though not necessarily together). We noteirhthis case is specific to
every MWE and there is no global threshold. Choosihigp such a way allows us to be
more selective with the lexicon entries with respect tastiaal significance than a global
threshold. We now have a list of significangrams and their associated MWE scores. We
use this list to perform unsupervised query segmentatidolisvs: First, we compute a
score for each possible segmentation by adding the MWE sobiiesividual segments.
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Then, we pick the segmentation that yields the highest setatien score. Here we use a
dynamic programming approach to search over all possilgleestations.

There are two important novelties in the meth¢a): A decision is made on the signifi-
cance of an MWE only on the basis of the number of queries wloakein all the terms of
the MWE, thus disallowing frequently misleading unigrantistecs to interfere with the
decision, andb) the segmentation procedure is capable of segmenting guesieg only
query logs, not relying on any other external resource. Onuakexamination of the seg-
mentation results, we found that many segments discovegredischeme do not seem in-
tuitive to humans, because the human concept of segmentsatiergely influenced by NL
grammar. For example, the qudrpgw t o spot a fake bill is segmented asow
to | spot a fake | bill by our method (pipes mark segmentation boundaries).
Whilea fake bill isanoun phrase, and therefore, a valid “segment” accotditige
Standard English grammar, one cannot deny the fachtbat t 0 expresses a class of in-
tent in queries and is found to be associated with diverseeqas such asave noney,
pl ay guitar ormake tea. Interestinglyspot a fake, which makes very little
sense as an MWE, is in fact quite commonly seen in queries €pgea generic ac-
tion phrase applicable to diverse objects suclviadeo, gucci bag ornona | i sa
pai nti ng. Some other examples of generic query intents discoveredi®ynethod are
i nformati on about,difference betweenandhi story of the.

The proposed algorithm is also capable of detecting namgtiesrsuch asv ndows
medi a pl ayer andni kon d5000, including relatively infrequent ones likeery
hungry caterpil | ar. However, longer and rarer named entity identification negu
world knowledge and can be addressed by using external neesoguch as Wikipedia,
though adequate care has to be taken so that the generit phit@ses are not lost in the
process. We next outline the proposed procedure for augngeoir segmentation algo-
rithm using Wikipedia titles.

3.2.1 Enhancement with Wikipedia titles

We now explain how to augment the output of our algoirthm (oy a-gram score
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Algorithm 1 Wiki-Boost(@’, W)
1. W« 0

2: forall w € W do

3w < Seg-Phase-1(w)

4 W «WwWuuw

5. end for

6: W'-scores < ()

7: forall v’ € W’ do

8  w'-score < MI(w') based on Q'
9:  W'-scores <+ W'-scores U w'-score
10: end for

11: U-scores < )

12: for all unique unigrams u € Q" do
13:  w-score < probability(u) in Q'
14:  U-scores < U-scores U u-score
15: end for

16: W'-scores < W'-scores U U-scores

17: return W’-scores

aggregation based segmentation algorithm) with Wikipéities'. We call this procedure
Wiki-Boost Inputs required are a list of queri€g already segmented by the original
algorithm (saySeg-Phasd.) andV, the list of all stemmed Wikipedia titles (508, 386
entries after removing one-word entries and those with ABGHI characters at the time
of experimentation in April 2011). We compute the Mutualdmhation (MI) score 185

of an n-segment Wikipedia titles” (segmented byseg-Phasd,) by taking the higher of
the MI scores of the firstn — 1) segments with the last segmemtd the first segment and
the last(n — 1) segments. The frequencies of algrams are computed fro)’. Scores
for unigrams are defined to be their probabilities of ocawree Thus, the output of the
Wiki-Boostis a list of MI-scores for each Wikipedia title .

Following this, we use a second segmentation strategy &&yPhase) that takes as
input ¢’ (the queryq segmented bpeg-Phasd,) and tries to further join the segments of

http://dumps.wikimedia.org/enwiki/latest/enwiki-¢st-all-titles.gz Accessed March 24, 2014
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¢’ such that the product of scores of the candidate output sagmeomputed based on
the output ofWiki-Boost is maximized. A dynamic programming approach is again doun
to be helpful in searching over all possible segmentatioriseg-Phas&- The output of
Seg-Phase-is the final segmentation output.

3.3 Query segmentation evaluation

Now that we have a working flat segmentation algorithm in @lage now move on to our
framework for an IR-based evaluation. We propose a retrieaakd evaluation framework
for query segmentation that requires only human relevardgments (RJs) for query-URL
pairs for computing the performance of a segmentation algor— such relevance judg-
ments are anyway needed for training and testing of any Iihené fundamental problem
in designing an IR-based evaluation framework for segmematigorithms is to decou-
ple the effect of segmentation accuracy from the way segatientis used for IR. This
is because a query segmentation algorithm breaks the inguy gnto, typically, a non-
overlapping sequence of words (segments), but it does estpbe how these segments
should be used during the retrieval and ranking of the docusifer that query. We resolve
this problem by providing a formal model of query expansiond given segmentation; the
various queries obtained can then be issued to any stariR&mijine, which we assume to
be a black box.

We conduct extensive experiments within our framework wewnstand the performance
of several state-of-the-art query segmentation scheB%437), our own algorithms and
segmentations by three human annotators. Our experimen@alrseveral interesting facts
such as: (a) Segmentation is actively useful in improvingéormance, even though sub-
mitting all segments (detected by an algorithm) in doubletegsito the IR engine degrades
performance; (b) All segmentation strategies, includinghan segmentations, are yet to
reach the best achievable limits in IR performance; (c) imgeof IR metrics, some of the
segmentation algorithms perform as good as the best hunmentedor and better than the
average/worst human annotator; (d) Current match-basetcsfelr comparing query seg-
mentation against human annotations are only weakly @e@Wwith the IR-based metrics,
and cannot be used as a proxy for IR performance; and (e) T$scepe for improvement
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for the matching metrics that compare segmentations agaimsan annotations by differ-
entially penalizing the straddling, splitting and joiniagreference segments. In short, the
proposed evaluation framework not only provides a forma} teacompare segmentation
algorithms and estimate their effectiveness in IR, but alpsus to understand the gaps
in human annotation-based evaluation. Finally, the fraarkwrovides valuable insights
regarding the segmentations that can be used for improveshére algorithms.

3.3.1 The evaluation framework

We now present our framework for the evaluation of query sgation algorithms based
on IR performance. Let denote a search query and $&t= (s{,...,s%) denote a seg-
mentation ofq such that a simple concatenation of theegments equalg, i.e., we have
q = (s} +--- + s%), where + represents the concatenation operator. We are gigeg-
mentation algorithm4 and the task is to evaluate its retrieval performance. Wairedghe
following resources:

1. Atest seQ of unquoted search queries.
2. A setld of documents (or URLS) out of which search results will beieged.

3. Relevance judgmentsq, u) for query-URL pairs
(q,u) € Q@ x U. The set of all relevance judgments are collectively deshbieR.

4. An IR engine that supports quoted queries as input.

The resources needed by our evaluation framework are edgettie same as those
needed for the training and testing of a standard IR engiamety, queries, a document
corpus and a set of relevance judgments. Akin to the traiekagmples required for an IR
engine, we only require relevance judgments for a small @pdogriate subset af x U
(each query needs only the documents in its own pool to bespl)dg22.

It is useful to separate the evaluation of segmentatioropadnce, from the question
of how to best exploit the segments to retrieve the most asedocuments. From an
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IR perspective, a natural interpretation of a segment cobeldhat it consists of words
that must appear together, in the same order, in documergeevthe segment is deemed
to match R9]. This can be referred to awdered contiguity matchingWhile this can
be easily enforced in modern IR engines through use of dayni¢ées around segments,
we observe that not all segments must be used this way (seseand Croft 148 for
related ideas and experiments in a different context). Ssegenents may admit more
general matching criteria, such asordered or intruded contiguitie.g., a segmerd b
may be allowed to matcdh a ora ¢ b inthe document). The case of unordered intruded
matching may be restricted underguistic dependencassumptions (e.ga, b can match

a of borb in a). Finally, some segments may even play non-matching reeg, (
when the segment specifies user intent, hikav t o andwher e i s). Thus, there may
be several different ways to exploit the segments discovieyea segmentation algorithm.
Within the same query, different segments may also need toelaged differently. For
instance, in the quergannot view | word files | w ndows 7, the first one
might be matched using intruded ordered occurrenes(ot properly vi ew), the
second may be matched under a linguistic dependency miodees i n wor d) and the
last under ordered contiguity.

Intruded contiguity and linguistic dependency may be diffico implement for the
broad class of general Web search queries. Identifying t@warious segments of a
qguery should be ideally matched in the document is quite #estging and unsolved re-
search problem. On the other hand, an exhaustive expargiemg, where every segment
is expanded in every possible way, is computationally egperand might introduce noise.
Moreover, current commercial IR engines do not support gnyax to specify linguistic
dependence or intruded or unordered occurrence basedingatétence, in order to keep
the evaluation framework in line with the current IR systeme focus on ordered con-
tiguity matching which is easily implemented through the w$ double quotes around
segments. However, we note that the philosophy of the fraomedoes not change with
increased sophistication in the retrieval system — onlyetkgansion sets for the queries
have to be appropriately modified.

The theoretical framework proposed for matching termsdmsegments at the doc-
ument side is more general, and can potentially handle eddemordered and intruded
matches and linguistic dependencies. However, currenhgial search engines cannot
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Table 3.1: Example of generation of quoted versions for a segmentexy.que

Segmented query Quoted versions

we are the people song lyrics
we are the people "song lyrics"
we are "the people" song lyrics

we are | the people | song lyrics we are "the people" "song lyrics"
"we are" the people song lyrics
"we are" the people "song lyrics"
"we are" "the people" song lyrics
"we are" "the people" "song lyrics"

handle such advanced matching scenarios due to the addiiime complexity introduced.
Hence, in our implementation, we only considered strictigened matches for segment
terms, supported in any standard text search engine (dgmémaugh the use of double
guotes, often referred to akrase matching

We propose an evaluation framework for segmentation dlyos that generates all
possible quoted versions of a segmented query (see Bahland submits each quoted
version to the IR engine. The representative query examgdebkeen chosen by hand to
illustrate the task. The corresponding ranked lists oferetd documents are then assessed
against relevance judgments available for the query-URLspdihe result quality of the
best-performing quoted version is used to measure thevatmperformance of the query
segmentation algorithm.

Quoted query version generation

Let the segmentation output by algoriththbe denoted byd(q) = s = (sf,...,s9).
We generate all possiblguoted versionsf the queryq based on the segments.it(q).

In particular, we definedy(q) = (sf + - - - + s) with no quotes on any of the segments,
Ai(q) = (s + -+ - + “s97) with quotes only around the last segmefitand so on. Since
there arex segments itd(q), this process will generaf® versions of the queryd;(q), i =
0,...,2"—1. We note thatib; = (b1, . . ., bs,) be then-bit binary representation of then
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Ai(q) will apply quotes to thg'" segment iff b; = 1. We deduplicate this set, because
{Ai(q): i =0,...,2" — 1} can contain multiple versions that essentially repredsat t
same quoted query version (when single words are insideegudtor example, the query
versions'harry potter” "ganme" and"harry potter"™ game are equivalentin
terms of the input semantics of an IR engine. The resultingpseanique quoted query
versions is denoted b 4(q).

Document retrieval using IR engine

For eachA,(q) € Q.4(q) we use the IR engine to retrieve a ranked®sbf documents out
of the document podl that matched the given quoted query versidiiq). The number
of documents retrieved in each case depends on the IR metriasll want to use to assess
the quality of retrieval. For example, to compute an IR neediti the topk positions, we
would require that at leagtdocuments be retrieved from the pool.

Measuring retrieval against relevance judgments

Since we have relevance judgmenr® for query-URL pairs inQ x U, we can now com-
pute IR metrics such as normalized Discounted Cumulativen @aDCG) [L0g, Mean
Average Precision (MAP)197 or Mean Reciprocal Rank (MRRRR3J to measure the
quality of the retrieved ranked lig?; for queryq. We useaf variants of each of these mea-
sures which are defined to be the usual metrics computedeaf@anining only the tog:
positions. For example, we can compuieCGQk for queryq and retrieved document-list
O; using the following formula:

q,O]
nDCG@k(q, O; , R) = r(q, O] Z (3.4)

WhereO{,j = 1,...,k, denotes thg'® document in the ranked-li€d; andr(q, (’){)
denotes the associated relevance judgment fRom
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Oracle score using best quoted query version

Different quoted query versiond;(q) (all derived from the same basic segmentatitiy)
output by the segmentation algorith#) retrieve different ranked lists of documeiils As
discussed earlier, automatic apriori selection of a gooth@best) quoted query version is
a difficult problem. While different strategies may be useslect a quoted query version,
we would like our evaluation of the segmentation algoritdrto be agnostic of the version-
selection step. To this end, we select the best-performdisiq) from the entire se© 4(q)

of query versions generated and use it to defineavacle scorefor q and.A under the
chosen IR metric31. For example, the oracle scofe(-, -) for nDCGQf is as defined
in the equation below:

Qnch@k(q, .A) = max nDCG@k(q, OL s R) (35)

Ai(a)€Qa(q)

where; denotes the ranked list of documents retrieved by the IRnengihen pre-
sented with4;(q) as the input when processing quepryand segmentation algorithm,
whereA;(q) is described during quoted query version generationiandexes the set of
quoted versions. We note th@ts(q) (set of unique quoted query versions) always contains
the original unsegmented version of the queRy.refers to the set of all relevance judg-
ments. We refer to such dn (-, -) as theOraclescore. The evaluation metricDCGQk
is defined in Equatio.4 wherefk refers to the number of documents retrieved for each
query andch DC'GG is computed after looking at the tdpdocuments only.

This forms the basis of our evaluation framework. We notetthere can also be other
ways to define this oracle score. For example, instead oirsgéke best IR performance
possible across the different query versions, we couldsssé the minimum performance
achievable by irrespective of what version-selection strategy is adbpidis would give
us a lower bound on the performance of the segmentationitigor However, the main
drawback of this approach is that the minimum performanegnmst always achieved by
the fully quoted version (where every segment is in doublateg) (see Tabl8.8). Such
a lower bound would not be useful in assessing the comparatvformance of query
segmentation algorithms.
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QVRS computation

Once the oracle scores are obtained for all queri&€3, we can compute the average oracle
score achieved byl. We refer to this as the Quoted Version Retrieval Score (QVRS) o
A with respect to test s&, document poal/ and relevance judgments. For example,
using the oracle with the nDCGkametric, we can define the QVRS score as follows:

1
QVRS(Q, A, nDCCQk) = al > Qupccar(a, A) (3.6)
qeQ

Similar QVRS scores can be computed using other IR metricty as MAP@: and
MRR@¥k. For our experiments, we report results using nDCG @AP @k, and MRR@,
for k = 5 and10 as most Web users examine only the first five or ten results.

3.4 Dataset and compared algorithms

In this section, we describe the dataset used and brieflydate the algorithms compared
on our framework.

3.4.1 Test set of queries

We selected a random subset50f) queries from our query log (Sectidn2). We used
the following criteria to filter the logs before extractingandom sample: (1) Exclude
gueries with non-ASCII characters, (2) Exclude queries ticaurred fewer than 5 times
and more than 15 times in the logs, and (3) Restrict query hentgt between five and
eight words. Shorter queries rarely contain multiple mudtid segments, and when they
do, the entire queries are mostly single named entitiesddwatbe easily detected using
dictionaries. Moreover, traditional search engines uguggale satisfactory results for short
queries. On the other hand, queries longer than eight wordg $.24% of all queries in
our log) are usually error messages, complete NL sentemcang lyrics, that need to be
addressed separately.
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A note on query frequency.We would like to clarify here that query frequency was not
used as a filter to build our training corpus. However, whdeastructing a small (relative
to the size of the training log) test corpusi queries, we chose to impose a frequency
restriction for the range five to fifteen, i.e., only queri@ving a count in this range were
considered for sampling. This is because we wanted to foonu®latively rarer queries
in the log, which would not have sufficient clickthrough datad hence improved query
analysis techniques like segmentation are meaningful éosttarch engine. The upper
(fifteen) and lower (five) bounds of this range were deterchineuristically for building
the original candidate set for randomly samplist queries. Specifically, we observed
that lowering the threshold beyond five introduced sevegypheently non-sensical queries
and ones with typographical errors. Since we did not wanhvolve manual cleaning of
the test set, and since such queries are not desirable wiiliting a benchmark collection,
we chose to retain the lower frequency threshold at five.

We denote this set df00 queries byQ, the test set of unsegmented queries needed
for all our evaluation experiments. The average length @rigs inQ (our dataset) is
5.29 words. The average query length wa81 words in the Bergsma and War2§07
Corpug (henceforth, BWC07)J9, 84]. Each of these&500 queries were independently
segmented by three human annotators (Computer Scienceatgagtudents each issuing
around20-30 search queries per day in the age grety30 years) who were asked to mark a
contiguous chunk of words in a query asegmenif they thought that these words together
formed a coherent semantic unit. The annotators were fresféoto other resources and
Web search engines during the annotation process, edpdoralinderstanding the query
and its possible context(s). We shall refer to the three getsinotations (and also the
corresponding human annotators)fas, Hg and Hc.

It is important to mention that the queries@hhave some amount of word level over-
lap, even though all the queries have very distinct inforomheeds. Thus, a document
retrieved from the pool might exhibit good term level matoh fnore than one query in
Q. This makes our corpus an interesting testbed for expetingewith different retrieval
systems. There are existing datasets, including BWCO7, théd t@ve been used for this
study. However, refer to Sectich6.1for an account of why building this new dataset was

2http://bit.ly/1fBJ509 Accessed 31 March 2014.
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crucial for our research.

3.4.2 Document pool and RJs

Each query inQ was segmented using all the nine segmentation strategnssdeoed in
our study (six algorithms and three humans). For every satatien, all possible quoted
versions were generated (total746) and then submitted to the Bing APand the top
ten documents were retrieved. We then deduplicated theses tiRbbtainl4, 171 unique
URLs, formingl{. As mentioned earlier, we used nine strategies for retraawdfound that
on an average, adding the quoted query versions by any ohe sfrategies to the versions
generated by the remaining eight strategies resulted intadme new quoted query version
for every two queries. These new versions may or may notdote new documents to
the pool. We observed that f@i.4% of the queries there is less that’% mean overlap
between the top ten URLSs retrieved for the different quotesivas. This indicates that
different ways of quoting the segments in a query does makiéfeaxethce in the search
results. By varying the pool depth (ten in our case), one caghly control the number of
relevant and non-relevant documents entering the cadiecti

For each query-URL pair, where the URL has been retrieved fteast one of the
qguoted versions of the query (apprad® per query), we obtained three independent sets
of relevance judgments from human users. These users (agautuate students in the
25 — 30 year age group) were different from annotatéfs, Hz and H- who marked
the segmentations, but having similar familiarity with isgesystems. For each query, the
corresponding set of URLs was shown to the users after dexdtipln and randomization
(to prevent position bias for top results), and the usergwasked to mark whether the URL
wasirrelevant (score =0), partially relevant(score =1) or highly relevant(score =2) to
the query. We then computed the average rating for each duietypair (the entire set
forming R) over the three annotators, which has been used for subsstgDEG, MAP and
MRR computations. nDCGLPY is defined as in Equatiad®.4. MAP [197] and MRR R23
are defined as follows:

3http://msdn.microsoft.com/en-us/library/dd25105pxa#\ccessed 31 March 2014.
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Table 3.2: Segmentation algorithms compared on our framework.

Algorithm Training data

Lietal. [137] Click data, Weln-gram probabilities
Hagen et al.84 Webn-gram frequencies, Wikipedia titles

Proposed Query logs
Proposed + Wiki  Query logs, Wikipedia titles
PMI-W [84] Web n-gram probabilities (used as baseline)
PMI-Q Query logs (used as baseline)
ap_ ] If: S P@k x rel(k) a7
Ie] po Number of relevant documents '
1 1Q 1
MRR = — 3.8
Q| ; Rank, (3.8)

where|Q| is the number of queries in our query test &etn is the number of search
results,PQFk is theprecisionat rankk (i.e., the fraction of the: retrieved documents that
are also relevant),el (k) is zero or one according as the document at raisknon-relevant
or relevant, andRank, is the rank of the first relevant or “correct” result for query
Since we needed to convert our graded relevance judgmelnitsaixy values for computing
MAP @k, URLs with ratings ofl and2 were considered as relevant (responsible for the
generally high values) and those wiifas irrelevant. For MRR, only URLs with ratings of
2 were considered as relevant. Please refer to TaBlm Section3.6.3for inter-annotator
agreement figures and other related discussions. We walt tefthis dataset &88GCL12
(last name initials of the four inventors Saha Roy, Gangulyuiury and Laxman, and
the year in which this work was performed (2012)) in futuretems and chapters.
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3.4.3 Segmentation algorithms

Table 3.2 lists the six segmentation algorithms that have been siudi¢his work. Li et

al. [137] use the expectation maximization algorithm to arrive atrtfost probable segmen-
tation, while Hagen et al.84] show a simple frequency-based method produces a perfor-
mance comparable to the state-of-the-art. Our proposéaitpee (SectiorB.2) uses only
qguery logs for segmenting queries. As discussed earliertebhnique can be improved

if Wikipedia titles are used for the detection of long namatitees (Sectior3.2.7). The
Point-wise Mutual Information (PMI)-based algorithn8gl[114,185 are used as baselines.
The thresholds for PMI-W and PMI-Q were chosen t@de 1 and0.156 respectively, that
maximized theSeg-F(Section3.5.2 on our development seB4].

3.4.4 Public release of data

The test set of search queries along with their manual ane sdthe algorithmic segmen-
tations, the theoretical best segmentation output thaseare as an evaluation benchmark
(BQVgr in Section3.5.7), and the list and contents of URLSs that serve as our document
corpus is available for public u&eThe relevance judgments for the query-URL pairs have
also been made public which will enable the community to bgedataset for evaluation

of any new segmentation algorithm.

3.5 Experiments and observations

In this section we present experiments, results and therkeyeinces made from them.

“http://cse.iitkgp.ac.in/resgrp/cnerg/ga/querysegaten.htm| Accessed 31 March 2014.
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Table 3.3: Oracle results for IR-based evaluation of segmentatiorriggos.

Metric Unseg. Li Hagen Proposed Proposed + PMI-W PMI-Q H4 Hpg He BQVgr
query etal. [137 etal. [84] Wiki
nDCG@5 0.688  0.752* 0.763* 0.745 0.767* 0.691 0.766* 0.770 0.768 0.759 0.825
nDCG@10 0.701 0.756% 0.767* 0.751 0.768* 0.704 0.767* 0.770 0.768 0.763 0.832
MAP@5 0.882  0.930* 0.942* 0.930* 0.945* 0.884 0.932*  0.944 0.942 0.936 0.958
MAP@10 0.865  0.910* 0.921* 0.910* 0.923* 0.867 0.912*  0.923 0.921 0.916 0.944
MRR@5 0.538  0.632% 0.649* 0.609 0.650* 0.543 0.648* 0.656 0.648 0.632 0.711
MRR@10 0.549  0.640* 0.658* 0.619 0.658* 0.555 0.656* 0.665 0.656 0.640 0.717

The highest value in a row (excluding th#) V5 column) and those with no statistically
significant difference with the highest value are markelaldface The values for
algorithms that perform better than or have no statisyicafinificant difference with the
minimumof the human segmentations are marked with *. The pahtedt was performed
and the null hypothesis was rejected if figalue was less thain05.

3.5.1 IR experiments

For the retrieval-based evaluation experiments, we us&uhené text retrieval system,
which is publicly available as a code library. In its defactinfiguration, Lucene does
not perform any automatic query segmentation, which is wenyortant for examining
the effectiveness of segmentation algorithms in an IR-baskeme. Double quotes can be
used in a query to force Lucene to match the quptadse(in Lucene terms) exactly in the
documents. Starting with the segmentations output by eattecsix algorithms as well
as the three human annotations, we generated all possibtedqgquery versions, which
resulted in a total o4, 746 versions for thé00 queries. In the notation of Secti@a3, this
corresponds to generatir®@4(q) for each segmentation methgt(including one for each
human segmentation) and for every quqrg Q. These quoted versions were then passed
through Lucene to retrieve documents from the pool. For sagmentation scheme, we
then use the oracle described in SectB8to obtain the query version yielding the best
result (as determined by the IR metrics — nDCG, MAP and MRR cdeatpaccording to
the human relevance judgments). These oracle scores aravbeged over the query set
to give us the QVRS measures.

Shttp://lucene.apache.org/java/docs/index.hthacessed 31 March 2014.
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Table 3.4: Matching metrics witlBQV as reference.

Metric Unseg. Li Hagen Proposed Proposed + PMI-W PMI-Q H4 Hpg Hs BQVgr
query etal . [137 etal.[84] Wiki

Qry-Acc  0.044 0.056 0.082* 0.058 0.094* 0.046 0.104* 0.086 0.074 0.064 1.000

Seg-Prec 0.226* 0.176* 0.189* 0.206* 0.203* 0.229* 0.218* 0.176  0.166 0.178 1.000

Seg-Rec 0.325* 0.166* 0.162* 0.210* 0.174* 0.323* 0.196* 0.144 0.133 0.154 1.000

Seg-F 0.267* 0.171* 0.174* 0.208* 0.187* 0.268* 0.206* 0.158 0.148 0.165 1.000

Seg-Acc  0.470 0.624 0.661* 0.601 0.667* 0.474 0.660*  0.675 0.675 0.663 1.000

The highest value in a row (excluding thh&)V 5 column) and those with no statistically
significant difference with the highest value are markebaldface The values for
algorithms that perform better than or have no statisgicatinificant difference with the
minimumof the human segmentations are marked with *. The pahtedt was performed
and the null hypothesis was rejected if flgalue was less thain05.

Table 3.5: PMI-Q and Li et al. L37] with respect to matching and IR metrics.

Metric nDCG@10 MAP@10 MRR@10 Qry-Acc Seg-Prec Seg-Rec Seg-F Seg-Acc
PMI-Q 0.767 0.912 0.656 0.341 0.448 0.487 0.467 0.810
Lietal. [137] 0.756 0.910 0.640 0.375 0.524 0.588 0.554 0.810

The highest value in a column is markedooldface

The results are summarized in Talde8. Different rows represent the different IR
metrics that were used and columns correspond to diffeegrhentation strategies. The
second column (marked “Unseg. Query”) refers to the origimsegmented query. This
can be assumed to be generated by a trivial segmentatidegstnahere each word is al-
ways a separate segment. Columns 3-8 denote the six diffeegntentation algorithms
and 9-11 (marked{ 4, Hg and H;) represent the human segmentations. The last column
represents the performance of thesstquotedversions (denoted bV in table) of the
gueries which are computed byuteforce, i.e. an exhaustive search over all possible ways
of quoting the parts of a querg/(! possible quoted versions for &word query) irrespec-
tive of any segmentation algorithm. The results are repdadetwo sizes of retrieved URL
lists (k), namely five and ten.

The first observation we make from the results is that humanedisas all algorith-
mic segmentation schemes consistently outperform unsggohgueries for all IR metrics.
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Second, we observe that the performance of some segmaensddiarithms are compara-
ble and sometime even marginally better than some of the hamnaotators. Finally, we
observe that there is a considerable scope for improvingeiopnance through better
segmentation (all values less th&d)Vz). We found that applying the proposed query
segmentation algorithm (using Wikipedia titles) can besptally useful to334 out of the
500 queries in our test set anDC'G @10, i.e., about7% of the queries can be benefited.
For the remaining 66 queries, the non-segmented query will retrieve equallydgesults
as a segmented one. This exact number will vary somewhateoexact segmentation
algorithm used and the associated metric, but from the génesult trends of statistical
significance, the variation will not be very high. The infleces from these observations
are stated later in this section.

3.5.2 Performance under traditional matching metrics

In the next set of experiments, we study the utility of tresial matching metrics that
are used to evaluate query segmentation algorithms agagatl standard of human seg-
mented queries (henceforth referred to asrédferencesegmentation). These metrics are
listed below B4]:

1. Query accuracy @Qry-Acc): The fraction of queries where the output matches ex-
actly with the reference segmentation.

2. Segment precision $eg-Prec): The ratio of the number of segments that overlap in
the output and reference segmentations to the number ofitosggments, averaged
across all queries in the test set.

3. Segment recall Beg-Rec): The ratio of the number of segments that overlap in the
output and reference segmentations to the number of refergggments, averaged
across all queries in the test set.

4. Segment F-score$eg-F): The harmonic mean &eg-PreandSeg-Rec

5. Segmentation accuracy $eg-Acc): The ratio of correctly predicted boundaries and
non-boundaries in the output segmentation with respedtaadference, averaged
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across all queries in the test set.

We computed the matching metrics for various segmentalgorithms against 4,
Hp and Ho. According to these metrics, “Proposed + Wiki” turns out ® the best
algorithm which agrees with the results of IR evaluation.wdeer, the average Kendall-
Tau rank correlation coefficien1 18 between the ranks of the strategies as obtained from
the IR metrics (Tabl&.3) and the matching metri€svas only0.75. This indicates that
matching metrics are not perfect predictors for IR perfaroea In fact, we discovered
some costly flaws in the relative ranking produced by matgmetrics. One such case
was rank inversions between Li et al37 and PMI-Q. The relevant results are shown
in Table3.5, which demonstrate that while PMI-Q consistently perfobmegter than Li et
al. [137] under IR-based measures, the opposite inference would bee@ drawn if we
had used any of the matching metrics.

In Bergsma and Wand@2p], human annotators were asked to segment queries such
that segments matched exactly in the relevant documentgs eBsentially corresponds
to determining the best quoted versions for the query. Thusould be interesting to
study how traditional matching metrics would perform if themans actually marked the
best quoted versions. In order to evaluate this, we used #tehing metrics to compare
the segmentation outputs by the algorithms and human arongaagainstBQVzr. The
corresponding results are presented in Ta@e The results show that matching metrics
are very poor indicators of IR performance with respect ®o#1Q)Vz. For example, for
three out of the five matching metrics, the unsegmented gsergnked the best. This
shows that even if human annotators managed to correctlysghe best quoted versions,
the matching metrics would fail to estimate the correctthredaankings of the segmentation
algorithms with respect to IR performance. This fact is ddeme out in the Kendall-Tau
rank correlation coefficients reported in Tal3®. Another interesting observation from
these experiments is th8eg-Acemerges as the best matching metric with respect to IR
performance, although its correlation coefficient is stilich below one.

This coefficient isl when there is perfect concordance between the rankings:-anfithe trends are
completely reversed.
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Table 3.6: Kendall-Tau coefficients between IR and matching metrics.

Metric Qry-Acc Seg-Prec Seg-Rec Seg-F  Seg-Acc
nDCG@10 0.432 —0.854 —0.886 —0.854 0.674
MAP@10 0.322 —0.887  —0.920 —0.887 0.750
MRR@10 0.395 —0.782 —0.814 —0.782 0.598

The highest value in a row is markedboldface

3.5.3 Inferences

Segmentation is helpful for IR. By definition,(2.(-, -) (i.e., the oracle) values for every IR
metric for any segmentation scheme are at least as larges aotresponding values for
the unsegmented query. Nevertheless, for every IR metemhbgerve significant perfor-
mance benefits for all the human and algorithmic segmenta(iexcept for PMI-W) over

the unsegmented query. This indicates that segmentatimuégd helpful for boosting

IR performance. Thus, our results validate the prevailiogom and some of the earlier
observationsg8, 137] that segmentation can help improve IR.

Human segmentations are a good proxy, but not a true gold statard. Our results
indicate that human segmentations perform reasonablyondR metrics. The best of the
human annotators beats all the segmentation algorithmalnoost all the metrics. There-
fore, evaluation against human annotations can indeed h&dmsyed as the second best
alternative to an IR-based evaluation (though see belowrfticisms of current matching
metrics). However, if the objective is to improve IR perf@amnce, then human annotations
cannot be considered a true gold standard. There are atthe#astreasons for this, as
explained below.

First, in terms of IR metrics, some of the state-of-the-agrsentation algorithms are
performing as well as human segmentations (no statistisahificant difference). Thus,
further optimization of the matching metrics against humaanotations is not going to
improve the IR performance of the segmentation algorithiitaus, evaluation on human
annotations might become a limiting factor for the curreagreentation algorithms.
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Second, the IR performance of the best quoted version ofukaes derived through
our framework is significantly better than that of human aations (last column, Ta-
ble 3.3). This means that humans fail to predict the correct bouaegam many instances.
Thus, there is a scope for improvement for human annotations

Third, IR performance of at least one of the three human atois () is worse than
some of the algorithms studied. In other words, while sometators (such a#l,) are
good at guessing the “correct” segment boundaries thaheififi IR, not all annotators can
do it well. Therefore, unless the annotators are chosen aittd properly, one cannot
guarantee the quality of annotated data for query segnmemtdt the queries in the test set
have multiple intents, this issue becomes an even biggerecon

Matching metrics are misleading. As discussed earlier and demonstrated by Ta-
bles 3.4 and 3.6, the matching metrics provide unreliable ranking of thensegtation
algorithms even when applied against a true gold standa€dl/z, that, by definition,
maximizes IR performance. This counter-intuitive obstovacan be explained as follows:
either the matching metrics, or the IR metrics (or probalothpare misleading. Given that
IR metrics are well-tested and generally assumed to be taddepwe are forced to con-
clude that the matching metrics do not really reflect the iguaf a segmentation with
respect to a gold standard. Indeed, this can be illustratedsimple example.

Example. Let us consider an example query to bke | ooney toons show
cartoon networ k, whose best quoted version turns out td' béhe | ooney t oons
show' "cartoon network". The underlying segmentation that can give rise to this
guoted version and therefore can be assumed to be the redasen
Ref:t he | ooney toons show | cartoon network
The segmentations
(1)the |l ooney | toons show | cartoon | network
(2)the | looney | toons show cartoon | network
are equally bad if one considers the matching metric®mtAcg Seg-PrecSeg-Reand
Seg-F(all values being zero) with respect to the reference setatien. Seg-Acovalues
for the two segmentations aB¢5 and1/5 respectively. However, the BQV for (1) { he
| ooney” "toons show' cartoon networ k) fetches better pages than the BQV
of (2) (t he | ooney toons show cartoon network). So the segmentation (2)
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Figure 3.1: Distribution of multiword segments across segmentaticategies.

provides no IR benefit over the unsegmented query and hent@mpe worse than (1)
on IR metrics. However, the matching metrics, exceptdeg-Acdo some extent, fail to
capture this difference between the segmentations.

Distribution of multiword segments across queries gives isights about effective-
ness of segmentation strategyThe limitation of the matching metrics can also be un-
derstood from the following analysis of the multiword segitsan the queries. Figurg1
shows the distribution of queries having a specific numbenwatiword segments (for ex-
ample,1 in the legend indicates the proportion of queries hawngmultiword segment)
when segmented according to the various strategies. Wetmatdor Hagen et al.g4],
Hpg, H, and “Proposed + Wiki”, almost all of the queries have two mdtd segments.
For He, Li et al. [137], PMI-Q and the proposed method, the proportion of queties t
have only one multiword segment increases. Finally, PMIA4 almost negligible queries
with a multiword segment.BQVgr is different from all of them and has a majority of
gueries with one multiword segment. Now given that the firstig generally does the best
in IR, followed by the second, we can say that out of the two mvalid segments marked
by these strategies, only one needs to be quoted. PMI-W, lhasvensegmented queries,
are bad because these schemes cannot detect the one cuiti@brd segment, quoting
which improves the performance. Nevertheless, these sshdmwell for matching met-
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rics againstBQ Vg because both have a large number of single word segmentsilyClea
this is not helpful for IR. Finally, the proposed scheme, withWikipedia titles, performs
poorly despite being able to identify a multiword segmenhiost of the cases because it is
not identifying the one that is important for an exact-maieled retrieval performance.

Hence, the matching metrics are misleading due to two reaséirst, they do not
take into account that splitting a useful segment (i.e.,ga@ant which should be quoted
to improve IR performance) is less harmful than joining twoelated segments. Second,
matching metrics are, by definition, agnostic to which segshare useful for IR. There-
fore, they might unnecessarily penalize a segmentationdbagreeing on the segments
which should not be quoted, but are present in the referemc®h segmentation. While
the latter is an inherent problem with any evaluation agamenually segmented datasets,
the former can be resolved by introducing a new matchingim#tat differentially pe-
nalizes splitting and joining of segments. However, we wdie to emphasize here that
with the IR system expected to grow in complexity in the fet(supporting more flexible
matching criteria), the need for an IR-based evaluationdikes’ becomes imperative.

Based on our new evaluation framework and correspondingriexpets, we observe
that “Proposed + Wiki” has the best performance. Nevertislie algorithms are trained
and tested on different datasets, and therefore, a coropaimongst the algorithms might
not be entirely fair. This is not a drawback of the frameworkl @an be circumvented
by appropriately tuning all the algorithms on similar datas However, the objective of
the current work is not to compare segmentation algorithaier, it is to introduce the
evaluation framework, gain insights from the experimemis highlight the drawbacks of
human segmentation-based evaluation.

Effect of choice of 5 on algorithm performance. The parametefs (Section3.2)
in our segmentation algorithm controls the number of estiiiat enter the segmentation
lexicon and has values specific to eaclgram instead of a global threshold. We had tuned
£ on a development set to maximize the segmentation accugainst a set of human
annotations, trying out values fromto &£ through steps 06.1%, i.e, 0, 0.1k, 0.2k, and
SO0 on uptok. The way we have defined, the ideal value of5 depends on the query
log and not on the document collection. However, tunihp optimize different metrics
will result in different optimal values of beta. For examplehen we tried to optimizes



66 Chapter 3 Discovering Syntactic Units by Flat Query Segntemta

Table 3.7: Effect of 5 on IR performance.

Jé] nDCG@10

0 0.756
0.1k 0.754
0.2k 0.753
0.3k 0.753
0.4k 0.752
0.5k 0.751
0.6k  0.751
0.7k 0.750
0.8k  0.747
0.9k  0.747
k 0.743
The highest value in a row is markedholdface

onnDCG@]10, an IR metric, we obtained the besto be0, which effectively means no
pruning on statistical significance. However, in a prattstuation, due to memory and
time complexity concerns, it may not be possible to admitakrams into the lexicon, and
having 8 provides us with a principled way of pruning the lexicon exdr The effect of

variation ing pn nDCG@10 is shown in Tab&?7.

3.6 Related issues

In this section, we will briefly discuss a few related issues ire essential for understand-
ing certain design choices and decisions made during thesea this research.

3.6.1 Motivation for a new dataset

TREC data has been a popular choice for conducting IR-basedlimgnts throughout the
past decade. Since there is no track specifically geareddsvepiery segmentation, the
gueries andjrels (query-relevance sets) from the ad hoc retrieval task feMileb Track
would seem the most relevant to our work. Howevef; of the50 queries in the010 Web
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track ad hoc taskhad less than three words. Also, when thgsgueries were segmented
using the six algorithms, half of the queries did not have dimord segment. As discussed
earlier, query segmentation is useful but not necessanmilglf types of queries. The benefit
of segmentation may be observed only when there are multipléword segments in the
gueries. The TREC Million Query Track, last held2009, has a much larger set &, 000
querie§, with a better coverage of longer queries. But since the goidleotrack is to test
the hypothesis that a test collection built from severabmpletely judged topics is more
useful than a collection built using traditional TREC poglithere are only about, 000
guery-document relevance judgments for #le000 queries. Such sparsgels are not
suitable here — incomplete assessments, especially fantaas near the top ranks, could
cause crucial errors in system comparisons. Yet anothéropbuld have been to use
BWCO07 asQand create the corresponditiandR. However, this query set is known
to suffer from several drawback84]. A new dataset for query segmentafi@ontaining
manual segment markups collected through crowdsourcisgéen recently made publicly
available (after we had completed construction of our sgtiagen et al.§4], but it lacks
guery-document relevance judgments. These factors nedives to create a new dataset
suitable for our framework, which has been made availabl@®ifior use by the research
community (see SectioB.4.4).

3.6.2 Retrieval using Bing

Microsoft's Bing is a large-scale commercial Web searchmatjiat provides an API ser-
vice. Instead of Lucene, which is too simplistic, we coulgdased Bing as the IR engine
in our framework. However, such a choice suffers from twondracks. First, Bing might

already be segmenting the query with its own algorithm aseprocessing step. Sec-
ond, there is a serious replicability issue: the document i@t Bing uses, i.e. the Web,
changes dynamically with documents added and removed fiermpdol on a regular basis.
This makes it difficult to publish a static dataset with relege judgments for all appropri-
ate query-URL pairs that the Bing APl may retrieve even for @me set of queries. In

"http://trec.nist.gov/data/web10.hticcessed 31 March 2014.
8http://trec.nist.gov/data/million.query09.htmiccessed 31 March 2014.
Shttp://bit.ly/IMETNX5 Accessed 31 March 2014.
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Table 3.8: IR-based evaluation using Bing API.

Metric Unseg. All quoted for Oracle for
query Proposed + Wiki  Proposed + Wiki

NnDCG@10 0.882  0.823 0.989*
MAP@10 0.366  0.352 0.410*
MRR@10 0.541  0.515 0.572*

The highest value in a row is markedboldface Statistically significant{ < 0.05 for
pairedt-test) improvement over the unsegmented query is markdd*wit

view of this, the main results were reported in this thesisgikucene.

However, since we used Bing API to constridand correspondin@®, we have the
evaluation statistics using the Bing API as well. In TaBI8 we present the results for
NnDCG@10, MRR@10 and MAP@10 for “Proposed + Wiki”. The table respresults for
three quoted version-selection strategies: (i) Unsegedeqtery only (equivalent to each
word being within quotes), (ii) All segments quoted, ang @VRS(oracle for “Proposed
+ Wiki”). For all the three metricQVRSSs statistically significantly higher than results for
the unsegmented query. Thus, segmentation can play antempoole towards improving
IR performance of the search engine. We note that the syrafeguoting all the segments
is, in fact, detrimental to IR performance. This emphasikegpoint that how the segments
should be matched in the documents is a very important relsedrallenge. Instead of
qguoting all the segments, our proposal here is to assumeaatedhat will suggest which
segments to quote and which are to be left unquoted for thelRgserformance. Philo-
sophically, this is a major departure from the previous sdefiusing quoted segments,
where issuing a query by quoting all the segments impliemsegation to be a way to
generate a fully quoted version of the query (all segmentloirble quotes). This defini-
tion severely limits the scope of segmentation, which igestiould be thought of as a step
forward towards better query understanding.
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Table 3.9: Inter-annotator agreement on features as observed froexperiments.

Feature Pairl Pair2 Pair3 Mean

Qry-Acc  0.728 0.644 0.534 0.635
Seg-Prec 0.750 0.732 0.632  0.705
Seg-Rec 0.756  0.775 0.671 0.734
Seg-F 0.753 0.753 0.651 0.719
Seg-Acc  0.911 0914 0.872 0.899

Rel. judg. 0.962 0.959 0.969 0.963
For relevance judgments, only pairs(6f 2) and(2, 0) were considered disagreements.

3.6.3 Inter-annotator agreement

Inter-annotator agreement (IAA) is an important indicdtwrreliability of manually cre-
ated data. Tabld.9reports the pairwise |AA statistics féf ,, Hz andH. Since there are

no universally accepted metrics for IAA, we report the valoéthe five matching metrics
when one of the annotations (s&#) is assumed to be the reference and the remaining
pair (Hg and Hy) is evaluated against it (average reported). As is evidem the table,

the values of all the metrics, except eg-Acgis less thar).78 (similar values reported

in Tan and Pend]16]), which indicates a rather low IAA. The value f8eg-Acds close to

0.9, which to the contrary, indicates reasonably high I24¢. The last row of Table.9
reports the IAA for the three sets of relevance judgmentx@fore, the actual pairs for this
column are different from that of the other rows). The agreenmn this case is quite high.

There might be several reasons for low IAA for segmentatsuch as lack of proper
guidelines and/or an inherent inability of human annotatormark the correct segments
of a query. Low IAA raises serious doubts about the relightf human annotations for
guery segmentation. On the other hand, high IAA for releegndgments naturally makes
these annotations much more reliable for any evaluatioth stnengthens the case for our
IR-based evaluation framework which only relies on relegajuclgments. We note that
ideally, relevance judgments should be obtained from tlee w$o has issued the query.
These have been referred togd annotations in previous resear@i], as opposed to
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silver or bronzeannotations which are obtained from expert and non-experotators
respectively who have not issued the query. Gold annowtoa preferable over silver or
bronze ones due to relatively higher IAA. Our annotatioressdliver standard, though very
high 1AA essentially indicates that they might be as rekaé$ gold standard. The high
IAA might also be due to the unambiguous nature of the queries

3.7 Enhancement with POS tags

Having discussed our primary algorithm and evaluation &awrk for flat query segmen-
tation, we will explore an interesting idea and discuss hegngentation relying on word
association scores (WAS) can be improved by using POS segsiémdetect relatively rare
segments. Conceptually, query segmentation is analogatmutikingof NL text. Chunk-
ing breaks sentences into syntactic structures like notemsgls or prepositional phrasés [
Automatic text chunking is usually performed by learningtjgd-speech (POS) patterns
from large volumes of human annotated corpatd3 181]. The annotations, in turn,
are performed using linguistic rules guided by the gramnidahe language. Chunking,
however, is distinct from the identification of multiword essions (MWES) liké he

| ast straw, which are word sequences whose meanings are non-conopasifrg|.
Such MWEs are generally identified using word associationrescVAS) like PMI b2] or
LLR [69]. Lack of well-defined grammatical syntax and absence ofdnuOS-annotated
query logs have led researchers to M@/E detection technique® perform unsuper-
vised query segmentatiofB2]. However, several potential query segments (chunks) are
not MWEs (e.g.buy onli ne,how to,driving rul es). Our work aims to bridge
this gap between the concepts and techniques behind guamestation.

Our generic strategy to augment WAS-based segmentatibnitpees with POS infor-
mation is as follows. First, we construct a lexicon of pognivord n-grams from the
corpus (say, a query log). This is usually the first step in &8Afased query segmentation
algorithm [B4,216. Then we identify underlying POS sequences (or RGgams) of the
lexicon entries, and count their frequency of occurrencanddified score is then com-
puted for each wora-gram which is a combination of its original WAS and the l@xic
frequency of its PO&-gram. New entries are introduced into the lexicon accagrttirthis
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Figure 3.2: Augmenting unsupervised query segmentation with POS segse

modified score. This process is iterated till convergencteflexicon. Thisaugmented
lexiconis used for query segmentation, where the newly derivedescperform the role
of the original WAS. This lexicon augmentation is affline process and thus does not add
any runtime overhead to the segmentation process.

We conduct experiments using an English POS tagger baseldeoRenn Treebank
(PTB) tagset and a recently proposed compact universalttplg&®. We also experiment
with a tagset that has been induced from the query log in a Eelp unsupervised fash-
ion [31]. Our results show that POS information from all the thregs&s can lead to
significant performance improvement for an unsupervisgdsatation algorithm.

Figure3.2 presents a schematic of the proposed framework to combing &l POS
information for unsupervised query segmentation. Our orktiequires a POS tagger for
gueries, a WAS to be computed from a query log, and a lexicgmauatation scheme.

3.7.1 POS tagging

POS tagging is defined as the process of assigning POS lab#i® twords of a text
fragment based on the context. For example, if the inputftegiment ist he yel | ow
book, the corresponding POS labels wouldtidee DT yel | ow.Jibook _NN (i.e., De-
terminer, Adjective and Noun respectively). The framewpr&posed here is not tied to
any specific POS tagging strategy or tagset. To bring oufalis here we perform experi-
ments with two different taggers — the supervised StanfargtLinear POS Tagge[L9,
and a fully unsupervised POS induction technique usinglgpstering based on Bie-
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Table 3.10: Sample clusters produced by Bie-S.

Cluster 1. bake, casserole, dessert, fry, neatballs,
Cluster 2: athletics, baseball, cycling, football, golf,
Cluster 3. arny, citizenship, custons, defence, governnent,
Cluster 4. battlefield, diablo, godfather, hitman, sinms,

mann B1]. The Stanford Tagger uses the PTB tagset thaBhaags®. Recently, Petrov et

al. [173 proposed a universal tagset (UTS) which contdixtags and provided a mapping
between the PTB (and many other) tags and UTS tags. In orderderstand the effect of
granularity of the tagset, we also run experiments for th&Wdgset, which are obtained
by one-to-one mappings of the PTB tags of the queries lalislede Stanford Tagger.

Since English Web search queries do not necessarily folh@syntax of the English
language, the appropriateness of tagsets such as PTB or &fTt8dging Web search
queries is questionable. Therefore, we also experimeiit avitompletely unsupervised
POS induction technique based on graph clustering by Bierf&fthat induces the tagset
as well as the tagger from the first principles without makamy assumptions about the
syntactic structure of the language. Moreover, the teaclenmutomatically generates the
number of tags (clusters). The original method is simplifi@dqueries so as to assign a
unique tag to a word (by suitably removing the Viterbi taggstep in B1]), irrespective
of the context. This ensures a fast and lightweight taggarithsuitable in a Web search
setting. We refer to this tagger (and the associated tagseéBje-S (S = Simplified). Ta-
ble 3.10shows parts of sample clusters generated by the Bie-S dgoah our query log.
As we can see, clusters are focused araopitslike food, sports, governance, and video
games. The method resulted4iob distinct tags.

3.7.2 Lexicon augmentation scheme

Intuition. Traditional unsupervised query segmentation algorithse ai WAS to build
a lexicon of meaningfuh-grams R16), which is subsequently used to generate the most
likely segmentation for a query. Such methods fail to idgmare wordn-grams as poten-

Lnttp://bit.ly/JY5Iwh Accessed 31 March 2014,
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tial segments. The rarer-grams, nevertheless, almost always follow the same syntac
structure (or POS sequence pattern) as the frequent ongsheain rarity is by virtue of
the rarity of the words rather than the underlying syntaobicstruction. This fundamental
observation led us to the intuition that the WAS of rarer wardrams could be boosted
up if the underlying POS pattern is observed frequently andét of segments originally
extracted by a WAS. In other words, we can learn the commotastio structures of the
segments by extracting statistically significant word cotorences, and then in turn, use
this knowledge to extract rarer segments. This intutiongctvis the primary contribution
of this work, is formalized in the following steps.

1. Given a query log?, the queries are POS tagged using a tagger. Also, a WAS is
computed for every unique wordgram,w, appearing irQ.

2. An initial lexicon L is constructed with the word-grams (sayt he rol i ng
st ones) that have WAS> 4, a user-defined threshold. L&t be the lexicon after
the'" iteration of the algorithm.

3. Every entry inL; is assigned a unique POS tag sequence based on how that word
n-gram was tagged iy (say,t he_DTrol | i ng_VBG st ones_NNS). In the rare
case when the same woregram is tagged differently in different queries, we assign
the most common POS tags to words in thagram sequence as founddn

4. Foreach PO8-gram (or POS patterr; (say, Dr-VBG-NNsS), we count the number
of times P; appears irL;. Let us denote this byount(P;, 7).

5. We define a score fa¥; as follows:
score(Pj,i+ 1) = score(Pj, i)In(e + qe~t/mI+count(Fy.i)) (3.9)
where iterationi > 0 anda is a tuning parameter. We defineore(P;,0) = 1.

6. The WAS for every uniquev in @ is then combined with its corresponding pattern
score as shown in EquatiélQ

score(w,i + 1) = score(w,i) x score(Ppog(w); 1) (3.10)

where POS(w) is the index; of the underlying POS pattern of. We define
score(w,0) to be WASw).
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7. L,y is constructed by including aW for which score(w,i) > 4.

8. Steps 3 to 8 are then repeated until convergence, wherel; ;.

The multiplicative factor in EquatioB.9is based on the proximity transformation func-
tion used by Tao and Zha217], which has all the mathematical characteristics to st th
current purpose: (a) the value of the function diminishethwach successive iteration,
which is necessary because otherwise eventually-ghlams will enter the lexicon; (b) as
1 grows, this factor approaches unity, which ensures coeve (c) this factor is pro-
portionate to the logarithm afount(P;, i), which is usually desirable because frequency
distributions ofn-grams typically follow power laws.

We use our proposed segmentation algorithm without Wikigstles to prevent mask-
ing the effect of POS sequences. In our POS-augmented aproe do notuse the
initial lexicon L, to segment queries; rather we use the Iexibpwherei is the iteration at
which convergence occurs. We refer to the segmentatiorupsatlusing’, as the original
segmentatio®rig, over which we aim to improve.

3.7.3 Experiments

Our Bing query log (Sectioi.2) was POS tagged using the Stanford Tagger (using both
PTB and UTS tags) as well as the Bie-S algorithm. For evalgaggmentations generated
by our approach, we use our retrieval-based approach oretla# 500 queries described
earlier (SGCL12, SectioB.4). Queriesl to 250 have been used as the development set and
251 t0 500 as the test set.

Table 3.11 reports nDCG, MAP and MRR for the original algorithm and the POS
augmented strategy for the three tagsets used. All thetsagssult in improvements over
the original segmentation, which is statistically sigrafit for nDCG@5. This implies
that many better pages are presented in the top-five sloishvudvery important for a
Web search setting. The improvements are because of theing&arbut raren-grams
that are discovered by our POS-based method and were diygmesed by the WAS
alone. At convergence, the PTB, UTS and Bie-S tagsets atiiéd 447k and452k (k =
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Table 3.11: IR performance with different tagsets.

Metric Orig PTB UTS Bie-S

nDCG@5 0.743 0.7517 0.7517 0.751F

nDCG@10 0.747 0.753 0.752  0.752

MAP 0.901 0.905 0.905 0.905

MRR 0.587 0.601 0.598 0.602
Statistically significant improvement ove@rig is marked using (one-tailed paired-test,
p < 0.05).

Table 3.12: Gaining, unaffected and losing queries.

Tagset Gain Same Loss

PTB 67 (4+0.048) 150 33 (—0.060)

UTS  57(+0.055) 162 31 (—0.068)

Bie-S 67 (4+0.042) 140 43 (—0.050)
Numbers in parentheses indicate the average gain/lossQG@10 for each class of
gueries with respect to the original segmentations.

thousand) new word-grams toL, respectively. Mean IR performances on the test set
for the three tagsets are almost exactly the same (a gasrataysis reported later reveals
some differences). With respect to this application, theSudgset doesot result in any
lossof informationwhen the36 PTB tags are collapsed to the 12 UTS tags.

Table3.12reports the numbers of gaining, unaffected and losing gadin terms of
nDCG@10, with respect to the original segmentation withddSRnformation) for each
tagset for the optimum-s. We observe that our method benefits a significant pragporti
of the queriesq3 — 27%), much higher than the fraction of queries for which the nDCG
value drops 12 — 17%). The three tagsets affect the relatively same number ofiegie
in all the three ways, even though the number of queries ivefjaiaffected is slightly
higher for the Bie-S tagset. Since these queries are rdiatigee with query frequency
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Table 3.13: Example queries showing IR improvement.

Tagset Segmented Query nDCG@10

Orig picture | in | picture | lcd tv 0.606

PTB, UTS picture in picture | lcd tv 0.788

Bie-S picture in | picture | lcd tv 0.747

Orig sansung | 1900 | omia | free | ganes 0.691

PTB, UTS, Bie-S sansung 1900 | ommia | free ganes 0.810

Orig richard burns rally | pc | cheats 0.675

PTB, UTS, Bie-S richard burns | rally | pc cheats 0.751
Tagset PTB UTS Bie-S
Lexicon convergence iteration 30 70 30

Segmentation convergence iteratioR0) 70 90

Peak IR performance iteration 50 50 10

Optimuma 100 10 1000
The lowest value in a row is marked loldface

Table 3.14: Number of iterations and the optimal

between five and fifteéh improvement on a significant fraction of these queries e
of considerable interest to commercial Web search engRelaitive magnitudes of average
gains and losses appear comparable.

Table 3.13shows representative queries that undergo segmentatesmgeldue to the
augmented lexicon with a consequent IR benefit. It is evidleat all the three tagsets
are able to detect relatively rarergrams (for examplepi cture in pi cture and
sansung i 900) which did not feature in the initial lexicon. Our method caso ad-
just n-gram scores so as to insert new segment boundaries at loetiéions from an IR
perspectiver(i chard burns rally —richard burns | rally).

Uhttp://cse.iitkgp.ac.in/resgrp/cnerg/ga/querysegatén.htm| Accessed 31 March 2014.
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Convergence Even after the convergence of the lexicon, it is possiblettirasegmen-
tations change over further iterations because the scorb®e gtems in the lexicons can
continue to change, albeit converging towards specificeglirherefore, we explore an al-
ternative convergence criterion, which is when the segatemt of the queries stabilize for
our development set. Nevertheless, we observed that theesggtions so obtained do not
necessarily lead to maximum IR performance (say, in ternrmbd@G@10). In TablS.14
we report the number of iterations required for these tw@s$ypf convergence — lexicon
and segmentation, and also the number of iterations aftehwieak IR performance was
achieved. For all our experiments, the parameat&ras tuned on the development set us-
ing grid-search for maximizing nDCG@ 10, and the optimal galtor each tagset are also
reported in Tabl8.14 We observe that Bie-S, which isdeterministicand hence #ast
approach, takes onlj0 iterations to reach its peak IR performance. This is conipara
to the nDCG of other tagsets, whereas the other approachestakunds. This is def-
initely a big advantage for the unsupervised POS inductppr@ach. For all the tagsets,
the nDCG@10 at segmentation convergence is slightly lessttitepeak value, though
this difference is not statistically significant.

Frequent POS patterns. The ten most frequent patterns in the lexicons for the PTB
and the UTS tagsets turned out to b’ NN, NN NN NN, JINN NN, JJNN, NN NNS, NN
NN NNS, NN IN NN, Fw Fw, J0 JJ NN, JN NN NNs, and NouN NOUN, NOUN NOUN
NOUN, ADJNOUN NOUN, ADJ NOUN, NOUN ADP NOUN, NOUN VERB, NOUN NOUN
VERB, VERB NOUN, ADJ ADJNOUN, NOUN VERB NOUN respectively. The Bie-S tags
are system-generated and hence are not readily interfgetab

3.8 Conclusions

In this chapter, we have proposed an unsupervised methagkoy gegmentation that uses
Web queries as the only resource. The method unravels signti@its of queries that are

distinct from NL phrases. We have shown how our segmentatgorithm can be enhanced
by using lists of named entities like Wikipedia titles. Easker of query segmentation is the
retrieval engine; hence, it is essential that any segmentatgorithm should be evaluated
in an IR-based framework. In this chapter, we have also omeecgeveral conceptual chal-
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lenges to design and implement the first such scheme of évaldar query segmentation.
Using a carefully selected query test set and a group of segitien strategies, we show
that it is possible to have a fair comparison of the relatvedness of each strategy as mea-
sured by standard IR metrics. The proposed framework usesitees which are essential
for any IR system evaluation, and hence does not require p@giad input. Our entire
dataset — complete with queries, segmentation outputsedevhnce judgments — has also
been made publicly available to facilitate further reskdrg the community. Moreover,
we gain several useful and non-intuitive insights from thial@ation experiments. Most
importantly, we show that human notions of query segmentsmoéabe the best for max-
imizing retrieval performance, and treating them as thel gtdndard limits the scope for
improvement for an algorithm. Also, the matching metricgeasively used till date for
comparing against gold standard segmentations can oftemdieading. We would like
to emphasize that in the future, the focus of IR will mostlyftsio tail queries. In such a
scenario, an IR-based evaluation scheme gains relevanaadeecalidation against a fixed
set of manual segmentations may often lead to overfitting®gtgorithms without yield-
ing any real benefit. Finally, we show how the gap betweendhbbrtiques used for the
conceptually similar processes of chunking and segmentatn be reduced using POS
sequence information from query logs, with our results shgwgignificant improvement
with all the three tagsets. In the next chapter, we will seg hested, or hierarchical query
segmentation, provides a more powerful representationeofjiery which can be used to
overcome several challenges faced by flat segmentation.



Chapter 4

Discovering Syntactic Units by Nested
Query Segmentation

4.1 Introduction

As we have seen in the last chapter, flat query segment@8)87, 137] partitions complex
gueries into syntactic units made of non-overlapping wegugnces. An example of such
aflat or non-hierarchical segmentatide shown below:

wi ndows xp hone edition | hd video | playback

where pipes|() represent flat segment boundaries. In flat segmentatias, hard to
specify the appropriatgranularity or the expected length of the segments. For exam-
ple, algorithms that prefer shorter segments may split tis¢ $egment intaM ndows
xp andhone edi ti on, while others may choose not to break the sequenageo
pl ayback. This issue of an “ideal” granularity creates confusion iretrieval-based
setting. First, whether longer or shorter segments shoeldrbferred purely depends on
the query and document pair in question during the searctepso Hence, a flat seg-
mentation algorithm consistently adopting either of the strategies (long or short seg-
ments) will fail in several contexts. Next, when the genedlagegment (sawi ndows xp

79
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honme edi ti on)is matched only partially in the document (saypd$ i ce xp hone
edi tionorwi ndows xp pro edition), aflat segmentation algorithm relying on
exact (or approximate) string matching fails to understhiadithe latter case is much more
relevant than the former.

These difficulties of granularity associated with flat segtagon can effectively be ad-
dressed if we allow nesting or embedding of segments insgigebsegments. For instance,
instead of a flat segmentation, our running example querlddmimore meaningfully rep-
resented as follows:

(((wi ndows xp) hone) edition) ((hd video) playback)

({((windows xp) home) edition) ((hd  video) playback)

Figure 4.1: Nested segmentation tree.

Here, the atomic segments, i.eM, ndows xp andhd vi deo, are progressively
joined with other words to produce larger segments as falewmi ndows xp hone,
wi ndows xp hone edition, andhd vi deo pl ayback. We shall refer to this
process asiested(or hierarchical) query segmentation The hierarchy in this form of
syntactic analysis is better visualized throughested segmentation tres shown in Fig-
ure4.l Itisintuitive from this representation that ndows xp andhd vi deo are non-
negotiable (atomic units) when it comes to matching withagcwments, and the strength
of ties between word pairs can be said to weaken as they maherfan terms of the path
through the tree. This observation, in fact, forms the bafswir re-ranking scheme that is
aimed at addressing the issue of non-exact segment maichdoguments.

In this work, we systematically develop an algorithm and zalweation methodology
for nested query segmentation, which, unlike the framewwookosed in the previous chap-
ter, is a strategy that can actually be used to apply nestgdesgation to IR. Our nested
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segmentation algorithm is based on some very simple yethoMecal statistical and lin-
guistic information. Through a detailed evaluation of tagé@us aspects involved and using
two different datasets, we demonstrate that nested segtitanis not only a more infor-
mative representation of the query, but also can be expltitgain better IR performances
especially for slightly long queries (greater than or eqadhree words). Note that nested
segmentation (ochunking, which is a very intuitive representation of natural laage
(NL) sentencesd] and more specificallphrase structure grammg#9], has hardly been
used for representing queries. A possible reason for thealtention paid to this prob-
lem could be that the deduction of hierarchical syntax in l¢htences heavily relies on
accurate POS tagging of the words and an underlying graniiae importantly, such an
analysis adds a non-trivial runtime overhead during queoggssing. Furthermore, there
is no prevalent notion of grammatical syntax for Web seargtrigs which could provide
a sound basis for a hierarchical syntax.

In absence of linguistic cues, we adopt a purely statisapgroach. The intuitions
behind our approach are as follows. State-of-the-art figingatation algorithms involve
a word association score optimization over all the wordshefduery, and hence flat seg-
ments contain vital information that should be utilizeceetively. Our objective is to dis-
cover more detailed query syntax by finding interestingti@tshipswithin flat segments,
andbetweerdifferent flat segments. Syntaxithin flat segments is determined by an ex-
haustive search over lower order constituergrams, and such an approach is feasible in
this context because the lengths of flat segments rarelyedxiteée words. The relative
strengths of bigrams straddling flat segment boundariespgied in inferring the rela-
tionshipsbetweendifferent flat segments. Relevant bigram statistics, agai@,already
available. These strategies help us discover the hieicsyntax within a query, which is
subsequently harnessed during document re-ranking. ©hbisdent re-ranking strategy, in
turn, is our instrument for directly applying nested segtagon to improve result quality.

Contributions of this work. This research is the first to harness the power of deep
query syntax through nested segmentation and use it to iapemking. A highlight of
our approach is a principled way of dealing with cases wheréam words of a query
(segment) are absent in the documents, i.e., an exact maglsegment is not found.
Specifically, in this research, keeping the above persgescin mind, we (a) develop an
unsupervised and lightweigtgchnique for nested segmentation that uses query loge as th
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only resource; (b) designdeterministiadocument re-ranking strategy exploiting the nested
representation of the query; (c) demonstrate that the usestéd segmentation can lead to
significant improvement in document re-ranking over théestd-the-art flat segmentation
strategies.

The rest of this chapter is organized as follows. Secti@uliscusses current techniques
in flat query segmentation, their limitations, and the cgpanding benefits of nested seg-
mentation. Basic concepts and necessary terminology aneedein Sectiod.3. Sec-
tion 4.4 presents our algorithm for generating nested segmensatidext, in Sectiort.5,
we discuss the technique for using nested segmentationgoov@ result ranking. We
describe datasets used in Sectbf Section4.7 describes the experimental results and
observations. Sectigh8reviews research on proximity and dependence modelserttir
related to this work. Sectio#.9 concludes this chapter by summarizing our contributions
and highlighting future research directions.

4.2 Issues with flat segmentation

In this section, we explain the limitations associated idhsegmentation and how nested
segmentation can conceptually overcome such shortcomings

4.2.1 Limitations of flat segmentation

There are two important conceptual deficiencies of flat segatien: its definition and its
use in IR. These two issues are, in fact, very closely relasadise it seems impossible
to posit a definition of a segment without an IR model in plagre often than not, the
definition of segmentation is presented vaguely as grouglisgntactic units29,137]. Ul-
timately, it is the segmentation strategy that providesnaplicit definition of the concept.
Needless to say, such definitions and guidelines leave opedor a subjective interpreta-
tion of segments leading to low inter-annotator agreemannanually annotated queries
(about58 to 73% on most metricsZ16]). In our previous chapter, we have highlighted
issues with evaluation against human annotations. Howéwverproblem is deeper than
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just being an outcome of imprecise definition. Rather, it stémom the fact that the no-
tion of segments cannot be defined in the absence of an IR madoetause unlike NL,

there are no cognitive correlates of segments, like phraiseluses, in queries. At best,
an annotator can be asked to group multiword (named) entagether, which drastically
reduces the scope of segmentation and makes it equivalire ppoblem of (named) entity
identification in queries.

There is no clear consensus on the best use of segmentatretrigval or ranking
models, although there have been proposals such as the depeidence model29,
language modelsl37] and double quotes8p]. A commonly assumed restrictive principle
in this context is that the words of the same segment mustaa@ggacent to each other
in the document. This has resulted in the use of double quatke®sperators to ensure
exact matches) to surround segments in several experihfemteeworks (our own work
and R9,82. However, as we have seen in the previous chapter, puttiogeg around
all segments degrades performance, and while use of qumteeftain segments yields
better results, detection of these segments at runtimdlia $tard task. Finally, the use
of exact segment matching leaves the following importaetstjon unanswered: how does
one deal with the situation when the exact segment is onlygtigifound in the document?
A “segment found/not found” type of binary scoring would hat the best choice, as we
have seen through our running example that some of the waagibmentirely replaceable
(edi t i on) while others are not{ ndows). Current proposals of using flat segmentation
for IR [28,82,137] do not provide guidelines for handling such cases explidih general,
guoting-based strategies severely limit the scope of setatien and effectively narrow it
down to multiword entity detection.

4.2.2 Advantages of nested segmentation

The aforementioned problems, in essence, are manifestatiothe deeper issue of gran-
ularity at which segmentation needs to be done, i.e., whethprefer longer or shorter
segments, and whether this choice is context-sensitivesd problems vanish if we allow
hierarchical or nested segmentation, where the humanaonot the algorithm is allowed
to mark meaningful units in a hierarchical fashion and isinegfl to go as deep as possible
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preserving the semantics of the query. This will result irtavel segmentation where at
the lowest level, we will have multiword expressions for @fhguoting or exact matching
would make sense during retrieval (e.gi,ndows xp andhd vi deo in Figure4.1),
whereas at higher levels it would make more sense to empésydstict matching where
the terms are expected to be closer in a relevant documenbbuiecessarily adjacent to
each other (for example, a few words may be allowed to intheteveen the paivi deo
andpl ayback).

Nesting is conceptually identical to hierarchical chumgig, 3] or phrase structure pars-
ing of NL sentences49]. For example, a complex noun phrgsga flight) (from
| ndi anapolis) (to Houston)) can bechunkedby parenthesizing smaller units.
Thus, similarly nesting query segments can effectivelplkesthe problem of granularity.
In the context of queries, a straightforward algorithm fested segmentation would be to
continue splitting a query or segments until certain bompndanditions are met. However,
as we will show, this approach overlooks the rich local symeesent in the query which
can be used to customize nested segmentation.

Huang et al. 99| introduce a simple algorithm for hierarchical query segtagon as an
application for Web scale language models. However, thayailsuggest how nested seg-
mentation could be used in IR. It is worth mentioning that tenoximity models 6,217
and term dependence modei[148, which are based on the fundamental assumption
that certain query terms are expected to occur in close piokin the relevant documents,
are obliquely related to the concept of segmentation, scterms that are within a seg-
ment or appear closer in a segmentation tree can be expe@pgear closer in the relevant
documents. We shall borrow some of these ideas to build etareing framework.

4.3 Terms and definitions

In this section, we formally define the types of segmentatiod the different distances
used to build up the algorithms and re-ranking models in tibsequent sections.
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4.3.1 Types of segmentation

Flat segmentation.A flat segmentation for a query is defined as a partitionindpefjuery
words into non-overlapping word sequences. Each sequéitears between two segment
boundaries is called #fat segmentin general, a flat segment corresponds to a meaningful
syntactic unit within the query.

Nested segmentationA nested segmentation for a querys defined as a recursive par-
titioning of ¢ such that each partition is either an indivisible (possibiyitiwvord) unit or
another nested segment. The partitions are marked usiegtpases, and so a nested seg-
mentation is represented as a complete parenthesizatithe efords ing. For example,
(((wi ndows xp) hone) edition) ((hd video) playback) is a possible
nested segmentation for the corresponding query. By coiovergarentheses are always
present around single words, and at the ends of the query.

Note that this definition does not enforce a sthatary partitioning of the query; it
is often possible that an atomic unit is composed of more thanwords ped and
br eakf ast). The query can also be constituted of multiple disparatecepts, like
(price conparison) ((ps3) (nintendo) (xbox)), where more than two
elementsgs3, ni nt endo andxbox) are conceptually at the same level.

A nested segmentation treg an alternative representation of nested segmentation,
where the query terms are leaf nodes and every multiword eegis represented by an
internal node whose children includ#é and onlythe nodes corresponding to the words or
other segments that constitute this segment. Figurgraphically illustrates this concept.
This tree representation not only provides an intuitiveialization of nested segmentation,
but is also useful in defining the topological distance betwa pair of terms in the query.

4.3.2 Types of distances

Document distance.The distance between a pair of words in a document can bed:zonsi
ered as the difference in the positions of the two words indibeument, or equivalently,
one more than the number of intervening words. Since a paioofls can occur multiple
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times in a given document, the notion of distance, so defiseinbiguous. Consequently,
various proximity heuristics have been proposed in the gasbmpute the effective dis-
tance between two words in a documes®,R17]. These include the minimum, maximum
and mean of the distances between all paired occurrendas tfd words in the document.

Let a andb be two terms in the queny, which are also present (matched) in a retrieved
documentD. Past researcltbp, 217 has shown that amongst the various proximity heuris-
tics, minimum distancéas the highest inverse correlation with document relevane.,
the lower the minimum distance betweerandb in D, the higher the chances thBtis
relevant tog. However, past measures do not directly reward a documérttat multiple
instances ofi andb occurring within low distances of each other. Let there:bestances
of orderedpairwise occurrences aof andb (ordered pairs of positions af andb, (p, p2)
wherep; < po) in D at minimum distanceg,, ds, ..., d;, ..., d, such that thel;-s are in
ascending order. We combine the ideas of minimum distandemauitiple occurrences of a
term pair to formulate the following definition of accumuNatinverse document distance
(AIDD) for a andb in documentD:

AIDD(a,b; D)o, = R (4.1)
di  dy di;

By this method, a document with sevefal b) pairs close by will have a higd/ D D.
Since our concept is based on minimum distance, we do notandedument length nor-
malizer. A threshold ok is nevertheless necessary to avoid consideaihg@airwise dis-
tances ofa andb, as distant pairs could be semantically unrelated. Fyrtberemove
unrelated occurrences from computation, we score mataiigsfdhe pair occurs within a
given window sizewin, i.e., we do not considel; when it exceedsin.

We compute the pairwise distances using position vectarsdf a andb in D [56).
For examplepuv(a) = {1, 5,10} andpv(b) = {2, 3} mean that has occurred in positions
one, five and ten andin two and three (iD), respectively. We currently ignore sentence
boundaries while computing AIDD. Such a style of computatid pairwise distances can
lead to re-counting of specific instanceswfindb. For example, the three minimum
distance pairs in this case would be (1, 2), (1, 3) and (5, 8yeHwith patterns liké&. . .
aabbbec...") onecouldaddress the problem by choosing the optimurardist
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pair (@, b) using dynamic programming. This entails search in expbaletime over the
entire document, limited by the number of occurrences olgbg frequent word. However,
such an approach has been shown to be less effective thamihle sase when re-counting
is tolerated (seef] for a more detailed discussion). Moreover, such patteragaite rare
in running text of documents.

Query distance.The query distanced(a, b; ¢) between two termg andb in a queryg
is defined as the difference between the positionsaridb in ¢, or equivalently, one more
than the number of intervening words in the query. For ingafor our running example
guery, the distance betweeap andvi deo is four. In special cases when the same word
appears multiple times in a quelygdhnson and j ohnson hone page), each term
instance is treated as distinct during pairwise compasison

Tree distance. The tree distanc&l(a, b; n(q)) between two terms andb in n(q), the
nested segmentation of a quetyis defined as the shortest path (i.e., the number of hops)
betweemn: andb (or vice versa) through the nested segmentation tree. frtree ensures
a unique shortest path betweeandb, which is through the common ancestoracdndb.

For examplet{d(xp, vi deo; n(q) in Figure4.1) = 7. The minimum possible tree distance
between two words is two. We hypothesize that term pairsnigaldw tree distance must
appear close together in the document. Note tthdetween: andb can vary for the same
q, depending om(q). As with query distance, when the same word appears mutiipks

in a query, each word instance is treated as distinct durigvise comparisons.

4.4 Algorithm for nested query segmentation

The goal behind devising a principled nested segmentatiategy is to discover deep
syntactic relationships in a query, which are often preseétitin a flat segment, and/or
betweemultiple flat segments. We do not propound simple top-dovegifpwith the query

as a single unit and continue splitting till all units aregdenwords) or bottom-up (begin
with each word as a single unit and continue merging till thek query becomes one unit)
approaches for deducing the hierachical syntax in a quarguse such methods arévea

and do not involve any optimization step over all the wordshefquery. State-of-the-art flat
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Table 4.1: Joining and splitting of flat segments for nested segmemtati

Step Syntactic representation of the query

Input flat seg | |
Parenthesized ( ) ( ) ( )

Split ( ) ( )

Split ( ) ( )

Join ( )

Join and output ( )
All text except new segment markers are greyed out.

segmentation algorithms like Hagen et 84]| Li et al. [137] and our methods (Chapt8y
involve principled optimization criteria leading to thesdovery of flat segments, and a
good nesting strategy should exploit this knowledge to #st bapacity.

There are three primary constraints or features of a qugmyeetation algorithm that
need to be considered before designing an algorithm forghipose. First, the accu-
racy and robustness (i.e., reasonable performance on avaiigdy of queries); second, the
speed (segmentation is an online process and thereforgtadtigcally useful, it must have
a very short turnaround time); and third, lack of annotatahdlt might be worthwhile to
elaborate a little on this last point. It may be argued thatefcan get sufficient queries
annotated by human experts for nested segmentation, thealaltd be used for supervised
learning of nesting algorithms. Indeed, most of the NL pagslgorithms do rely on su-
pervised learning on human-annotated treebatkd][ However, there is an important
difference between these two cases. NL parsing is guidechlmnderlying (context-free
or phrase structure) grammar which linguists have desigmexigh years of systematic
analysis of NLs. The annotators, who are themselves trdingdists, use the knowledge
and framework of the grammar to annotate the tree syntaxefoiesces. Likewise, the
parsing algorithms search in the space of all possible piggss that conform to this gram-
mar. Queries do not follow grammatical rules, or at the leassuch grammar has been
formulated or deciphered till date. Neither do we have asoos who are experts or native
speakers of the “query language”. Therefore, structunabtation of queriesdb, 26,199
has always been subjective, often leading to low inter-tatnbagreement. Moreover, cre-
ation of annotated data, for example, the treebanks for télkes a tremendous amount of
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- ~
4 ~

Rt . JOINING FLAT SEGMENTS
R hd video playback
windows xp home edition | hd video | playback INPUT FLAT SEGMENTATION
windows xp home edition hd video

SPLITTING FLAT SEGMENTS
windows xp home

windows Xp

Figure 4.2: lllustrating our approach for nested query segmentation.

time and effort. It is also not straightforward to ascertatmether NL parsing algorithms
can be efficiently adapted for fast online processing.

Approach. Since flat segmentation is a well-researched problem, welalewur algo-
rithm for nested segmentation by starting with a flat segatent of the query and trying to
split within a flat segment anin adjacent flat segments recursively. Since flat segments
are rarely longer than four to five words, nesting can be datteer fast with some clever
manipulations of low orden-gram statistics/{ = 2,3). Thus, in our setup, given a flat
segmentation for a query as input, a nesting strategy dsrighe following two steps:

(a) Splitindividual flat segments recursively till atomiaits are obtained; (b) Join adjacent
flat segments recursively till the whole query is one singii. urhe split and the join steps
are independent of each other and can be performed in any ditue process is illustrated
in Table4.1and Figure4.2with the help of our running example query.

4.4.1 Splitting flat segments to discover syntax within a flat segment

Our main motivation for designing simple segment nestingtsgies stems from the fact
that most flat segmentation algorithms compute some forreares forn-grams as a key
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step of their respective methods (generally< 5) [84,216. In doing so, most often the
scores of the contiguous lower ordegrams . — 1, n— 2, ...) are also known. We exploit
these scores to deduce the syntax within a flat segment. Any agsociation measure can
be used to score arrgram in our method (in our experiments, we use the methauiséed
in the previous chapter (Equati@3)).

We adopt a simple greedy approach in this researchnigram that has the highest as-
sociation score within a flat segment (where the number oflsvior then-gram is less than
the number of words in the corresponding flat segment) is idiately grouped together as
a unit, i.e. asub-segmentn this work, we restrict: to a maximum of three, i.e. we search
for highest scoring bigrams and trigrams exhaustively with flat segment. We define
a sub-segment as a smaller segment created by the divis@haofer segment. Recur-
sively, this newly grouped sub-segment’s left and rigigrams (possibly null) and the sub-
segment itself are processed in the same greedy fashiewdily string to be processed can-
not be divided further. For example, in the flat segmwemdows xp hone editi on,
wi ndows xp hone has the highest score among the five possibigams (two trigrams
and three bigrams). Thus, it is grouped together first. Sewdbet i on cannot be pro-
cessed further, we repeat the search withimdows xp homne and groupwi ndows
xp inside it, which leads to the following parenthesized foomthe original flat segment:
((w ndows xp) hone) edition. Fortheflatsegmenthe | egend of zel da
twi [ ight princess, we havel egend of zel da grouped first (withl egend
of being grouped inside it in a subsequent step) followed Wyl i ght pri ncess.
This sequence thus results in the embedded syiftake) ( (| egend of ) zel da)
(tw light princess).

4.4.2 Joining flat segments to discover syntax across flat segments

Joining flat segments is essential to completing the nesgaantation tree, which in turn
ensures a path between every pair of words in the query. Asight, it seems that to be
able to make a decision regarding the joining of two flat segsevith . andn words
respectively, one needs to have ¢ n)-order statistics. However, we found an elegant way
to join segments using two simple local statistics explinext.
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Bigram statistics of words at segment boundaryThe bigram at a flat segment bound-
ary, i.e. the last word of a flat segment and the first word ofrtbet flat segment, can
be effectively used to take the segment joining decisionounrunning example, if we
wish to decide whether to jom ndows xp hone edition andhd vi deo, or hd
vi deo andpl ayback, we check the relative order of the scores of the (ordered) bi
grams formed by the underlined words only. The bigram with bigher score (in this
casevi deo pl ayback) dictates which pair should be joined. This process is sirtyil

repeated on the new parenthesised segments obtainedhemtihble query forms one unit.
This local and context insensitive approach may seem tinfatses, and we do not claim
that using bigrams only is sufficient in this process. Néwadss, as we shall see, it works
quite well in practice. In this research, we use the welilgisthed concept of pointwise
mutual information (PMI)§4,114,185 to score bigrams. Lef = <w; wy > be a bigram
constituted of wordss; andw,. PMI(B) is defined as follows:

PMI(B) = log, i) (4.2)

(w1)p(w2)

wherep(w;ws), p(w;) andp(w-) refer to the probabilities of occurrences®fw, and
ws in the query log i.e. the number of queries each of them is present in, naethby
the total number of queries in the log.

Determiners, conjunctions and prepositions. It often happens that the last (or the
first) word in a segment is a determiner, conjunction or pséjmm (DCP). In these cases, it
is almost always meaningful to combine such a segment wathéixt segment (or the previ-
ous segment) to make a meaning§uper-segmergt larger segment created by the joining
of two smaller segments). Examples drieed and) (breakfast) and(sound)
(of nmusic). Inour algorithm, we prioritize such cases over the bigraores during
the joining process. The list of DCP used is freely availaliine?.

Ihttp://www.sequencepublishing.com/cgi-bin/downlaai?efw Accessed 6 April 2014.
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4.5 Using nested segmentation in IR

The use of flat query segmentation in IR has been based upaotioept of proximity,
which states that two words which are in the same segmenidslaéeao occur within a
short distance of each other in the relevant documents; ealsewords in different flat
segments need not necessarily occur close to each astgr A stricter but more popularly
assumed and experimented version of this hypothesis isvirats within a flat segment
should occur next to each other exactly in the same ordereimdlevant document as in
the query 216. This is typically implemented through the use of doubletgs around
segments, which most search engines interpret as an itistréior exact phrase match. As
discussed earlier, this severely limits the scope of quegyrentation and often results in
misleading conclusions. Nevertheless, there is no ob\aoatogy between quoting of flat
segments and that of nested segments, because it is unsleamdich level of nesting
the quotes should be applied. More importantly, quotingyairast the basic philosophy of
nested segmentation because then we are not harnessingetbenefits of the hierarchical
representation of the query terms.

4.5.1 Re-ranking using the tree and document distances

Here we define a scoRe-rank Status ValdgRrSV) of every documenD that was re-
trieved and ranked in response to an unsegmented quefihe RrSV for each such
document is determined based on the following principéepair of words that have a low
tree distance in the nested representation of the queryldimmi have a high document dis-
tance.In other words, while re-ranking a document, the documestadce (Sectiod.3.2
between a pair of words should be penalized by a faot@rselyproportional to their tree
distance. We recall that tree distance between two wosdslb in a queryg, td(a, b;n(q))

is the path between andb in the nested segmentation(§)) tree ofg, and the document
distance between andb in a documen®D, AIDD(a,b; D), is defined by Equatiod.1
The RrSV for a documenD is thus defined as

2The nomenclature is inspired by the Retrieval Status VaR&W) of a document with respect to a
query, which is a term that is popular in IR literatute ().
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3 AIDD(t;,t;: D)

RrSVy =
e td(t;, t:n(q))

(4.3)

ti,t;€qND
ti#t;
td(tistj;n(q))<o
wheret;-s are query terms matched in the documentafid is the nested segmentation
for ¢. However, we do not wish to penalize the case when the woeddase by in the doc-
ument and are relatively far apart in the tree. This is bez#&us always preferable to have
all query words close by in the documeB6]. Rather, we want to penalize a document only
when specific word pairs (those that have a low tree distdre high document distance.
In our example, we would penalize the cagendows andxp, which are close by in the
tree, have a high document distance. We will not care whiemdows andpl ayback,
which have a high tree distance are nearby in the documenttorTinese situations and
the corresponding desired penalties are presented in #&bld his analysis drives us to
create a tree distance threshold (cut-off) parametér other words, iftd(a, b; n(q)) < 6,
only then is the word pait andb considered in the computation &fSV'.

Table 4.2: Penalty cases for query word pairs.

Tree distance Document distance Penalty

Low Low Low
Low High High
High Low X
High High X

X marks represerdon’t careconditions.

We experimented with a number of variations of incorpoatoenalty into our re-
ranking formulation, and found that the simple method oés#hiolding the tree distance
works best. This is because the tree distance acts as a meniaf the document distance,
and thus proportionately “rewards” (or inversely, peradizin the vice versa case) the
document distance when the tree distance is low (if tre@uest is two, only halving the
AIDD; if the tree distance is three, dividing the AIDD by tie}e When the tree distance
exceeds the threshold, we arrive at tho't carecases.
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The set of documents retrieved by a search engine by issaegrisegmented query
will be re-ranked irdescendingrder of thisRrSV'. Let the ranks assigned to the document
D by the original ranker and our re-ranking strategyig, (D) andR,...,(D) respectively.
Then, according to our strategy, for two documéntsandD, if RrSVp, > RrSVp,, then
Ryew(D1) < Ryew(Do), i.e. Dy will be ranked higher up in the new ranked list tHan The
intuition here is that if a documef; accumulates a higher value BFSV than document
D,, thenD; has a relatively higher number of occurrences of query téramsig a low tree
distance close together inside its text tian

4.5.2 Rank aggregation of original and new ranks

The set of documents that we re-rank are originally retddvem a collection in response
to an unsegmented query using well-established IR rankimgiples based on term fre-
guencies and inverse document frequencies, and we wislvéodgie weight to the old

ranks. We aggregate or fuse these ranks in the following eratonobtain an aggregated
scoreS, ani—agg for every documenDd [9]:

1
+
Rnew<D) =+ 1) Rorig(D) +1

Srank-agg(D, Rorigs Rnew, W) = (w X (4.4)
where the weightv (assigned to the new rank) is a heuristically tuned scabatpf rep-
resenting the relative “importance” of the new ranking. Toeeuments are finally ranked
in descendingrder of S, 4, t0 produce the final aggregated rafl;,,,. Formally,
if Srankagg(D1) > Srank-agg(D2), thenRyinau(D1) < Rpina(D2), i.€. Dy will be ranked
higher up in the final aggregated ranked list t3n Settingw to zero or a very large value
nullifies the effects of the new and original ranking respety.

There are several other approaches to rank aggreg#&iond, 151 and one of several
proposed approaches could produce the best results inmg@ep. However, that is not
the focus of this research and we adopt one of the relativsdgnt, simple and popular
techniques in this work that allows us to tune the effecthiefdriginal and rankings.

The authors of Agichtein et alb] adapt a simple and robust method of merging the rank
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orders. The main reason for ignoring the origisabresand considering only theanksis
that since the feature spaces and learning algorithmsféeesthit, the scores are not directly
comparable. They experimented with a variety of mergingfians on a development set
of queries. They found that a simple rank merging heurigiimlgination works well, and
is robust to variations in score values from original rask@rhe query results are ordered
by decreasing values of the final score to produce the fin&lngnOne special case of this
model arises when setting to a very large value, effectively forcing the new ranking to
be preferred over the old ranking - an intuitive and effextineuristic that they used as an
experimental baseline. Applying more sophisticated rackenbination algorithms may
result in additional improvements, and is left as futureeagsh. The approach above as-
sumes that there are no interactions between the undefatgres producing the original
ranking and the new features.

4.5.3 Re-ranking baselines

We now introduce three baselines for comparing the perfoc®maf our re-ranking strategy
for nested segmentation. Flat segmentation is the firstesfetbaselines, where we extend
our notion of using pairwise term proximity to words withiatflsegments only. The other
two baselines are natural variants of the re-ranking egngtquation4.3) that require
investigation — one where only document distances are deresi, and the other where the
tree distance is replaced by the simple query distancei(petB.2).

Flat segmentation.This re-ranking technique is based on the notion that woittsw
a flat segment are expected to appear near each other in¢hanmetiocument[Lg. Let
q be a query that hag flat segmentsS; to S,. The RrSV computation in this case is
restricted only to intra-segment term pairs, i.e.,

Rr$Vp=3"" > AIDD(t;t;;D) (4.5)
bt €S5ND it

Document distances only.This strategy is based on the principle that proximities be-
tween all pairs of query terms are equally important. Thearéing score is thus simplified
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as shown below:

RrSVp= > AIDD(t;,1;;D) (4.6)

tit;€qND,t; #tj

Document and query distancesThis method assumes that only terms close by in the
query are required to be near each other in the documenthasddkes into account the
query distanced. Hence, Equatiod.3is suitably modified to:

frsVo = qd(ti, t;;q)

4.7)

ti,t;€qND,t;#t;

4.6 Datasets

In this section, we describe the datasets that we have usediwde this section into two
parts: (a) data needed for performing nested segmentdtiquenies, and (b) data needed
to apply and evaluate our strategies with respect to IR.

4.6.1 For performing nested segmentation

As discussed, our nested segmentation algorithm requijesrg log as the only resource,
for computing various:-gram scores. For our experiments, we use our two to ten-word
gueries from Bing Austalia query log as discussed in SedtidanWe use the Porter Stem-
mer [17§ to stem the queries before the computation ofithgram scores.

4.6.2 For re-ranking documents

In order to ensure the replicability of our results, we répar IR evaluation on publicly
available datasets only (Tabe3) and use open source retrieval systems.
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Table 4.3: Details of datasets used.

Dataset Number of Average words Average RJs Search

Name queries per query per query  system
SGCL12 500 5.29 28.34 Lucene
TREC-WT 75 3.43 34.39 Indri

SGCL12. We use the dataset that we created for evaluating variousetghentation
algorithms (Sectior3.4) because it consists of slightly longer queries (five to ewbrds)
where segmentation is meaningful from an IR perspectivernceSive also showed that
flat segmentation can potentially lead to substantial nDC@avement on SGCL12, this
dataset is very appropriate for evaluating nested segti@mtand to show improvements
over flat segmentation. Note that the queries in the SGCL1&sdaalso have flat segmen-
tation annotations from various algorithms and human esheXks in the previous chapter,
we use the commercially popular open source Apache Lddsaee version.4.0 chosen
for comparability of results) to search this collection. égias1 — 250 were used as the
development set for tuning model parametérs«(in, 6 andw) and querie®51 — 500 were
used as the test set.

TREC-WT. TREC topics, especially those belonging to the Web Track (WaB} pield
in 2012) and the Million Query Track (MQT) (last held iR009) are the ideal proxy for
real Web search queries. All the data related to TREC-WT is puliiowever, the topics
of WT are very short (average length 282 words for2012°) and therefore, not very
appropriate for evaluation of nested segmentation. Thesissth the MQT 2009) is the
sparseness of RJs, which is more acute for slightly longenegieWe pulled out thé00

3In this chapter, in order to prevent digression, we do natwdis human annotations for nested segmen-
tation. However, we explored the effectiveness of crowdsiag for this task. Through carefully designed
control experiments and Inter Annotator Agreement mefiocsaanalysis of experimental data, we showed
that crowdsourcing may not be a suitable approach for negtedy segmentation because the crowd seems

to have a very strong preference towards balanced binay.tre
“http://lucene.apache.org/corétcessed 6 April 2014.
Shttp://trec.nist.gov/data/webmain.htmiccessed 16 November 2014.
Shttp://trec.nist.gov/data/web2012.htmlccessed 6 April 2014.
’http://trec.nist.gov/data/million.query09.htriiccessed 6 April 2014.
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longest queries from the MQR({09) having at most ten wordsl91 of these queries had
no associated RJ. Moreover, of all the queries that haveHegrgater than or equal to five
words, only42 have at least one RJ.

Nevertheless, in order to conduct nested segmentationiexgrs on the widely used
TREC data, we accumulated queries from 2089 to 2012 WT, and retained the queries
that had three or more worRl§100 queries out of a total a200). The highest number of
words in this query set is five, even though it would have bestebto have longer queries
for truly appreciating the benefits of nested segmentaikaievance judged documents for
these queries are present in the ClueWeb09 collettiva used the open source Indri
to search this collection through the provided API and egt&d the topl00 documents.
The queries for which there are no relevant documents irojh&00 results were removed
from the dataset. We will refer to this remaining setdfqueries as the TREC-WT. These
queries, on an average, had RJs within the topl00 results (Table4.3). RJs for all
TREC-WT queries, downloadable from the respective track webgrels), have been
appropriately collapsed to a 3-point scale (0, 1, 2). Qudrie 35 queries were used as the
development set for tuning model parameters and quaéies75 queries were used as the
test set (sehttp://bit.ly/13StKUNfor the ordered query set).

4.7 Experiments and results

In this section, we first report the specifics of our experitaksetup and present the de-
tailed results about our re-ranking strategy. In particuhge report the results of the fol-
lowing experiments: (a) effectiveness of nested segmientater flat segmentation, (b)
effect of query lengths, (c) effect of re-ranking stratsgil) effect of parameter tuning,
(e) effect of algorithmic variants, and (f) comparison wptst work.

8Nested segmentation can only benefit queries with at lesst thords.
Shttp://lemurproject.org/cluewebQ9ccessed 6 April 2014.
©nttp://www.lemurproject.org/indrj/Accessed 6 April 2014.
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Table 4.4: Examples of nested segmentations for queries.

Flat segmentation Nested segmentation

garden city shopping centre | brisbane | gqld ((garden city) (shopping centre)) (brisbane qgld)

the chronicles of riddick | dark athena (the ((chronicles of) riddick)) (dark athena)
sega superstars tennis | nintendo ds gane ((sega superstars) tennis) ((nintendo ds) gane)
sanmurai warriors 2 enpires | wal k throughs (((sanurai warriors) 2) enpires) (walk throughs)
as tine goes by | sheet nusic (as (tinme goes) by) (sheet nusic)

4.7.1 Experimental setup

We used the outputs of four flat segmentation algorithms —poaposed algorithms, Ha-
gen et al. 84], and Li et al. [L37], as input to the nested segmentation algorithm. Final
nested segmentations for these queries were obtained @g.oDocuments are retrieved
using the unsegmented queries, and subsequently re-raskegithe proposed technique
(Section4.5) and the baselines (Sectidib.3. Results are compared in terms of popular
IR evaluation metrics: nDCG and MAP (Equatiodgl and3.7). nDCG was computed
for the top# retrieved documents (represented with suffix, wherek is 5, 10 and 20).

For computing MAP, URLs with ratings 0 were considered as relevant. MAP values are
computed on the topd documents for SGCL12 and the tdp-documents for TREC-WT
(depending upon the approximate pool deptl2®fnd 34 respectively (Tablel.3)). For
each setting, the four parameters (Ta®l8) were optimized using the grid search tech-
nique for maximizing nDCG@10 on the development set and tseds# of values were
applied on the test set, which are reported in this sectiom.pbposed re-ranking method
is found to be robust to parameter variation, as shown laterd text.

4.7.2 Results and observations

To provide a qualitative feel of nested segmentation ostpattypical queries, we provide
some representative nested segmentations generated algotithm for SGCL12 queries
in Table4.4. Table4.5 presents oumain findings- the performance of nested segmenta-
tion in comparison with unsegmented queries and flat segrtient Since the TREC-WT
dataset was quite small compared to SGCL12, we report aveehges over ten runs with
random train-test splits &% and40 queries respectively, while preserving the query word
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Table 4.5: Performance comparison of flat and nested segmentations.

Dataset Algo Hagenetal. B4] Lietal [137 Proposed Flat Proposed Flat+Wiki

SGCL12 Unseg Flat Nested Flat Nested Flat Nested Flat Nested

nDCG@5 0.6839 0.6815 0.6982 0.6913 0.6989 0.6977 0.6976  0.6746 0.7000f
nDCG@10 0.6997 0.7081 0.7262F 0.7144 0.7258" 0.7189 0.7274 0.7044 0.7268"
nDCG@20 0.7226 0.7327 0.7433" 0.7366 0.74377 0.7389 0.7435 0.7321 0.7433f
MAP 0.8337 0.8406 0.8468" 0.8404 0.84697 0.8411 0.8481T 0.8423 0.8477

TREC-WT Unseg Flat Nested Flat Nested Flat Nested Flat Nested

nDCG@5 0.1426 0.1607 0.17507 N.A* N.A. 0.1604 0.1752F 0.1603 0.1767F
nDCG@10 0.1376 0.1710 0.18807 N.A. N.A. 0.1726  0.18827 0.1707 0.1884f
nDCG@20 0.1534 0.1853 0.19947 N.A. N.A. 0.1865 0.20007 0.1889 0.2010f
MAP 0.2832 0.2877 0.32987 N.A. N.A. 0.3003  0.3284" 0.3007 0.3296f
The higher value among flat and nested segmentations is chiarkeld. Statistical

significance of nested segmentation (under the one-tadedqy-test,p < 0.05) over flat
segmentatiomndthe unsegmented query is marked using

* We are unable to report the performance of Li et &B7] on TREC-WT due to
unavailability of outputs and code, and associated ditiiesiin reimplementation due to
use of proprietary data.

length distribution. For each algorithfalat refers to the baseline re-ranking strategy (Sec-
tion 4.5.3 when applied to the query (flat) segmented by the correspgralgorithm,
andNestedrefers to the proposed re-ranking strategy (Sedi@nl when applied to the
nested segmentation of the query (Sectdof) generated when the corresponding flat seg-
mentation was used as the start state. We observe that rsegeedntation, when using
the proposed re-ranking scheme, significantly outperfahestate-of-the-art flat segmen-
tation algorithms in all the cases. Importantly, improvetseare observed for both the
datasets on all the metrics. This indicates that one shatldansider proximity measures
for onlythe pairs of terms that are within a flat segment. We also haiteboth the flat and
nested segmentations perform better than the unsegmamteg fighlighting the general
importance of query segmentation. Henceforth, becausts stiperior performance over
the other flat segmentation methods, we will assume the ifti@usegmentation for the
nested segmentation algorithm as the output by “Proposaet\Wiki”, unless otherwise
mentioned in the text.
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The results in Tabld.5and3.3 are computed under different evaluation frameworks.
While document distance-based re-ranking is the underlygmipsophy in Tablet.5, the
oracle score for a quoting-based retrieval has been reportéable3.3. This is why the
metric values are different in the two tables for the sameritlyns. However, for the
unsegmented query, the results appear different only Beaafithe computation precision
(three decimal places in Tab®e3, resulting in0.701 nDCG@10 while four decimal places
in Table4.5giving 0.6997), but are essentially the same.

Effect of query length. To understand the potential of nested segmentation, it-s im
portant to see for how many queries in each length group ititses improved retrieval
performance. In Tabld.6, we report the number of queries of a particular length in our
datasets#Q), the number among the§gthat show a positive gain in nDCG@ 18Gain
Q), the associated percentage of queries and the averagég#&) on nDCG@10 com-
puted over all queries of a particular length that show parémce improvement over the
original unsegmented query. We observe that for almostadjth groups, nested segmenta-
tion improves a strong majority of the queries. The mean awgment is slightly more for
gueries in the medium length zone (5- and 6-word queries)foiMed that longer queries
in our dataset (for examplgjou spin ny head right round right round
andet ernal sunshine of the spotless mnd watch onli ne) generally
contain song lyrics or long named entities that require edacument matches and hence
nesting is often not required, and may be detrimental iragedases. Corresponding fig-
ures for flat segmentation (lower half of table) are obsetodak lower.

In the current Web search scenario, slightly longer querniegenerally harder to solve,
with keyword matches retrieving several spurious resiittshe specific, the percentage of
long queries ¥ 5 words) in our Bing Australia query log i%.65% (distinct queries only)
— a significant number when the total search volume is coresidd hus, we can no longer
undermine the impact nested segmentation can have on Wedh statotal, while~ 49%
gueries are benefited by flat segmentation for SGCL12~-antb% for TREC-WT, the
numbers rise ta~ 61% for SGCL12 and~ 48% for TREC-WT in case of nested segmen-
tation. Importantly, the mean improvements (over the umsgged queries) in nDCG@10
for benefited queries afe1084 for SGCL12 and).2185 for TREC-WT in case of nested
segmentation; corresponding values for flat segmentat®lower:0.0876 (SGCL12) and
0.2053 (TREC-WT).
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Table 4.6: Break-up of nDCG gains (over unsegmented query) by length.

SGCL12 (Nested segmentation) TREC-WT (Nested segmentation)

Length #Q #GainQ #GainQ% A.G. Length #Q #GainQ #GanQ% A.G.

5 387 235 60.72 +0.1103 3 52 22 42.31 +0.1695
6 91 58 63.74 +0.1006 4 14 9 64.29 +0.2842
7 14 9 64.29 +0.1401 5 9 5 55.56 +0.3156
8 8 4 50.00 +0.0414 - - - - -
SGCL12 (Flat segmentation) TREC-WT (Flat segmentation)

Length #Q #GainQ #GainQ% A.G. Length #Q #GainQ #GainQ% A.G.

S 387 193 49.87 +0.0887 3 92 21 40.38 +0.1868
6 91 42 46.15 +0.0772 4 14 o 64.29 +0.2071
7 14 6 42.86 +0.1166 S 9 4 44.44 +0.2987
8 8 3 37.50 -+0.1061 - - - - -

Comparison of re-ranking strategies.Table4.7 compares re-ranking strategies. Here
Doc refers to the baseline re-ranking method that uses only rdent distances (Sec-
tion 4.5.3, Queryrefers to the scheme using document and query distanoesrefers
to the proposed re-ranking strategy using the nested segtientree (Sectiod.5.7). We
observe that scalingl/ DD by the tree distance generally improves the results over the
unscaled version. This shows the importance of the treartistin bringing out the rela-
tionship between query terms. In other words, the nestedesetation tree provides a more
principled and meaningful estimation of proximity betwegrery terms, which can be sys-
tematically exploited during re-ranking of documents fagngicant performance gains.
We observed that the number of queries on whidt, Queryand Tree perform the best
arel02, 94, 107 (SGCL12,250 test queries) angn, 29.7, 30.8 (TREC-WT, 40 test queries,
averaged over ten splits) respectively. The numbers do aobtug to250 (SGCL12) or
40 (TREC-WT) because multiple models may produce the best outptiné same query.
Thus, theTreemodel helps greater numbers of queries for both datasets.

Tunable Parameters. We now systematically study the effect of variation of tharfo
tunable parameters on the re-ranking performance. ®aBlists the tunable parameters.
Variation patterns on the development set of SGCL12 and TREC-WTeported in Fig-
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Table 4.7: Performance of re-ranking strategies.

Dataset SGCL12 TREC-WT

Metric Doc Query Tree Doc  Query Tree

NnDCG@10 0.7193 0.7255 0.7268" 0.1801 0.1798 0.1884f

MAP 0.8398 0.8472 0.8477T 0.3237 0.3189 0.32967
The highest value among tioc, QueryandTreere-ranking strategies is marked in

boldface Statistical significance of thEreestrategy under the one-tailed pairetest
(p < 0.05) over the lowest value among the three is marked uking

Table 4.8: List of parameters used in re-ranking.

Notation Parameter

k Number of minimum distances considered
win Window size

) Tree distance cut-off

w New rank weight

ures4.3and4.4. For examining a particular parameter for a specific redrapktrategy,
others are fixed at the point of global maximu®oc andQueryrefer to the baseline re-
ranking strategies using only document, and document aedydlistances respectively
(Sectiond.5.3. Treerefers to the proposed re-ranking method based on the resjeten-
tation tree (Sectiod.5.1). Wherever applicable, th&eere-ranking model outperforms
theDocandQuerymodels systematically. From plots (Figu/e8 and4.4) (a) and(b), we
see that preferred values bfandwin are five and four respectively for SGCL12 and one
and three for TREC-WT, and increasing them further brings séoadly unrelated word
pair occurrences into thBr SV computations. Figure$.3(c) and4.4(c) show the effect
of varying § — the tree distance cut-off value; very lowessentially means ignoring the
tree hierarchy, and thus leads to poor performance for SGCEd2 SGCL12, the result
stabilizes foro > 5, and increasing further almost has no effect on the results as there
are very few word pairs that will have a tree distance gretai@n five or six for a typical
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Figure 4.3: Variation in parameters on SGCL12.

qguery. Thus, having this parameter in the system setup isr@df but if one chooses to
useo for finer control on the results, one must be careful as to etat £ a very low value.
However, we note that = 3 is ideal for TREC-WT, and greatéris applicable only for
~ 30% of the queries, which are of length greater than three wokFdsally, setting the
new rank weightv to two is found to be the best for SGCL12. Settindgo zero logically
translates to ignoring the new ranking, and would resulbengerformance of the original
query, which is always poorer than when re-ranking is apfli#nsegin Table4.5). Using

a large value fow (~ 1,000) implies ignoring the old ranking. This is found to produce
the best results for TREC-WT, emphasizing the importance ofr@uwanker. Thus, one
should decide on the weights to assign to the original raakdrthat derived by the nested
representation of the query after an empirical analysis tomiag set.
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Figure 4.4: Variation in parameters on TREC-WT.

4.7.3 Systematic investigation of variations in algorithm

Our overall algorithm entails the systematic exploratibneytain variations. First, instead

of a greedy approach, one can opt for an optimized strategpliba flat segment. In
this approach, every possible way of breaking a flat segnsetnsidered, such that the
constituent sub-segments are 1-, 2- or 3-grams only, angdttgioning that leads to the
best combined score is selectedThese partitions are assumed to be the atomic units of

the base flat segment. If a flat segmentation is purely basat optimal combination of
individual segment scores, then each segment, by itsed) igptimal way of combining

LAddition is the combination operator for the scores owinght® logarithmic space in which they are

defined B4].
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Figure 4.5: Performance examination of algorithm variations on botlaskts.

its constituent words. In such a case, the optimized styadégplitting would not have
any effect on a flat segment. On the other hand, if a flat segmettduced through
matching against a list of named entities or a domain-spetitiltiword lexicon, getting
smaller strings based on the scores is likely. Note thatduige possible that the greedy
and optimized approaches produce the same final output.

Second, one can use our co-occurrence based word assos@ti@ (Equatio.3) for
scoring bigrams fojoining smaller segments instead of PMI. This gives rise to two @wic
in the joining phase. Third, the definition of PMI can be agprately extended to score
n-grams whem > 2 [185, and can thus be used during @@itting process instead of our
score. This gives to two choices during the splitting ph&s®irth,joining segments may
be purely on the basis of bigram scores and DCP (preferenaséoniners, conjunctions
and prepositions during joining, Sectidm.2 need not be considered during the merging
process. This leads to two more choices during the joiniragphWe shall systematically
represent and refer to these nested segmentation stsategfie Jxy, whereU is G or
O for greedy and optimized approaches for splitting flat segmeespectively})” and X
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are C or P respectively for our co-occurrence based score and PMEesdor splitting
and joining respectively.Y is D if DCP is considered during joining, else null. Thus,
SacJp refers to the case where greedy splitting is done using awesgand joining is
done using PMI scores without considering DCP. If DCP is cargd, the corresponding
representation will b&gcJpp. In this manner, we havex 2 x 2 x 2 = 16 combinations
in all for nested segmentation (greedy or optimized splittisplitting or joining with PMI
or our scores and optional preference to DCP) for each inpgugdamentation. Choice of
these different nesting strategies is examined here.

The best performance of these variants are computed by @gtiedy tuning model pa-
rameters on the development set, and reported in Fi§jbréVe observe that the proposed
nesting strategy,y Jpp outperforms all the other nested segmentation strategidsoth
SGCL12 and TREC-WT (there are three other strategies with cabfeaperformance for
TREC-WT). In general, it is observed that during splitting,eghg approaches work better.
This is due to the fact that the greedy approaches are altastsable to split a multiword
segment further leading to deep nested syntax that is mfmemative. On the other hand,
while joining, giving preference to DCP turns out to be a batteice. Interestingly, PMI
scores are more useful for joining segments and our scoedsetter at splitting segments.
This also falls in line with the assumptions underlying tisage of these scoring methods;
the concept of PMI is more meaningful for examining relasuengths of pairs of words
only, and thus has been more frequently used for marking segbmeaks (and hence non-
breaks) by observing PMI scores of adjacent word p&4s1[14]. In contrast, our score is
aimed at grading how well a group of words gel together as @nession. However, we
observe that differences between strategies are notaitissignificant, which highlights
the flexibility of the algorithm outline.

4.7.4 Comparison with past work

For comparing our algorithm with past work, we reimplemdrd hested segmentation
strategy of Huang et al9p] (Section4.2.2, which is based on SPMI (Segment Point-
wise Mutual Information). A query (and its segments thaesafis iteratively split into
two halves based on an SPMI threshold until the minimum SRMcthes a termination
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threshold. We emphasize again that Huang et al. do not pr@ng methodology for using
nesting for IR. While evaluating their algorithm, Huang etallserved that the anchor text
language model, obtained using the Microsoft Wegram Service'¥, performed better
than title, body and query models. Hence, we choose the amektdanguage in our ex-
periments as well, for fairness and comparability. The llmaarameter in their algorithm

is the SPMI termination threshotd which is required for stopping further nesting. As sug-
gested in their papet; needs to be tuned by optimizing one of the three matchingicsetr
(Exact match, Cover, Violatigragainst manual annotations. Since the authors do not spec-
ify the best of these metrics, we choose to maxiniixact match For this purpose, we ask
three human annotators, B andC' to discover and annotate important phrasal segments
from the queries of SGCL12 and TREC-W3Y. The annotators were Computer Science
undergraduate and graduate students bet@een 28 years of age, each issuing around
20 — 30 Web queries per day. Using this policy, we observed a sligiabrer performance

of their algorithm with respect to our proposed strategys®guently, for fairness, we also
tuneda to maximize the nDCG@10 value on the development set. Reseligrasented

in Table4.9. Values obtained for the three annotators were quite clmgach other, and
hence only their average is reported. Tuningsing manual annotations and nDCG@10
is indicated byAnnoandIR respectively.

Table 4.9: Comparison with Huang et al99).

Dataset SGCL12 TREC-WT

Metric Proposed Huangetal. Huangetal. Proposed Huangetal. Huangetal.

Algo (Anno) (IR) Algo (Anno) (IR)
nDCG@10 0.7284 0.7224 0.7240 0.1884 0.1845 0.1918
MAP 0.8481 0.8456 0.8461 0.3296 0.3263 0.3368

The highest values in rows (for each dataset) are markbdlth

Our algorithm is slightly superior to Huang et al. on both nD@®0 and MAP on
SGCL12. We recollect that the SPMI threshold for Huang et aas whosen so as to
maximize nDCG@10, and hence the lower IR performance is r@talthe choice of an
unsuitable threshold. We observed that while the averagdieight i2.96 for our method,

Phttp://bit.ly/bFKSxz Accessed 6 April 2014.
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the same is abow 23 for Huang et al. (for SGCL12). Note that due to the strict bynar
partitioning at each step for Huang et al., one would noryratpect a greater average tree
height for this method. Thus, it is the inability of Huang étt® produce a suitably deep
tree for most queries (inability to discover fine-grainech@epts) that is responsible for
its somewhat lower performance on the metrics. Huang eb@lvgver, perform better on
TREC-WT on both the metrics. More importantly, both nestingtstgies faring favorably
(none of the differences are statistically significant)é®dell for the usefulness of nested
segmentation for IR in general. The tree height distrimgifor the two algorithms are
given in Table4.10for both datasets (IR optimization farin Huang et al.).

Table 4.10: Height distributions for nested segmentation tree.

Dataset  Algorithm 1 2 3 4 5

SGCL12 Proposed 0 99 327 71 3
Huangetal. 59 292 124 23 2

TREC-WT Proposed 15 46 13 1 0
Huangetal. 37 30 7 1 0
Values denote the numbers of queries for each algorithmattah a tree height equal to

the column headers.

Summary of results. We now summarize our main findings: (a) Nested segmentation
significantly outperforms state-of-the-art flat segmeatabaselines when using segment
syntax to re-rank documents based on term proximity; (b)etgesegmentation improves
performance for a majority of the queries, for both datas@sdistances in the nested
segmentation tree are more effective at re-ranking thamgusinly document and query
distances; (d) exhaustive experimentation with parameteation shows systematic con-
sistency of tree distance-based re-ranking over other Iso@ exploration of fifteen al-
gorithmic variations of our method for generating nestegimsentations shows that the
proposed technique produces the best results; (f) congpads our results with previ-
ous work P9] shows that the proposed method is better on annotatioedithisesholding,
while achieving comparable performance on IR-based thtesitgp
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4.8 Related research

In essence, the nested segmentation tree specifies a cerngrlatdependence syntax, and
suggests that term pairs having a low tree distance should blse proximity in the
document. Our research, thus, lies along the confluencesakittom proximity, depen-
dence models for IR, and query segmentation. In this sectierpresent a brief review of
proximity and dependence models, which though are notttireslated to our work, can
potentially benefit nested segmentation-based retrigkatiegies. Work on segmentation
has been reviewed in Sectidi2

Term Proximity Models. The notion that document relevance is directly improved by
guery terms appearing close to each other has its roots MERAdR operator in the Boolean
retrieval framework 117 by which a user can specify that two query terms should occur
near each other in the document. It has fueled a plethorasefireh on term proximity
over the years, and primarily involves incorporating pnoity heuristics into a traditional
retrieval model to show a performance improvement. Tao amal R17] systematically
explored the proximity measures that had been proposetht#, and found that the mini-
mum document distance betwesmytwo terms of a query is best correlated with relevance.
They also make the important conclusion that ariy@aombination of the existing ranking
function with a proximity measure is unlikely to be fruititummins and O’Riordarbf]
further propose more heuristics and show that ideally th@mim distance betweeal
pairs of terms should be examined. They also propose thaparticular measure is of-
ten unlikely to give the best overall results, and that thenagd combination needs to be
learnt from the data. The proximity concept has also beerrgdined to term sequences
rather than pairs only20,88,208], which has brought with it new challenges like assigning
relative weights to such sequence@§)][ In fact, flat segmentation strategies roughly fall
under this philosophy, with the underlying assumption fraiximities (or more strictly,
adjacencies) are important only within flat segments. Wee lsfaown in our experiments
that such a model is easily outperformed, and the tree-basel@| suggests which of the
long range dependencies are crucial to query semantics.

Term Dependence Models.Traditional retrieval models like BM25 assume indepen-
dence between query terms, even though the idea that cdgpandencies are important
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for efficient retrieval is hardly new, including ideas basedtree syntaxq35. Gao et
al. [74] propose a language model-based framework for predicéng tlependencies by
assuming that a query is generated from a document in twestdigst the linkages are
formed and then the terms that satisfy the linkage conssraiMetzler and Croft 148
propose that term dependencies in a query can be classifeed sequential dependence
model (SDM), where adjacent terms are related, and a fuéiégnce model (FDM) where
all the terms are inter-dependent. Their results show igatfeant improvements in IR
are possible by formally modeling dependencies and the FDigesforms the SDM on
most corpora. Concepts of term dependerigtg| have also been found useful in query
segmentation by Bendersky et a28] and relatively newer retrieval model&¢ql. The
nested segmentation tree based retrieval is much less tangpally intensive than Gao
et al. [74] and more informed than Metzler and Crofi4§. The tree not only encodes the
term dependencies, but also provides an effective way ajiwiig long range dependen-
cies in search queries.

4.9 Conclusions

The primary contribution of this chapter lies in proposingteategy to use nested seg-
mentation of Web search queries for improving IR perforneant/e have shown that the
tree syntactic structure inherent in the hierarchical sagation can be used for effective
re-ranking of result pages«( 7% nDCG@10 improvement over unsegmented query for
SGCL12 and~ 40% for TREC-WT). Importantly, since.-gram scores can be computed
offline, our algorithms have minimal runtime overhead. Ty aesource used for per-
forming nested segmentation is a query log, which is alwagdable to search engines.
Thus, we believe that they can be practically useful fordasgale Web search systems.
While the concept of flat query segmentation has been arounthdoe than a decade,
there is very little work that show a significant IR benefit akdtly applying the process.
Therefore, it has been a long standing debate whether gegmgentation is at all useful
in practice for IR. Our results clearly demonstrate thatdranical segmentation can bring
in substantial IR gains for slightly long queries. In adafitito the unsegmented query, we
have used state-of-the-art flat segmentation algorithnes &li. [L37] and Hagen et al g4],
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and the nested segmentation algorithm by Huang e®4], §s competitive baselines. We
are currently exploring this line of research further bymplementing the term proximity
model by Vuurens and de Vrie224] and comparing our approach with them. The research
by Vuurens and de VrieP4 is the state-of-the-art term proximity model and produces
comparable performance with the best dependence modelladmtne two chapters on
guery segmentation, we saw how we can effectively idengfytactic units from search
gueries. In the next chapter, we will try to understand rith@s$ these units play in queries,
and how we can automatically infer such roles in an unsupedvsetup.



Chapter 5

Role Induction of Syntactic Units:
Content and Intent

5.1 Introduction

We have seen in the previous chapters how queries are cothpbsgntactic units or seg-
ments. Extending this idea of query syntax further, we psepiat words or multiword
syntactic units in queries basically perform two rolesontent wordsepresent the central
topics of queries, whiléntent words are articulated by users to refine their information
needs concerning the content words. The class of contets ingiude, but are not re-
stricted to named entities (liker ad pitt,titani c andaurora borealis)-—any-
thing that is capable of being the topic of a query would becthrent unit in the context
of that query. For examplé®] ood pressure,marri age | aws andmagnum opus
are legitimate examples of content words or units. Intenmtd&or intent units, on the other
hand, present vital clues to the search engine regardingpthafic information sought by
the user about the content units. For instance, intent lkéshone page, pi cs and
meani ng, all specify unique information requests about the contemils. The queries
brad pitt website,brad pitt news andbrad pitt vi deos all represent
very different user intents. It is not hard to see that whdatent units need to be matched
inside document text for relevance, it is possible to legerthe knowledge of intent units

113
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to improve user satisfaction in better ways. For examplega/tike pi cs, vi deos and
map can all trigger relevant content formats to directly appmathe result page. Words
like near andcheap may be used to sort result objects in the desired order. Tileas
motivate us to focus on the discovery and understanding efyguatent units.

Appropriately understanding the distinction between e ¢lasses of words and con-
cretizing these notions of intent and content requiredrage manual analysis of large
volumes of query logs on our part. During this process, wenkesl that intent units share
corpus distributional properties similar to function werdf NL. NLs generally contain
two categories of words eontentand function[201]. In English, nouns, verbs, adjec-
tives and most adverbs constitute the class of content wo@s the other hand, pro-
nouns, determiners, prepositions, conjunctions, intdgas and other particles are classi-
fied as function words. While content words express meanirggorantic contenfunc-
tion words express important grammatical relationshigsveen various words within a
sentence, and themselves have little lexical meaning. Btmction between content and
function words, thus, plays an important role in charazteg the syntactic properties of
sentenced48,71,101]. Distributional postulates that are valid for functiondaletection,
like the co-occurrence patterns of function words beingerdiverse and unbiased than
content words, seemed to be valid for query intent units db Wellowing these leads,
we first segment queries by our flat segmentation algoritimth campute the relevant dis-
tributional properties, namely, co-occurrence countsemtdopies, for the obtained query
unitst. We found that the units which exhibit high values of thesdidators indeed sat-
isfy our notions about the class of intent units. Subsedyemé systematically evaluated
our findings against human annotations and clickthrouga @latich represent functional
evidence of user intent) and substantiate our hypotheses.

In hindsight, we understand that while NL function wordsééitle describable mean-
ing (like i n, of andwhat ) and only serve to specify relationships among content sjord
well-defined semantic interpretations can be attributechtst intent words (likerap,
pi cs andvi deos). Intent words, even though effectively lacking purposéhawut the
presence of a content word(s) in the same query, carry weigttieir own within the
query. Thus, content and intent units play slightly differeoles in the query from the

1Computation of co-occurrence statistics is not easilyrpritable with the output of nested segmenta-
tion, and hence we use flat segmentation outputs in this work.
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roles of content and function words in NL sentences.

The objective of this chapter is to identify and characepntent and intent words
in Web search queries, and it is organized as follows. Ini@e&.2 we begin with a
verification of the efficacy of corpus-based distributiosg@tistics towards function word
identification and through rigorous experimentation ove fanguages, discover thew-
occurrence counts and entropiase the most robust indicators of function words in NL.
Having convinced ourselves of the power of co-occurrenagssics in detecting function
words across diverse languages, we apply similar techsigudiscover intent units in Web
search queries (Sectidn3d). This is followed by a simple algorithm to label content and
intent units in the context of individual queries and sulbsgt evaluations using human
annotations and clickthrough data (Sectlmd). Observing that co-occurrence statistics
locate quite a diverse set of intent units, we attempt to igea taxonomy of such units
based on their relationships with content words (Sedi@h Finally, we present conclud-
ing remarks (Sectiob.?).

5.2 Distributional properties of NL function words

Function words play a crucial role in many NLP applicatiohkey are used as features for
unsupervised POS induction and also provide vital cluegfammar checking and ma-
chine translation. In this section, we first re-examine ffwpular hypothesis that the most
frequent words in a language are the function words fuBytion words or unitsve refer

to all the closed-class lexical items in a language, e.gnq@uns, determiners, prepositions,
conjunctions, interjections and other particles (as oppds open-class items, e.g., houns,
verbs, adjectives and most adverbs). We note that thetgtafsesented here are applica-
ble for both single-wordi(n, about ) as well as multiwordifow t o, because of)
function units from corpora, though the latter demands &mgnof the NL text. We per-
form all the NL experiments on unsegmented (or unchunkeatesees and hence report
the results for detection of single word function units. Bikeless, Web search queries,
on which we mainly focus, have been suitably segmented bglgorithm.
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Language Corpus source S N \% Function word list source F
English Leipzig Corpora 1M 19.8M 342157 Sequence Publishifig 229
French -do- 1M 19.9M 388221 Built by extracting pronouns, 289

determiners, prepositions, conjunctions
and interjections from POS-tagged
corpora available at WaCKy
Italian -do- 1M 20M 434680 -do- 257
Hindi -do- 0.3M  5.5M 127428 Manually constructed by linguists 481
and augmented as above with
POS-tagged corpora available at LHC
Bangla  Crawl ofAnandabazar Patrika 0.05M 16.2M 411878 -do- 510

ahttp://corpora.informatik.uni-leipzig.de/downloathii, Accessed 18 May 2014.
bhttp://www.sequencepublishing.com/academic.htmléfiom-words Accessed 18 May 2014.
http://wacky.ssImit.unibo.it/doku.php?id=downloatcessed 18 May 2014.
dhttp://www.ldc.upenn.edCatalog #LDC2010T24 and #LDC2010T16 for Hindi and Bangag-

cessed 18 May 2014.
http://www.anandabazar.coyiiccessed 18 May 2014.

Table 5.1: Details of NL corpora.

5.2.1 Datasets

For the NL experiments, we shall look at five languages fromerdie families: English,
French, Italian, Hindi and Bangla. English i$s@rmaniclanguage, French and Italian are
Romaniclanguages, and Hindi and Bangla belong to limgo-Aryanfamily. Therefore,
any function word characterization strategy that work®sgithese languages is expected
to work for a large variety of languages.

The details of the corpora used for these five languages ammatized in Tablé.1

S, N andV respectively denote theumberf sentences, words and unique words present
in the corpus, and’ denotes the number of function words present in the goldistan
list used. The sentences were uniformly sampled from lagigésisets. M in the value
columns denotes millions, N, V and F' denote thenumbersof all sentences, all words,
unique words (vocabulary size) and function words, respalgt We have made the lists
of function words publicly availabfe We note that the Indian languages have almost twice
as many function words as compared to the European onesisTdhi® to morphological

2http://cse.iitkgp.ac.in/rishiraj/Functionwords of_5_languages.zipAccessed 16 November 2014.
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richness and the existence of large numbers of modal andrneatbs.

5.2.2 Metric

In a distributional property-based function word deteci@pproach, the output is a ranked
list of words sorted in descending order of the correspandidicator value. Here we
adopt a popular metriddverage PrecisiolfAP) [17,197], used in IR for the evaluation of
ranked lists. More specifically, let;, w-, . . . , w, be a ranked list of words sorted according
to some corpus statistic, say, frequency. Thusxifj, then frequency ofy; is greater than
the frequency ofv;. Precision at rank kdenoted by P@, is defined as

P@ =

| =

k
_Z fw;) (5.1)

where,f(w;) is 1 if w; is a function word, and i8 otherwise. This function can be com-
puted based on the gold standard lists of function wordssé&glentlyaverage precision
at rank n denoted by AP@, is defined as

1 n
AP@n = = k 5.2
an=—-3% Pa (5-2)

k=1

AP@n is a better metric than P@because P@is insensitive to the rank at which
function words occur in the list. In our tables, we report AR @ eraged ovelN' corpus
sub-samples, which is given tﬁz Zfil(AP@n)T where(AP@n), is the AP@ for the
r* sub-sample.

5.2.3 Frequency as a function word indicator

Frequency (Fr) is often used as an indicator for detectingtfan words, but the following
factors affect its robustness.
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Figure 5.1: AP@500 with frequency as the function word indicator for Esig

Corpus size. If the corpus size is not large, many function words will nator a
sufficient number of times. For example, even thougie andi n will be very frequent
in most English corporayeanwhi | e andof f may not be so. As a result, if frequency
is used as a function word detector with small datasets, iehawe a problem of low
recall [L7]. In our experiments, we measure corpus si¥eas the total number of words
present in the corpus.

Corpus diversity. If our language corpus is restricted, or sampled only froecHf
domains, words specific to those domains will have high feegies and will get detected
as function words. For example, the wagdver nnent will be much more frequent in
political news corpora thaal t hough. The number of unique words in a corpus, or the
vocabulary sizeV/, is a good indicator of its diversity. For restricted domearpora,V’
grows much more slowly witv than in an open domain corpus.

Experiments and results

For our frequency-based experiments, we createsub-samples from the original cor-
pora. We choosé( different values ofN, and for eachV choose20 different samples
such that we get a differefit each time. For each sub-sampled corpora, we compute fre-
guency of each word and sort words in decreasing order otifnecy. Then we compute
AP@200, AP@500 and AP@ 1000 with respect to the gold staridesaf function words
(Table5.1). A representative set of results is shown in Figbuk for variousV andN, with
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Indicator Symbol Definition

Frequency Fr Frequency of a word in the corpus

Left co-occurrence count LCC Number of distinct words appegio the immediate left of a word

Left co-occurrence entropy  LCE Entropy of the left co-ocenae distribution

Total co-occurrence count TCC Number of distinct words appgdo the immediate left and right of a word
Total co-occurrence entropy TCE Entropy of the total co-o@mnce distribution

Right co-occurrence count RCC Number of distinct words appgaoithe immediate right of a word

Right co-occurrence entropy RCE Entropy of the right co-o@nwe distribution

Table 5.2: Definitions of the different function word indicators.

linear regression lines. We see this same trend for all tigiages, as well as for AP@200
and AP@1000. For a fixedd, AP increases with/, which means that the performance
of the frequency-based strategy works better when the sdrps high diversity. We also
observe that, in general, the performance gets bettér mereases. However, for a fixed
V, increasingN effectively means increasing the number of sentences utithhareasing
the diversity of the corpus. Regression lines in Figbresuggest that for the same, a
higher N would lead to a loweA P.

5.2.4 Co-occurrence statistics as function word indicators

After having a feel of the issues faced when using frequescy fainction word indicator,
we introduce other properties of function words that may ela more robust detection.
We observe the following interesting characteristics aliba syntactic distributions of

function and content words in NL, which can be summarizedheyftllowing two postu-
lates.

Postulate I. Function words, in general, tend to co-occur with a largenber of dis-
tinct words than content words. What can occur to the immediit or right of a content
word is much more restricted than that in the case of funatiords. We hypothesize that
even if a content word, e.ggovernmenthas high frequency owing to the nature of the
domain, there will be only a relatively few words that canamzur immediately after or
before it. Thus, the co-occurrence count may be a more ratistator of function words.

Postulate II. The co-occurrence patterns of function words are lessylilkieshow bias
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towards specific words than those for content words. For ei@rand will occur beside
several other words likechool , el ephant andpi pe with more or less an equally
distributed co-occurrence count with each of these wordsohtrast, the co-occurrence
distribution ofschool will be skewed, with more bias towart®, hi gh andbus than
over, throughandcoast, with the list of words occurring besidehool also being
much smaller than that fand.

In order to test Postulate |, we measure the number of dtstinads that occur to the
immediate left, right and either side of each unique worchmgub-sampled corpora. We
shall refer to these statistics kst, right andtotal co-occurrence countd.CC, RCC and
TCC) respectively. To test Postulate Il, we computegheopy[203 of the co-occurrence
distributions of the words occurring to theft, right and either side of a word:

Entropy(w) = — Z Ptijw 1082(Pt;w) (5.3)

t; € context(w)

where context(w) is the set of all words co-occurring with either to the left, the right
or either side, ang(¢;|w) is the probability of observing wort} in that specific context
window in the sentence, defined as below:

p(t;w)  No. of timest; occurred withw
p(w) — No. of timesw occurred in a sentence

p(ti|w) = (5.4)

Context. In this chapter, the left, right and totabntextsof a word w respectively
denote the immediately preceding (one) word, immediatatycseding (one) word and
both the immediately preceding and the immediately sudngemdords forw respectively,
in sentences of the corpus. The definition of context (i.eetwer it includes the preceding
or the succeeding one or two or three words) will change tselate values of our results,
but all the trends in the results are expected to remain tine sa

This probability in Equatiorb.3can be computed simply by counting the frequency of
the appropriate bigrams normalized by the frequenay.ofVe shall refer to these statistics
asleft, right andtotal Co-occurrence EntropyL CE, RCE and TCE respectively). We
would expect LCC, RCC or TCC of function words to be higher thandhabntent words
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Language Metric  Typology Fr LCC LCE TCC TCE RCC RCE

AP@200 0.663 0.702* 0.729* 0.684* 0.679* 0.637  0.527
English =~ AP@500 Pre-  0.453 0.477° 0.493* 0.468° 0.464* 0.439 0.365
AP@1000 0.314 0.328* 0.336* 0.324* 0.319  0.305 0.259
AP@200 0.594 0.642* 0.648* 0.615* 0.611*  0.553 0.501
French =~ AP@500 Pre-  0.390 0.430* 0.438* 0.405* 0.398 0.357  0.313
AP@1000 0.264 0.290 0.296* 0.273  0.269  0.242 0.212
AP@200 0.611 0.639* 0.645* 0.636* 0.620  0.606 0.601
Italian AP@500 Pre- 0422 0.433* 0.423 0.438* 0.423 0411 0.395
AP@1000 0.299 0.295 0.290 = 0.299 0.291 0.282 0.268
AP@200 0.682 0.614 0.510 = 0.698* 0.694* 0.716* 0.713"
Hindi AP@500 Post- =~ 0.497 0.458 0.394  0.511* 0.505 0.523* 0.521*
AP@1000 0.368 0.345 0306 = 0.379* 0371 0.383* 0.380"
AP@200 0.648 0.684* 0.691* = 0.730* 0.763* 0.741* 0.757"
Bangla = AP@500 Post- = 0.522 0.543* 0.537°  0.579* 0.599* 0.589* 0.603*
AP@1000 0.415 0.428* 0422 0454 0470* 0.463* 0.475"

The highest value in a row is markedboldface Statistically significant improvement over frequency is
marked by *. The pairedtest was performed and the null hypothesis was rejectedidiiue < 0.05.

Table 5.3: AP for frequency and co-occurrence statistics.

due toPostulate | similarly, due toPostulate Ilwe can expect the LCE, RCE or TCE to
be higher for function words than for content words. The digdins of these indicators are
summarized in Tablg.2

Experiments and results

We now sort the list of all words in descending order of eacthefseven indicators. We
then compute metrics AP@200, AP@500 and AP@1000 for thess dists. To bring
out the performance difference of each of the six co-ocogedeatures with respect to
frequency, we plot (in FigurB.2) the following performance measure against

Metric for indicator — Metric for Fr

lotted =
Value plotte Metric for Fr

(5.5)
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Figure 5.2: Performance of co-occurrence statistics with respeceiguiency.

The z-axis can now be thought of as representing the performahtreguency. In
Figure5.2(a), for a particularV, the data points were averaged over all, (/) pairs (we
had 20 (v, V) pairs for eachN). For Figure5.2 (b), we keptN fixed at500000. The
general trends were the same for AP@500 and AP@1000. Thevabeas (both/V and
V variation) for French and Italian were similar to that of Esig, while those for Hindi
and Bangla were similar to each other. Tablgreports AP values for all statistics for the
five languages. From Tab®3 where the values are averaged ox@0 (/V, V) pairs for
each language, we see that for all the languages, AP for sbitne ©o-occurrence statistics
are higher than AP obtained using frequency.

Regular improvements over frequencyFrom the plots and TabE 3, it is evident that
some of the co-occurrence statistics consistently bequémcy as indicators. In fact, as
evident from Figurés.2, use of co-occurrence statistics results in systematicaugment
over frequency with variations ifv andV, and hence, are very robust indicators. Among
the co-occurrence statistics, entropy is generally oleskte be more powerful than simple
counts. This justifies that Postulate Il is indeed a strickarracteristic of function units.

The best indicator depends upon language typologyA very interesting fact that
came out of these experiments is that the left co-occurrstatistics (LCE and LCC) gen-
erally outperform the right for English, French and Italiarhereas the reverse is true for
Hindi and Bangla (RCE and RCC are the best). This is due to the faicEtiglish, French
and Italian are prepositional languages whereas Hindi amdjlBaare postpositional. In
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a prepositional language, function words generally preashtent words. Therefore, the
lexical categories (and hence the exact numbers of lexmals) that can succeed a func-
tion word is restricted. For instance, only nouns or articien follow words like n andof

in English. On the other hand, there is no restriction on tagscof words that can precede
a function word. Hence function words in a prepositionaglaage can be expected to have
significantly higher left co-occurrence counts (and herigbdr entropies). Similarly, the
opposite is valid for postpositional languages. Thus, cadarence statistics have potential
in predicting theadposition typologyf a new language.

As an aside, we note that categorizing a language by its #@tpotypology helps in ad-
dressing several challenges in linguistics and NLP. Untdedsng the adposition typologies
for less-studied languages by manual analysis of largectepiora can be quite expensive,
yet automatic discovery of the same has received very &ttiention till date. Using our
principle, we performed some experiments and showed thgukges can be classified
as prepositional or postpositional based on the rank @iroels derived from entropies of
word co-occurrence distributions. We experimented WitHanguages from ten diverse
families, 19 of which were correctly classified by our technique.

Total co-occurrence: A safe choicelt is not always possible to know the typology
of a language in advance. Thus, it may not be ckepriori whether to depend on left or
right co-occurrence statistics. The nice point here is tiratotal co-occurrence statistics
(TCE and TCC) are almost always better than frequency (TaBJe This makes them safe
indicators to rely on when not much is known about the langistax.

5.2.5 Inverse document frequency

A stop wordis a term that is popular in IR which is used to denote a wortidbas not have
sufficient discriminative power. Such a stop word cannot $&duby the retrieval system
to distinguish between relevant and non-relevant docusnéiten though the concepts of
stop words in IR and funciton words in NL understanding aredamentally different in
function, it nevertheless turns out that there is a signifitevel of overlap among these
sets. See, for example, one of the lists of English stop warskd in the popular SMART
IR system 194, athttp://bit.ly/8vBrVF (Accessed 18 May 2014.). We note that the overlap
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is caused by general domain stop words.

Thus, it is worthwhile to explore techniques used in stopdaetection to our problem.
The concept of Inverse Document Frequency (IDF) is traaigtily used to mark stop words
in IR systems. The IDF of a word is defined as

1+ |d|
|du|

where|d| is the number of documents in the document collectipand |d,,| is the
number of documents containing In the SMART system194], some combination of
term frequency (TF) (Fw)) and IDF, known as TF-IDF, is measured for every word-
document paifw, d). One of the popular ways of defining TF-IDF is shown below:

0 if Fr(w,d) =0
TF—IDF(w,d) = (5.7)
TF(w,d) x IDF(w) otherwise

whereTF (w, d) is the normalized term frequency ofin documentl and is defined as

TF(w,d) = 1+ logio(1 + logo(Fr(w, d)) (5.8)

where Ffw, d) is the raw frequency ab in d. The higher number of documents that a
word is present in, the lower is its IDF. Stop words, by virafeheir relative abundance,
have low IDF and hence low TF-IDF values. For measuring tfecgveness of TF-IDF of
a word as a corpus-level indicator, we generalize it froom@p& document-specific value
by computing the mean TF-IDF for every document containivag word.

EuroParl Corpus. The existence of multiple documents is necessary for comgut
IDF-related measures, i.e. the NL corpus should be seguohémie discrete documents.
The Leipzig Parallel Corpora used for the previous expertmeantain all the sentences
in a single large document, which deems it unfit for evalgatime performance of IDF.
Fortunately, in version five (and earlier) of another widesed NL corpus, the EuroPrl

Shttp://www.statmt.org/europaylAccessed 18 May 2014.
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Indicator English French Italian

IDF 0.435 0.360 0.400
TF-IDF 0.035 0.020 0.030

Fr 0.571 0.564 0.547
LCC 0.678 0.667 0.633
LCE 0.722 0.649 0.648
TCC 0.648 0.623 0.601
TCE 0.673 0.609 0.593
RCC 0.592 0.524 0.540
RCE 0.492 0.454 0.508

The two minimum values in a column are markedoidface

Table 5.4: Comparison of IDF with other indicators for AP@200.

dataset121], the corpus is fragmented into thousands of documents@appately 5000
documents for each langauge). However, the EuroParl cobgiisg Parliament proceed-
ings of European countries, does not contain datasets fudtitdnd Bangla. Hence, we
report findings on English, French and Italian only.

Experiments and results. For a fair evaluation, we need to recompute AP values for
all indicators for the EuroParl dataset and contrast theth iliF and TF-IDF. Note that
while ranked lists for frequency and co-occurrence stesistere obtained by sorting words
in descending order of these indicators, a reverse soréisgefding order) is necessary
for IDF and TF-IDF (stop words have low IDF). We summarize oesults in Tableb.4
(AP@200). Trends observed for AR@ and AP@ 000 are exactly the same.

From Table5.4, we see that TF-IDF performs the worst, followed by IDF. Bugrev
for IDF, the difference in performance with the next betteticator is always substantial.
Thus, we infer that these measures are clearly unsuitabferiotion word detection. On
manually analyzing the ranked lists for understanding ther performance of IR mea-
sures, the reason was clearly understood. IDF and TF-IDIFoptistop words that do not
offer discriminating evidence for ranking documents irp@sse to a query. A majority of
these words at the top positions turn out to be content wikds esune, decl are,
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andadj our ns (except the few most frequent function words). Note thatdbipus is
from a restricted domain (Parliament proceedings), anddtmeain-specific stop words
negatively impact the performance of IDF-based measuregedbllect that the same rea-
son is one of main drawbacks of using frequency as an indi¢dtxtion5.2.3. The best
performance again comes from co-occurrence statisticst{yrentropy), highlighting their
robustness even in restricted domain datasets.

Through the experiments on the EuroParl corpus, we havershiost IDF and TF-
IDF are not good function word indicators in restricted dameorpora, which is often
the case with many NLP applications. However, IDF and TF-#D& expected to perform
better in a more general setting, for example, when all Weduohents form the document
collection. Nevertheless, our indicators based on co+4oenae counts and entropies are
observed to perform well across all scenarios. Hence, taeye used for function word
detection from Web corpora as well. Also, we note again thatedow TF-IDF has been
shown to be an effective stopword detector, the conceptsraftion words and stopwords
are fundamentally different.

5.3 Intent units of Web search queries

In this section, we apply our robust function word identifica strategies to query logs and
observe the resultant partitioning of words. We find thattiperanking words according to
co-occurrence statistics align well with our notion of mtenits (Sectiorb.1). For all our
experiments on queries, we use our query log sampled from Bustyalia (Sectiorl.2).

5.3.1 Operational definitions

We study and classifgegmentgunits) for Web search queries. In our study, we used our
flat query segmentation algorithm (Secti8r2), which uses query logs and Wikipedia ti-
tles as the input resources, to identify query segmentsfdeditating representation and
understanding for certain annotations, segment bourglaree marked by parentheses in
this chapter, likg( publ i ¢ school s) (new yorKk), instead of the usual pipgs\
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Ranks 1-10 Ranks 11-20 Ranks 21-30 Ranks 51-60 Ranks 91-100

in W th for sale hone tinme

t he lyrics is de your
and by what is pi ctures of book
for from best nmusi c show

of 2010 Vs uk | a

free online vi deo j obs nyspace
to new 2009 bl ack baby

on at ny song j anes
how to 2008 pictures news cheap

a downl oad school about does

Table 5.5: Sample units at top ranks when sorted in descending ordeClEy T

We apply the segmentation algorithm on all the queries anagpde a list of unique units
(about1.3M in number) that occur in our query log. For each unit, we meags fre-
guency, the three co-occurrence counts and the correspmpadtropies.

To give a feel of the units that are pulled up, we present saraeples in Tablé.5
when sorted in descending order of TCE. Ondyout of the top100 units for queries are
function words of English. We understand that it can be haurdake a definite distinction
between content and intent units solely on a qualitativesbaSo before we can have
any further quantitative evaluation of our indicators, wastnhave in plac®perational
definitionsof content and intent units in queries that can help cormaetie notion of
a word being content or intent with respect to a query. An ecgdi validation of the
proposed operational definitions is presented in Se&iér8

Content units in Web search queries.They carry the core information requirement
within a Web search query. Just like the role of content unifSL sentences, removing
these units makes the query lose its central idea. For tAgre content units need to be
matchedwithin the documents for effective retrieval. For examplet ani ¢, age of
enpi res andf ord car s are all content units.



128 Chapter 5 Role Induction of Syntactic Units: Content and Intent

Intent units in Web search queries. They specify user intent in Web search queries.
Theyneed not matclexactly at the document side, and the search engine cantialle i
gent techniques for using such units to increase the retevairesult pages. For example,
nmusi c, onl i ne, andf or sal e are some commonly encountered intent units. Analo-
gous to NL, removal of these units removes vital details &ljoery semantics. We note
that function units in NL (likeand, of andi n) can play similar roles in queries, and hence
fall under this category.

These definitions of content and intent words, and the cmmddf matching in docu-
ment text, are extremely vital to principles in semantiaskeaWe emphasize that the defi-
nitions of content and intent are always necessarily ojmgralt— content segments need to
be matched in the document text during the retrieval proaeise the search engine can
have intelligent techniques to process intent segmentsoave relevance of result pages.
Thus, what has to be treated as content today can becomeean $egment after a few
years if the (semantic) search system develops a more imgpraay to handle that seg-
ment than searching for it in the document text. This is wiitedéfers from other similar
frameworks, which are static and more like the entity-atti¢ model 16Q.

For example, in a query likkondon weddi ng or | ondon popul ati on, we
would treatweddi ng (or popul ati on) to be a content word and not an intent word
(I ondon would be a content too), because in the current search sogtiare is almost
no way to infer the “intentiveddi ng or popul at i on from a page without matching the
term within the document texPopul at i on could become an intent word the day when
annotations or other features of a Semantic Web enable thieesto infer the answer (i.e.
the population of a city or country) even without the preseofcthe word on the retrieved
page. Butpopul ati on is, and would always remain, an attribute of a country or wa cit
(which is the entity). Current search engines provide dmestvers to queries likeondon
popul at i on today but those are summaries generated from a documentigadéd by
traditional matching. In contrast, for queries likendon weat her, | ondon pl ace
andl ondon 1 f e (generally all Web queries are in lowercasej)ndon would be con-
tent (as it is the topic of the information need) ameat her, pl aceorl i f e would be
intent as there exist ways today (search engines may usedaheat) to infer information
relevant to these contexts without direct matching. Sayekample, knowledge graphs
enable the search engine to know that temperature, raiafadl humidity are aspects of
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weather (as can be employment, poverty and cleanlinesstaspiecity life) and can be

scraped off pages to provide consolidated information oatker and life. Intent words
like place or location can be used to understand the prefewatent type, like bringing

up relevant maps. In summary, the collection of all intentdgoor units is alynamic set

completely defined for a particular span of time by the stdtthe-art (semantic) search
technologies available during that span of time.

5.3.2 Experimental results

We note that it is not possible to build an exhaustive listwaftsintent units for queries.
So in order to have a suitable gold standard set created baitfor future validation of
results, we first need a representative sample unit set.eTdasbe manually classified as
intent units (or content units). To avoid bias towards anyigpalar indicator, we took the
union of the topl 000 units when sorted by each indicator. We asked three humantatons
A, B and(C to mark thesd 215 query segments as “intent” or “content” with the above
operational definitions as guidelines. All of our annotataere graduate students in the
age group oR5 — 35 years and were well-acquainted with Web search, each sinout
20 — 30 queries per day. Out of the215 segmentsA, B andC marked607, 646 and548
units as intent respectively. Now we assume the units maag&énhtent” by each annotator
separately as the gold standard. Then, similar to the métiiogdved in NL, we sort the list
of all units in descending order of each of the seven indisaad compute the AP@200,
AP@500 and AP@1000 for these ranked lists. Results are pees@nTables.6.

Superiority of total co-occurrence. Just like NL, co-occurrence statistics consistently
beat the performance of frequency. When the ranked list idl 2@ units), the right
(A and() or left (B) co-occurrence statistics gives the best accuracy. Onthier band,
for longer lists {00 and 1000 units), the total co-occurrence count)(and entropy B)
always perform the best. In general, total co-occurreratissts are generally the best or
the second-best, with improvements over frequency in akksaThese trends are observed
across all the annotators, thus underlining the adequattyeadperational definitions. We
observed that” was more strict in labeling units as intent (markedly lowd? Ralues
than A and B). This can be understood from the following example unig #re marked
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Annotator Metric Fr LCC LCE TCC TCE RCC RCE

AP@200 0.622 0.654 0.639 0.696 0.653 0.701 0.668
A AP@500 0.462 0.495 0.498 0.548 0.519 0.513 0.479
AP@1000 0.335 0.348 0.331 0.421 0.400 0.343 0.305

AP@200 0.719 0.812 0.854 0.850 0.852 0.793 0.777
B AP@500 0.528 0.617 0.631 0.665 0.674 0.590 0.567
AP@1000 0.381 0.416 0.408 0.488 0.491 0.388 0.363

AP@200 0.434 0.458 0.488 0.490 0.494 0.542 0.535
C AP@500 0.338 0.361 0.359 0.401 0.385 0.392 0.381

AP@1000 0.252 0.261 0.253 0.322 0.308 0.260 0.243
The two highest values in a row are markedboidface

Table 5.6: AP of each of the indicators for intent unit detection in Welees.

as intent byA and B but not byC' —driver, kids, tutorial, programand
cust om All of these do carry user intent in queries, but not in adifashion like the
more general units likeovi es, def i ne andganes (labeled as intent by all three).

Intent units which tend to occur at the beginning of the gueye low LCC and LCE
(e.g.how t o, what does anddef i ne). Similarly, there are examples likep3, f or
sal e andbl og, which typically occur only at the end in queries, displayitne op-
posite behavior. Such extreme cases are rare in NL, becawsks what begin or end a
sentence also frequently occur at other positions. Thitspieight co-occurrence alone
are insufficient for extracting intent units in queries, liighting the importance of total
co-occurrence statistics.

Rank adjustments by co-occurrence statisticsln Table5.7, we compare the ranks
of a few units with respect to the seven different statistiCentent units likeneddi ng
can have very high frequency owing to the popularity of theréor concept; however,
co-occurrence statistics help push such candidates lowven the list (from Ranki38 in
frequency to out of the tope0 by all other indicators). Next, we see that intent units
like bl og anddef i ne, which rank around00 by frequency move much higher up the
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Unit Fr LCC LCE TCC TCE RCC RCE
for sale 16 24 30 27 58 119 2,216
pi ctures 48 39 35 56 45 93 53
np3 109 75 93 115 221 487 1,712
bl og 490 164 87 294 127 1,323 945
bi ogr aphy 824 278 110 =~ 561 171 5567 4,009
how t o 4 80 7 8 32 2 11
weddi ng 138 363 377 295 438 240 447
make a 188 3,953 209,164 213 923 66 40
what does 316 2,275 1,517 174 734 56 294
define 503 1,727 1,098 = 199 51 70 22

Table 5.7: Ranks assigned to query intent units by the seven differahssts.

ranked list when appropriate co-occurrence statisticaiseel. Hence, average precision
is generally observed to increase for co-occurrence-biesgdres. We note that the rank
of make a by LCE is209, 164. This is becauseake a is preceded by only a handful
of segments likdhow t 0 orway to. Thus, it has a very restricted left co-occurrence
distribution and hence a very low LCE. This pushes its rank 6§ lso far down. Other
indicators are seen to have balancing effects on words with skewed distributions.

A note on segmentation errors.First names likg anmes co-occur with several differ-
ent family names and acquire a high rank (Teh®. We would not have observed them
this high up in the lists had the segmentation algorithm géA@een able to group together
entire names. For example, popular figures jdtaes bondndjames cooklo get grouped
together, and as units they do not have such high co-ocaasatistics.

A note on IDF for queries. The concept of IDF (Sectioh.2.5 cannot be explored
in the context of intent word detection in Web queries (Sech.3) because even though
each query can be considered as a sentence, the conceptatfeagiut)documenis not
well-defined. The only notion that comes close is groupirggheries from a single user
sessioras a document. However, session segmentation of a queayrsisean active area
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of research§,113 and is beyond the scope of this work.

5.4 Labeling intent units in query context

A segment can act as content or intent in a query depending tipocontext. For ex-
ample, while the segmemti deo behaves as an intent unit in most queries, likas
open) (vi deo) (specifying that the desired content type is a video), ihis ¢content
unitin the query definition of) (video). Thus, alabeling scheme is practically
useful only if it can label segments as content or intent wighquery, and not just in a
context-agnostic standalone fashion. In this work, forgdiaity, we restrict ourselves to
labeling two-segment queries; extension to multi-segngeeties is an important future
work. Interestingly, two-segment queries (derived from dluitput of our flat segmentation
algorithm) form a significant proportion of our Bing logr (44%).

As a first step, we define antent-ness scorkS(u) for every unitu that appears in the
query log. Since all our indicators hold clues towardsithent-nes®f a unit, this score is
calculated as a simple log-linear combination of the inicaas

IS(u) = loga(Fr(u)) + loga(LCC(u)) + LCE(u)
+ loga(TCC(u)) + TCE(u) + log2(RCC(u)) + RCE(u) (5.9)

Logarithms of Fr, LCC, TCC and RCC are taken to make them compairabdue to
the entropies (c.f. Equatidn3), which are already in logarithmic space. Since intentaunit
are expected to obtain higher individual feature values tmatent units, the former is also
expected to achieve higher intent-ness scores. Howeveunderstand that there could
be more appropriate methods of feature combinat@hl[ke learning weights with linear
regression models, but such methods require supervisibite(all the techniques used in
this research are unsupervised) and will require detaitpdm@mentation.

Algorithm. The segment with the lower IS in a query is marked as content (The
intuition behind this is that a query must have at least omeestd unit, and the IS of a con-
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tent unit is expected to be lower than that of an intent uhithé score of the other unit in
the query exceeds that of a user-defined threshdtds marked as intent\( ). Otherwise,
the second unit is also labeled as content. Since the absulmber of intent units in the
query log is expected to be low in comparison to the numbeonfent units, simply label-
ing the unit with the higher IS as intent, without a threshalduld result in too many false
positives. We note that if the intent-ness score (IS) of asay is below the thresholy it
will always be labeled as content. Obtaining an intent-seese below the threshold essen-
tially means that there is insufficient evidence in the quegyfor labeling this unit as intent.
Thus, our tagging algorithm labels two-segment queriesither content segment-intent
segment (equivalently intent segment-content segmamnd)s content segment-content seg-
ment. We denote the first set of queriescastent-intent queriefor example,( br ad
pitt)\c (hone page)\i, (pictures of)\i (digestive systemn\c and
(how to)\i (paraglide)\c) and the second set of queries to dmntent-content
queries((brad pitt)\c (jennifer aniston)\c,(digestive systen)\c
(car bohydrat es) \c and(paragl i de)\c (safety equi pnent)\c).

5.4.1 Evaluating in-query labeling using human annotations

Experiment. Our test data comprised 8600 unique two-segment queries (segmented by
our flat segmentation algorithm), randomly sampled frontledl two-segment queries in
our entire Bing log. These queries were not used for trainigasked our three annotators
A, B andC, who had previously annotated individual segments (Seétid.2, to annotate
1000 queries each by marking the segments as content or intetst asithey deem fit, in
accordance with the operational definitions. If the segatent was incorrect, they were
supposed to provide the correct segmentation and then markontent and intent units.
Queries that had more or less than two segments after aiomotetre not considered for
further steps. In order to measure inter-annotator agree(h®A), we had ensured that
there ar00 queries common for all the annotatots B andC' ((1000 — 200) x 34200 =
2600) queries. Some general sample annotations, not restriotélais dataset of two-
segment queries, are shown in Tabl8.

For content unit labeling in queries, in general, our metbaa be improved by using
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Human Labeled Query Machine Labeled Query

(roger federer)\c (pics)\i (roger federer)\c (pics)\i
(cranes)\c (for sale)\i (cranes)\c (for sale)\i
(star trek)\c (wikipedia)\i (star trek)\c (w ki pedia)\i
(britney)\c (biography)\i (britney)\c (biography)\c
(et han hawke) \c (novies)\i (et han) (hawke) (novies) ™
(adobe flash)\c (downl oad)\i (adobe flash)\c (downl oad)\i

(free)\i (video converters)\c (free video)\i (converters)\cf
(hotels)\c (near)\i (airport)\c (hotels) (near) (airport)*

 Error in segmentation algorithm.
* Machine unable to label more than two-segment queries.

Table 5.8: General examples of segmented and labeled queries.

rules and resources for identifying named entities (NE lilames of people, organiza-
tions and places using NE lists such as Yago, DBpedia and &eeblowever, that would
make our method partly supervised or informed. Hence, wendidry those out. But for
practical applications, it would be imperative to fine-tuhe algorithm using such rules.
Usually lists will work only for the relatively well-knownrgities, and if our segmenta-
tion algorithm can correctly group (rare or popular) eastiour content-intent tagger will
also make the correct decision most of the time as suchetitill have restricted co-
occurrence distributions and will be correctly marked asteot, even if it does not appear
on the popular NE lists.

Results and observations

Percentage Inter-annotator Agreement (IAA) on the lakheds, percentages of units on
which annotators agree on the content-intent labelsiaf®, 77.06 and77.32 for A — B,

B — C, andC — A respectively. All annotators marked ab@0t% of the units as content
and the res30% as intent. The corresponding values for Cohen’s Kapp§S3], a stricter
metric for IAA that considers the effect of chance agreesemte0.62, 0.45 and0.46. A

r close t00.5 indicates statistically significant IAA between annotator
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Figure 5.3: Evaluation of labeling units against human markup.

For simplicity, from now on we use only ti2400 queries for which we have exactly one
annotation, for our analysis. Out of thes#)0 queries,1356 queries {6.5%) were labeled
as content-intent anth44 queries ¢3.5%) were labeled as content-content by our anno-
tators. We first compute our labeling accuracy by penaliziages where our algorithm
predicts an opposite set of labels for content-intent @serResults show that our algo-
rithm achieves a labeling accuracy ©f.79% (82.28% for A, 78.67% for B, and75.43%
for C) (0 = 13, as determined through experiments presented later). iF lpigrticularly
high considering that the IAA is also rough$9%. This means that we predict the op-
posite set of labels only abog0% of the times; to be specific, f@71 queries (out of
1356 queries). The mistakes typically occur in those cases witiereontent unit is very
popular and achieves a significantly high intentness sawhde the intent unit is rela-
tively uncommon. For example, in the qudryi nl and) (bed and breakfast),
finl and is marked as intent by the annotator &seld and br eakf ast as content,
while our algorithm labels wrongly as the reverse. Accogdmour frameworkbed and
br eakf ast is the main topic of the query and hence acts as content, ahéne location
f i nl and represents user intent (seeurcespecifiers, Sectioh.5).

Effect of Threshold. We evaluated the labeling algorithm against the test saffat-d
ent values of. For this purpose, we computed the precision, recall anddfeS197] for
intent and content units, as defined below.
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(Units correctly labeled as intent

Precision(Intent units} #

. - 5.10
#(Units labeled as inteint (510
_ #(Units correctly labeled as intent
Recall(Intent units - . 5.11
( r #(Units labeled as intent by annotatprs ®-11)
... 2 x Precision(Intent unitsx Recall(Intent units
F-Score(Intent unitsy x ( X ( ) (5.12)

Precision(Intent units} Recall(Intent units)

The precision, recall and F-score for content units are ddfgimilarly. We note that
these metrics are computed by looking at the aggregate poohtent-intent and content-
content queries, i.e. all th&t00 queries. Figure§.3(a) and (b) show the curves obtained
when these metrics are plotted by varyingpr intent and content unit detection, respec-
tively. The optimumd turns out to be about3 (value used in the previous experiments
for computing labeling accuracies). Our content labeliag & much higher precision than
intent labeling, but this is correlated to the fact that théunal proportion of content units
in a query log is expected to be much higher than that for tnieits. As one would expect,
there is a trade-off between precision and recall.

5.4.2 Evaluating in-query labeling using clickthrough data

Till now, we have postulated and identified the distribuéibcharacteristics of the lexical
categories of the query language, i.e. content units aedtomits. As in NL, lexical cate-
gories in queries must also have their spedifiections In fact, our notions of content and
intent units are based on their functions, whicl isontent unit denotes the core informa-
tion need of the useandan intent unit further modifies the information need in onmahy
possible way$Section5.3.1). We asked the question if we can mathematically model and
compute the functional characteristics of these units aadige further evidence for their
existence. One possible way to study the functions of this imio analyze click data. A
click is representative of the function or the role of thetumia query because it leads to
the purpose of issuing the query, i.e. land on a (possiblgyaat page.

Human judgments can often be very expensive to obtain on asé&k. Fortunately,
clickthrough logs can also help us in large-scale autonestiuation of our content-intent
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labeling algorithm. The basic idea is as follows: Consider tntent units:; andc,
(sayt om crui se andanj el i na j ol i e) and two intent unit$; andi, (saynovi es
andhone page). The queries:, ¢; i; ande; iy (Or co, ¢o i1, @andcy ip) are closely
related because the core information need, which {®r ¢,), is the same for all of them.
Therefore, we can expect to see a good amount of overlap athetdRLs clicked for each
of them. On the other hand, the querie§f it makes sense}; i; andc, 71 (Or s, ¢; i3 and

¢y o) are very different in their information needs. Hence, we egpect very little, if not
zero, overlap among the URLSs clicked for them. Thus, one walefme thenformation
contentof a unitu is to collect all queries containingand compute the overlap between
clicked URLs for these queries. A low overlap would imply thas usually an intent unit,
and a high overlap indicates thats generally a content unit. This concept is illustrated
through an example in Figu&4. The exact procedure of using clickthrough logs to arrive
at a labeling of a two-segment query is explained next.

Modeling click overlap

A precise quantification of the amount of overlap betweengets of URLS is non-trivial
because exact string match to compare URLSs is unreliableinBtance, the pair of URLs
www.puzzle.comand www.puzzle.com/demo/help.htnalre very closely related, but do
not match exactly at string level. On the other hand, pastithg-level matches can also
be misleading. For example, URles.wikipedia.org/wiki/foxanden.wikipedia.org/wiki/
guitar have no logical overlap. Therefore, we first show how to idgrihe overlaps be-
tween pairs of URLs (with respect to a particular query, asigufe 5.4), and then use
these overlap values to compute the overlap betweensetsof URLs. Let a URLU

be created by the concatenation of a number of stripgs Drawing upon intuition, we
propose that the overlap between a pair of URLS= sx, /sx,/sx,/ - [sx,/ - /54,
andy = sy,/sy,/sy,/ ... /sy,/---/sy,, depends on the following factors: the length
(as measured by the number of strings delimited by slastigbg @refix up to which the
URLs match exactlyX), the number of times the URLs have been clicked for the query
under consideration (click counts andcy), the lengths of the URL8, andn, (as mea-
sured by the number of strings delimited by slashes), ancdatiy we term as the Inverse
URL frequency (IUF). This last factor is helpful in identifig very general domain pre-
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www.nikon.co.in
www.nikonusa.com
(nikon camera) ‘¢
(prices) \i —
www.digitalcamera-hq.com
(nikon camera) ‘c
(models) \i www.shopmania.in
OVERLAP WWW.imaging-resource.com

www.nikon.co.in
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www.shopmania.in

(prices) \i
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(microsoft shares) \c S‘ moneycentral. msn.com

www.moneycontrol.com

Figure 5.4: lllustrating difference in click overlaps.

fixes such agn.wikipedia.orgvhich should contribute minimally to the overlap score.(c.f
the concept of IDF in Sectioh.2.5. We define the IUF of a URL prefix as follows (c.f.
Equation5.6 for justification):

1+ |U]

IUF(s) = logio T

(5.13)

where|U| is the number of distinct URLS in our log and;| is the number of distinct
URLs with prefixs. The overlap between and) is directly proportional to the IUF of
the first string of the common prefix {, or sy,), the number otommonrclicks obtained
by boththe URLs (nin(cy, ¢y)), and the length of the common prefik)( On the other
hand, it is inversely proportional to the summgfandn., i.e. the sum of the lengths of the
two URLSs (in terms of constituent strings). For the last factee use the mean length of
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Figure 5.5: Evaluation of labeling units against click data.

the two URLs as the combining factor, i22"2. We thus define the overlapbetweent
and)’ as a simple combination of the factors as (assuming the aaingt proportionality
to be one):

o(X,Y) =1UF(sx,) x min(cy, cy) X k X

ni+n2

2k

n1+n2

= IUF(sx,) X min(cy, cy) X (5.14)

The contributing factors could be combined in a better wagetiine the resultant over-
lap. However, it is not the focus of this research and we kdoas future work. To
compute the click overlap of a set of URISs we compute the mean of the pairwise over-
laps of all URLs inS. For each content or intent unit a value ofo can thus be derived.
The final labeling is done as follows:

“For a given two-segment query the unit with the lower overlap(u) is treated as an
intent unit, and the one with the highe&f.) as content.”
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Results and observations

The identification of the different behaviors of click ok for content and intent units
opens up the possibility of not being tied to manual annotatfor evaluation. We checked
the percentage IAA of labeling done using click overlap falation (unit with lower over-
lap is intent, the other is content) with the manual anneosaémd found it to b&'3.09%,
71.65% and 68.23% for A, B and C' respectively, which are similar to our earlier IAA
values (Sectiod.4.7). We then checked the precision, recall and F-Score (Eopushi. 10
through5.12 for our labeling algorithm with the output produced by kldata modeling.
The definition of recall, however, is appropriately modifted

#(Units correctly labeled as intent
(Units labeled as intent by click dgta

Recall(Intent units}= 7 (5.15)

A similar change is made for content recall. Figuges (a) and (b) show the corre-
sponding plots obtained by varying threshéldfor intent and content units respectively.
These results are markedly similar to the results produgeevhluating against human
annotated data (Figurg.3), which justifies our choice of using clickthrough data as an
alternative evaluation strategy.

5.4.3 \Verification of the operational definitions

While every relevant document for a query must contain théssdmunits, this is not neces-
sarily true for intent units. For example, in the quéjyaguar x8) (for sal e),the
user expects every relevant document to contain the coatefijtaguar x8, but this is
not true of the intent unitor sal e. This was the basis on which our operational defini-
tions for content and intent units were formulated. We vedithe validity of this notion on
our IR corpus (Sectio8.4). Since this dataset contains queries accompanied byarglev
documents, it is appropriate for verifying our operatiotedinitions.

We used the segmented versions of the queries as output flabsegmentation al-
gorithm, and subsequently labeled &3 two-segment queries with content and intent
tags using our algorithm. We now wish to observe the presearw the distribution, of
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content and intent segments in relevant documents assdaiath each query. Since ex-
act string matching for segments in documents can often Bieading (the segmehtp

ai o printers canbe presentinthe documentgs pri nter ai o), we formulated
the following three-point({ — 2) scoring criteria fompproximatesegment matches in doc-
uments. Exact and exact stemmed matches (each word of theesegtemmed by the
Porter Stemmerl[77]) would be rated aSM 2(Segment Match Grade 23M lis awarded

if the stemmed segment was present imadifiedform in the document. We define seg-
mentmodificationas a 1-insertion, a 1-substitution, a 1-deletion or a lsjpasition (1-
indicating atone positioronly) of the stemmed form. The above operations, as appied t
a multiword expressiooM! = < a b ¢ d >, are explained next. We note that there are
some overlaps among these sets, but since all are assignedrtte scoreSM 1), it does
not make a difference. We do not deal wittrmodifications in this work, where > 1.

e l-insertions. All new segments formed by inserting one n@ndvin an intermediate
position of the original segment. 1-insertions fot = {(axbcd, (abxcd, (ab
c x d}, wherez is any word.

e 1-substitutions. All new segments formed by substituting @ord in the original
segment by a new word. 1-substitutionsfofr= {(xbcd, (axcd, (abxd, (ab
¢ X)}, wherez is any word.

e l-deletions. All new segments formed by deleting one woodnhfthe original seg-
ment. 1-deletions foM = {(bcd), (acd, (abo}.

e l-transpositions. All new segments formed by swapping tsitions of one pair of
adjacent words in the original segment. 1-transpositionsvt = {(bacd, (acb
d), (abdg}.

The segment is searched in the document text of each documtbetquery pool (aver-
age pool depth for this dataset is absitand the subsequent match (or non-match) is rated
asSM Q SM 1or SM 2 Each document in our document pool is associated with an RJ of
(non-relevant)] (partially relevant) o (relevant). Since each segment searched is tagged
as content or intent, we can now build the followiBg 3 matrices for degree-of-match
versus degree-of-relevance, accumulated for all segneé@tparticular type (TableS.9
and5.10.
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Content SMO SM1 SM2

RJO 19.113 2.647 7.285
RJ1  21.566 3.844 13.491
RJ 2 15.328 3.022 13.704

Table 5.9: Segment match versus document relevance for content units.

Intent SMO SM1 SM2

RJO 20.458 0.360 4.530
RJ1 30.747 0.390 6.959
RJ2 27.127 0.630 8.799

Table 5.10: Segment match versus document relevance for intent units.

The absolute counts of the specific cases in the matrix cale wormalized by the
sum of the values in the entire table, and converted intogoéages. The first rows of the
tables are greyed out because matches in non-relevant dotsiare not of interest to us.
The second and the third rows imply that the document wasaat |eartially relevant to
the query. If we consider exact and partial matcHadl (Lor SM 2 for these two rows,
we see that the corresponding total percentage for conteétst (= 34%) is almost double
of that for intent units £ 17%). Moreover, we note how the absence of segments affects
document relevance. For content segments, in onbf% cases was the document at least
partially relevant RJ 1or RJ 2 when the segment was absent in the document, while the
corresponding number for intent segments is as high 88%. Both of these observations
indicate that while matching a content segment in a docunsetrucial to improving IR
performance, an intent segmerged notalways match (exactly or partially) for the docu-
ment to be relevant — thus validating our operational dédimst. It is important to note that
the way current Web documents and commercial search emgieeesigned (emphasising
presence or match of keywords), it is very difficult to obtsirbstantial evidence for pages
that do not contain the intent units and yet are relevantaatrery. However, it is intuitive
that such pages exist on the Web, and one of the main objsafveemantic search is to
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discover these pages.

5.4.4 Use of content and intent labeling in IR

Labeling segments as content or intent is only half of thekwequired for our ideas to be
useful in a practical scenario. The second half is the foneti aspect, i.e. to be somehow
able to use these labels during the IR process for bettemguak result presentation. We
note that there can be several ways of doing this, and seagihes are possibly doing
some of these today. For example, specifyimgleo or pi cs or map with content units
almost certainly puts video or image or map content at theitegtead of the usual “ten
blue links”.

We devise a simple and generic application for our labelingtegy, in line with our
operational definitions of content and intent. Our intuitiees in the definitions them-
selves: while content segments need to be matched exat¢iynwiocuments, intent units
need not match exactly in the document text for relevancere@usearch engines sup-
port use of the double quotes operator. (*) to force exact phrase match in the document.
Exact match refers to perfect ordering of segment words endibcument, without word
insertions, deletions, transpositions, substitutionstber linguistically informed flexible
matching criteria (like synonyms). However, it is knowntthaers rarely use quotes in their
queries to use this feature (only abait of queries in our Bing log), while a much larger
fraction of queries (aboutl% as reported in Guo et al. 20081]]) do have named enti-
ties or multiword expressions ¢ger federer,summa cum | aude) within them. It
could also be detrimental to put quotes indiscriminatebuad all segments. In our opin-
ion, for example, it would be harmful to ensure exact matehrftent segments likbow
toordi fference between, because a page can contain the procedure for something
or comparison between items (say, as a table) without hakiege exact words. Thus, de-
veloping an automatic selective quoting strategy basedateat and intent markup could
be a good way of putting our work to use. To summarize, we $fatiecontent units must
be quoted while intent units should not be enclosed withubdl® quotes during the search
process. Note that quoting for ensuring exact word ordesngeaningful only for mul-
tiword segments, as quoting single word units only difféegas between stemmed and
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Anno Perc. queries improved Avg. for quoting strategy Avg. gain over original

nDCG S1 S2 3 S4 S1 S2 S3 S4 S1 S2 S8 S4

X 34.150 34.960 24.390 47.970 0.771 0.807 0.542 0.882% 0.196 0.176 0.227f 0.212
Y 39.840 39.020 22.760 50.410 0.709 0.755 0.552 0.818" 0.101 0.105 0.202F 0.154
z 34.960 39.020 18.700 50.410 0.723 0.797 0.531 0.8587 0.145 0.157 0.2137 0.185
Avg.  34.960 40.650 21.140 52.030 0.772 0.830 0.575 0.890" 0.151 0.132 0.195" 0.161

X 42280 38.210 14.630 47.150 0.567 0.589 0.230 0.6257 0.176 0.182 0.170 0.184

Y 31.710 30.890 14.630 40.650 0.343 0.370 0.145 0.392%7  0.102 0.098 0.126 0.109

Z 38.210 46.340 15.450 56.100 0.478 0.528 0.217 0.5687 0.126 0.116 0.142F 0.128

Avg. 32520 34.150 8940 39.020 0.359 0.380 0.112 0.397F 0.126 0.105 0.090 0.108
S1 Both content and intent units in quoté&2 Content unit quoted, intent unit unquote& Content unit
guoted, intent unit delete@4 Maximum of S2 and S3. The highest value within each set afrook is
marked inboldface Statistical significance (two-tailed pairédest,p < 0.05) of the highest value within a
set of columns over the next best is shown usifig Bhis is applicable only for the middle and the right sets

of columns.

Table 5.11: IR evaluation (hDCG@10) of content-intent labeling using Bing API.

unstemmed word forms (liker own andbr owni ng). In our previous work (Chapte3),
we had shown with an oracle-based approach that quoting majmrove IR performance,
but a deterministic quoting strategy is yet to be discoveW®d believe that content-intent
labeling is the first step towards such a strategy.

We note here that none of the four state-of-the-art researthat tag queries with
content-intent like labels1B5 231,233 236 provide an IR-based evaluation for their ap-
proaches. Moreover, schemes that do use some sort of qugingao improve retrieval,
do not report results on a single dataset so as to be compaatdng each other. Thus,
we select Microsoft Bing Web Search, a commercial searcmengs our state-of-the-art
baseline, accessible through its APThis provides a very challenging baseline, and if we
are able to show IR improvement on a reasonable proportign@fies over the Bing API,
our method can be said to have substantial practical signife.

We run experiments with our IR evaluation dataset (Sec8ah that contains500
gueries § to 8 words), a corpus 0f3959 documents, and abodb relevance judgments

“http://datamarket.azure.com/dataset/bing/se@cbessed 18 May 2014.
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per query () — 2 scale; three annotators). Most querigs3(out of 500) consist of two seg-
ments only (according to our segmentation algorithm), Wwiace labeled for content and
intent segments by our methotR3 out of these383 queries have one intent segment and
one content segment (remaini2@) are content-content), which forms our final evaluation
set. For each of these3 content-intent queries, we generate the following queraws:

(a) both content and intent segments are in quates| (i - q), (b) content segment is in
guotes and intent segment is unquotedd i - u), and (c) content segment is in quotes
and the intent segmentis deleted ¢ i - d). Among theseg-q i-uandc-q i-dcan

be said to be “our” proposed methodscasy i - g can be generated without the tagging
step by simply quoting both segments. We subsequently @s#litrosoft Bing Search
API to search our document collection. Essentially, we bhseBing search API to retrieve
the top-10 URLs from the Web for our query versions (three iqgotariants and the orig-
inal query) and then search our corpus for these URLs and¢baiesponding relevance
judgments. Since the original corpus was also construdiedthe Bing API, all the docu-
ments and most of the corresponding relevance judgmentsfaend in the dataset. Next,
we compute nDCG (Equatidq4) and MAP (Equatior8.7) for each query, and report av-
eraged values in Tab11 nDCG is computed after observing the first ten results osly, a
happens in a typical Web search scenario, and hence we rdpG@10. For computing
MAP, relevance judgment ratings dfwere treated as “relevant” while ratings @and1
were considered as “non-relevant”. The results are conddoteeach of the three annota-
tors (namedX, Y and Z) and their mean rating, all of which are available in our data
We compute the following three statistics for each quotiagant (represented by the three
sets of columns in Tablb.11): (a) percentage of queries on which the variant improves
over the original query, (b) mean metric value (hnDCG@10 or NifaPthe variant, and (c)
the mean metric gain over the original query for improvedropge In addition to the three
variants, we compute these values for the coliWar(c-q i-u, c-q i-d) thatrep-
resents the better of the two variaotsq i - u andc- q i - d interms of the metric value
(nDCG@10 or MAP). If this strategy gives the best results agrtbe rest, we can say that
content-intent labeling has thmotentialfor producing substantial improvement over the
original query, even with a very strong baseline.

We make the following important observations from Tablél (a)c-q i-u and
c-q i -d together can improve nDCG for more thabf% queries (4 out of 123 queries
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for mean rating) has the best performance,dby i -d, andc-q i-uandc-q i-d
together result in higher metric gain (both metrics) overanginal query thae-q i - q,
and (c)c- q i - u generally has the highest IR performance among the thrésmsr For
case (b), we note that takifndax(c-q i-u, c-q i-d) increases the number of im-
proved queries, and hence the meamak(c-q i-u, c-q i-d) can fall below the
mean forc-q i-d. For both metrics, for a large majority of the casé$g ¢ut of 24
cases)Max(c-q i-u, c-q i-d) version achieves the best results, and the gains are
often statistically significant (applicable for the secamdi the third sets of column3 put

of 16 cases). These results show that tagging segments as coniatént can be lever-
aged for good IR performance. It is heartening to see thatdeterministicc-q i - u
variant generally achieves the second best performandéddeft and the middle sets of
columns of percentage queries improved and mean metrievdie., the best among the
first three columns of deterministic variants in each setput of 16 cases). Thisis a direct
validation of the success of our operational definition thent segments need not match
exactly within text of relevant documents. We also see ewddehat intent segments are
not always “deletable” and while they need not match exacttiocument text, or can even
be absent, they can be used by the search engine in otheedtffgays. This is apparent
from the result that even though tbe g 1 - d variant on its own generally performs the
poorest among the three variant$ put of 16 cases), yet for the queries that it improves
upon @1 — 24% on nDCG,9 — 15% on MAP), the gain is quite substantial. This is seen
from the performance of this variant in the third set of cohsywhere it is usually the best
among the four variant$ (out of 8 cases).

5.5 A taxonomy of intent units in Web search queries

Roles of units. In order to better understand the roles of intent units irriggewe went
through the list of intent units and several hundreds of iggdn which they occur. Our
study reveals that intent units in Web search queries camdaglly thought of as perform-
ing one of two tasks, namelygstrict or rank. Therestricttask is concerned with filtering
the pool of relevant documents from which the final resules@esented. Theank task
determines the order in which the final results are displayédse broad categories can be
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RESTRICT /

COperation

Figure 5.6: A Venn diagram for the intent unit taxonomy.

further subdivided into classes as shown in Figbu@and Table$.12 5.13and5.14 In
some cases, the distinction between restrict and rank lesglss to blur, and consequently,
the table also presents examples forrdrict + rank category.

The Restrict Class.In therestrict categorycontext specifieract as disambiguators for
the rest of the querybpok, novi e). Similarly, operation specifierare generic action
units that specify some action to be performed on or with treent unit(s) ownl oad,

i nstall). They act like an operator with one or more content unitsrgaraents, thus
often behaving like unary, binary or multi-nary relation§he intent units in theother
aspectsub-category mainly specify aspects of particular clastesntent (like medicines
(si de effects)andsongsl(yrics)), in which the user is interested.

The Rank Class.In therank categorysort order specifiergndicate that results can be
ranked by a parameter of the content unit(s). For exanm@ay or cheap specifies that
results can be ranked in order of some distance or price ctgply. Time specifierare
used when users have a preference aiiginthe pages were published (that est news
or r ecent updates about events or products). Most adjectives fahénrank category,
e.g.,free, publ i c andpri nt abl e. These intent units specify the user’s preference as
to which of the retrieved pages must be ranked higher in tlaé fasults’ list.

The Intersection Class. The intent units in the intersection of these classes cgn hel
in both restrict and rank tasks. For exampeurce specifierindicate from where the
user wants result pages to be retrieved. Real source spgéfieigeographical locations
(mostly names of countries likger many or austral i a). Similarly, virtual source
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Context Operation Other aspects
book how t o side effects
novi e what is benefits
gane where are revi ews

tv show downl oad bi ogr aphy
ps2 conpare obi tuary
soap di fference between history

W ndows buy appl i cations
scienti st upl oad reci pe
footballer install lyrics

act or who is cheats

Table 5.12: Examples of intent units for theestrict class.

specifiers indicate online sources (Iweki pedi a or ebay). Format specifiersndicate
explicit output formats for the results. They may be dirdie (extensions likepdf or
np3) or indirect phot os of andvi deos of ). We propose that these units belong to
therestrict + rank category because while they try fiestrict pages to the desired source
or type, they also help in theanking of the other results (lower than desired pages). If the
desired pages are not available, then the other pages &edrhigher. In either case, the
user (generally) still onlpreferspages of the desired type, and will often look at alternative
sources or types if the earlier content was not satisfackmyexample, consider acommon
source specifier unit such as ki pedi a. The user may be only interested in Wikipedia
articles (restrict task). Alternatively, the user may jpstfer a Wikipedia article, but is
willing to consider results from other sources as well (reagk).

Discussion.We observe that intent words play very important and diveskes in Web
search queries. Sometimes this distinction of intent frantent can become ambigu-
ous. For example, take the qudrfyacebook) (w ki pedi a), where the user could
be looking for the Facebook (content) entry in Wikipediadt), or the Wikipedia (con-
tent) page on Facebook (intent). Therefore, detection teihinunits and understanding
their role is very important for IR. A particularly useful sw&io for applying our meth-
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Sort order Time Other preferences
near | at est onl i ne

cheap recent free

f ast 2012 downl oadabl e
| ar ge new public

close to current excl usi ve

hi gh-res | ast 24 hours private
short est t oday bl ack

budget now best

popul ar | ast nonth printable
best-selling this week w descr een

Table 5.13: Examples of intent units for theank class.

ods isenterprise searchi.e., searching the entire collection of documents belan¢p a
particular enterprise (mostly) by its employees. The atilbaé of user intents (and conse-
guently the set of intent units and its distribution) is ecteéd to vary from one enterprise
to another. Since additional information such as clicktiglodata may not be available (or
may be very sparse), often query logs are the only resounc@gént analysis in enterprise
search. Classification of intent units according to our taxay can help in identifying the
most important needs within the enterprise. Moreover, axohomy can also be used for
intent diversification, triggering advertisements in spaned search, and generating query
suggestions. Since the relevance of this taxonomy is mapfdication-centric, apvalua-
tion of the taxonomy is best conducted through appropriate ereit! applications by the
administrators of the deploying systems.

5.6 Related work

We emphasize that our notion of intent units does not coitrédt supports or subsumes
much of the related efforts in this area, which use Web docuspeguery logs and knowl-
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Source Format
w ki pedi a pdf
yout ube np3
espncricinfo slides
ebay vi deos
best buy pi ctures
f acebook phot os
| i nkedi n i mages
australia ppt

I ndi a map

us torrent

Table 5.14: Examples of intent units for thaixedclass.

edge bases. One such line of research is on the automatisitioguof attributesof classes
or instanceq9, 160 161]. Our method captures several attributes, kiede effects
(of medicines)bi ogr aphy (of important people) andeci pes (of dishes). However,
our technique also detects intent units likenpar e andhow t o, which do not fit in
with the current framework aflass-instance-attributeSimilarities can be observed in the
nomenclature of Li135, where the author states that noun phrase queries are seghpo
of intent headglike cast ) andintent modifierglike al i ce i n wonder | and). Intent
heads are closely related to attributes and our intent.uits framework is not limited to
noun phrase queries, and can explain other querieg hilkav t 0) \i (rmeditate) \c.

A framework and taxonomy usingntitiesandintent phrase$ave been proposed for un-
derstanding name entity queries in Yin and SHz81] — but our framework is more generic
in the sense that it is not restricted to name entity quemés @he motivation of our work
is also fundamentally different from the previous stud@ar notion of intent units largely
agrees with the ternmtent wordg231, 233, proposed for specific domains liket or s,
nmusi ci ans,citi es andnati onal parks. Similaris the case witmodifier§236],
which are proposed to carry user intent within queries (gsosed to the querigerne).
Again, our framework applies for all domains of queries amd ensupervised method
using co-occurrence statistics can be considered as adstirformation extraction tech-
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nique to detect all categories of such attributes, intentig/ointent phrases, intent heads
and modifiers.

5.6.1 Intent units as explicit facet indicators

We believe that query intent units mined through our tecimigre actuallyvords or seg-
ments that the user has included in the query to explicittijciate his or her intentand
there is often a one-to-one correspondence between queats fid6] and our intent units.
Query facets can be ascribed to the entire query, and inesplects like genre and scope.
It is important to note that a segment when behaving as antint@t can indicate multi-
ple facets at the same time. For example, the op@ can tell us both that the query is
from thetopic of musicand that the user has tludjectiveof finding aresource Simi-
larly, presence aimdbindicates the facet§opic: movie$ and{authority sensitivity: yes
(the latter implying that the query requires an answer frormaathoritative source). We
believe that intent units can be very useful features foryjirgent classification, and can
deepen our understanding of user intent. Thus, classditafiour intent units into various
facet classes and using them as features for intent claggficare promising directions for
future research.

5.7 Conclusions

In this chapter, we have proposed that syntactic units imigsi®roadly perform two roles
— content and intent. While content units define the topicsuefrigs, intents units act as
indicators of user intent. We have shown that co-occurreistebutions of units in query
logs can be leveraged for differentiating between contedtiatent units. Our techniques
are inspired by their effectiveness in NL text where they @atomatically discover func-
tion words. We have also shown that automatic labeling ofnegeg roles within queries is
possible with reasonable accuracies using simple algosithased on corpus distributional
properties. Results obtained by our generic and lightweiggthod have been validated
by independent evaluations with human annotations an#tkhocugh data. We have also
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shown results where content and intent labeling can bedgeer for improving retrieval
performance. A comprehensive classification scheme foedhintent units has been pre-
sented, providing readers with a qualitative analysis efrtature of such units. We have
proposed that intent units broadly serve two importanttions in IR — torestrictandrank
final result pages. Content and intent units can thus be ctuadeged as the broad syn-
tactic categories of the query language. In the next and d¢mratributory chapter, we will
show how we can objectively quantify this syntactic compiegf Web search queries.



Chapter 6

Understanding Syntactic Complexity of
Web Search Queries

6.1 Introduction

Searching information on the World Wide Web by issuing gegeto commercial search
engines is one of the most common activities engaged in bystlevery Web user. The
Web has grown extensively over the past two decades, anchseagines have kept pace
by incorporating progressively smarter algorithms to kaphe information at our finger-
tips. This co-evolution of the Web and search engines haverdusers to formulate more
complex and longer querie&]0 209. Search queries represent a unique mode of inter-
action between humans and artificial systems, and theyr difiservably in syntax from
that of the parent natural language (NL). This has led rebeas to argue that probably
gueries are acquiring linguistic properties of their o0, B0,107,209. Arguing from the
perspective of théunctionof queries, i.e., communication, and the factors that imibee
their self-organization, it can be fairly convincingly aslished that queries are indeed an
evolvinglinguistic systemNevertheless, there is no systematic and comprehensuhe st
the syntactic properties of Web queries that can convirgimigng out the fact that queries
are indeed a “language”. The challenge, of course, is taifgehe unique syntactic fea-
tures of an NL that make it different from any random or ar@fiy generated sequence

153
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of symbols. Fortunately, there are three distinct linessearch that can help address this
fundamental question.

One of the oldest statistical characterizations of NL cofn@® n-gram models that
can be used for both generation of utterances or senteneesetdain degree of accuracy,
and also for quantifying the predictability (and hence tomplexity) of a system of sym-
bols [41]. Such aline of research in the past has been extensivalifasanalyzing ancient
languages like the Indus-script hypothedi87, studying languages with diverse typolog-
ical propertiesT5], and also for understanding non-linguistic systems sscimasic 2]
and the genetic codé43. Over time,n-gram models have been appropriately generalized
or restricted using more sophisticated linguistic featwagpturing various syntactic and se-
mantic properties (se@4] for a review). Collectively, these models are studied urider
broad topic ofStatistical Language Modelingnd extensively used in applications like Au-
tomatic Speech RecognitioB47], Machine Translation122], spelling correction4] and
Information Retrieval (IR)176].

A second approach to characterize a linguistic interastisrio study it from the per-
spective of thenative speakers’ intuitignwhich says, to quote Noam ChomsKg[: “The
sentences generated will have to be acceptable to the saaker”. Though the concept
of native speakeis debatable and eludes a clear definiti#64, in the context of queries
it assumes an altogether new dimension.

A third and more recent line of investigation into lingutssiystems is througGomplex
Network Modelingf languages, where a language is modeled as a netwenhtitiesand
their relations (see p1] for a review). These studies were inspired by similar miodgl
techniques employed by physicists and biologists, whield l® interesting insights into
the systems being modeled. Such studies using network mgdelve also revealed some
interesting properties of languag€d[69].

These three lines of investigation are, in fact, compleargnand therefore can be very
well used for evaluating each other and getting a more comemsave picture of a linguistic
system. Hence, in this work, we explore the syntactic pitiggeof queries through these
three different lenses and cross-validate our findings toecap with interesting conclu-
sions. More specifically, we (1) build-gram models and alse-term models 211, 230
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from our query log and analyze perplexity (or the predidighiof the models and compare
them with that of Standard English, (2) build word co-ocenge networks, the most pop-
ular and well-studied network modeling approach for NLs{lfe real log and compare the
topological properties of the network with those built framtificial logs generated using
then-gram models, and finally, (3) ask ordinary Internet usenste the acceptability or
“real’-ness of the queries generated by the various mo@als study reveals that although
gueries seem to be more predictable (or less complex) thamMicam models still fall
short of generating a rich set of artificial queries. A typigser is able to tell apart a real
query from an artificially generated one, even though adngbased generative model
seems to overfit the data and is capable of confusing the Tikerword order in queries
seem to be the most important clue helping a user to diffetenbetween the real and ar-
tificially generated queries. Hence, the structure of ecurvdeb search queries indicates a
linguistic system that has at least a rudimentary word anderonstraint, and several other
syntactic and semantic constraints that lie beyond theesobp-gram and-term models.

We do not know of any previous systematic study on these &spedNeb search
gueries, even though features like auto-complete and cgeggestions are indirect evi-
dence that predictability of query terms is indeed exptbity Web search engines. On
the other hand, this study can not only help in more systenaaii principled techniques
in relevant applications, but can also have profound impacthe way we viewquery
understandingoday.

The organization of the rest of this chapter is as followgstFwe describe the gen-
erative language models for queries used in this work ini@eét2 In Section6.3, we
discuss our complex network modeling technique and useréimefvork to compare the
various generative models. Next, in Sectd, we present our experimental framework
and results for crowdsourcing to measure human intuitioguefry syntax. We discuss the
implications of our results in Sectigh5. We comment on the application of our ideas to
synthetic query log generation and evaluation in Sediéand make concluding remarks
in Section6.7.
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6.2 Statistical language modeling for queries

The n-gram language model (LM), which assumes that the probabilityhefrt" word

in a sentence depends only on the previpus- 1) words 1], has been one of the most
popularly used generative language models for NL with maplieations 6,100 1272].
Therefore, as the first steps, we evaluate query models lmsedrams (and their vari-
ants). Ann-gram, in our context, is any continuous sequence wbrdsw, from a query.
Mathematically, am-gram LM over sequences of words is defined by a Markov chain of
order(n — 1) [141], and the probability of &-word query is given by:

P(wlwz---wk) = H P(wi|wi—l---wi—n+1) (6.1)

i=1...k

The required probabilities can be initialized throughrtnag on the real query log from
the relativecounts

count(w; ... Wi_p41)

(6.2)

Plwifwioy - i) = count(w;_1 ... W;i_py1)

An n-term [211, 230 is anunordered sebf n words, all of which occur in a query,
but not necessarily next to each other. Since queries haame d@nsidered to be bags-of-
words in several contextd 76195198 207, a systematic exploration efterms becomes
necessary. Since queries are short (mean length was clfme twords for distinct queries
in our log), itis not practical to look beyond trigrams (or¢Ben-gram model).

6.2.1 Query generation process

We now explain our process of generating artificial querg@agi-grams om-terms. We
explore seven generative models for queries, 1Agram,2-gram,3-gram,2-term, 3-term,
2-term-GR and-term-GR, where GR refers to “Greedy Reordering” (wherertigrams
are reordered in a greedy manner in descending order of geerration probabilities).
Example queries generated by each of these models are shdahble6.1 Words in query
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Table 6.1: Queries generated by different models.

Model Example queries

a dhcp epheneral detailing
1-gram map rc2 western pacific kennedy
anzac center catering civ integrate you guide

create user account on roads
2-gram access 2003 not working with info
party poker table tennis player

shaol i n kung fu panda
3-gram a brief history of witchcraft
a thousand niles sheet music for websliders

acer 5310 for flash player
2-term adobe acrobat free downl oad w ndows
housi ng thailand what is cost of housing

adel ai de entertai nment expl ai ned seating plan
3-term anti software virus wi ndows vista
adobe photoshop 7 for nac

flash player for acer 5310
2-term-GR adobe acrobat free downl oad w ndows
what is cost of housing thailand

adel ai de entertainnent seating plan explained
3-term-GR anti virus software w ndows vista
adobe photoshop 7 for mac

logs were stemmed using the Porter Stemmé& prior to the query generation process.
In the examples shown in Tab#el, word stems have been replaced by random unstemmed
versions of the word for readability-gram queries typically do not make much sense; they
are just some random words thrown in to create a query, altaittaining the real word
probability distribution. The notion of local coherencenradiately becomes clear as one
moves t@2-grams. The crossovers from one bigram to the next seem bnimdtas a whole
the queries are generally not meaningful. Clearly, the cbapnta query being meaningful
in its entirety diminishes with increasing query length.eT$ame thing can be observed
for trigrams; but since several queries only have three,dotive words (can be generated
with only one, two or three trigrams, respectively), suckrigs are often realistic. FQr
terms and-terms, we have similar observations but it is also appalrexttthe sequencing

of the words is not very natural. Another point to note is thath models often contain
word repetitions. Both these aspects are fall-outs of thexagion of the strict ordering
constraint. This naturally motivated us to check equivia@fn-term models when query
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words were deduplicated and some simple reordering syratag applied. Queries of GR
models appearing better than their unordered countengltst this intuition.

Query generation process.We denote the query length (in words) Asa random
variable that can take integral values between two andQeery length distributiomefers
to the probability distribution of., which is empirically estimated from the log. All the
generation models described here are made to follow thisldison. The process for
generating artificial queries usinggrams is as follows (the process is exactly analogous
for n-terms): first a valué of L is sampled from the query length distribution. Then, an
n-gram is first chosen stochastically in proportion to itsqaoility. An extra word is added
to the query trying to extend the previous stringof- 1) words. This new word is chosen
probabilistically from all then-grams which have their firgin — 1) words as the string
concerned. This process is continued till the desired deegth, i.e./, is reached. When a
guery generation process is unable to add a new word to alhagenerated query using an
n-gram model, then ibacks offto an(n — 1)-gram generative model to generate the word.
Let us understand the process with one of the example qderi8sgramsa t housand
m | es sheet nusic for websliders. First, we randomly sample a query length
seven from the real log query length distribution, which liepthat the generated query
will have seven words. Next, the 3-graant housand m | es is stochastically sampled
from the list of all real trigrams based on its occurrencebpimlity. We now try to extend
the query by looking at all 3-grams that start with the 2-gtadmousand mi | es. Using
similar stochastic sampling as above, we obtain the trigraousand mi | es sheet .
Next, a search for 3-grams begininng withl es sheet fails, and hence wback offto
the 2-gram model and sample for 2-grams starting whileet , which producesheet
nmusi ¢. We resume our search for trigrams using the rightmost Brgnad add the words
for andwebsl i ders in consecutive iterations. No backing off was required ia th
last two steps. Since we have now reached the desired quegthlef seven, the query
generation process stops.

Greedy reordering (GR). We observe that queries generated by 2-term and 3-term
LMs often contain a set of coherent and meaningful words thweit order is not what a
human user would normally type. Also, often there are répes of the same word in a
guery. Both of these are outcomes of the way the models areedefiihus, to refine these
models, we deduplicate the query words and perfogready reorderingf the words of
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2-term and 3-term models in a query. We call these new modtdsn2GR and 3-term-
GR respectively. Reordering is done as follows. After dedagibn of the words of the
query, we find the local-gram (. = 2 for 2-term andn = 3 for 3-term queries) consisting
of n words from the query that has the highesgram probability. We then extend this
new partial query by iteratively choosing a word from the agmmg words in the original
query, which has the highest localgram probability when appended to the last— 1)
words of the new partial query. If we are unable to extend &glauery because no such
local n-grams exist, we back off tgw — 1)-order models until the query can be extended.
Instead of a greedy approach, we could have aimed for a dyatyatimized reordering of
the query or a Viterbi search. We leave such reorderingegfied as future work.

6.2.2 Measuring model perplexity

Perplexity is one of the most common metrics used for evalgat-gram systems19].

It can be intuitively thought of as theeighted averagaumber of choices that a random
variable can take. Thus, perplexity of agram model tells us that if, on an average, a
string of (n — 1) words of the language are known, how many words are likelycttuo

in the next position. In other words, it tries to model howrjpexed” a user would be in
guessing the!” word after seeing a string af — 1 words. A higher perplexity value for a
language model thus implies less certainty in the user'sirmbout its predictability. The
perplexity of a probability distributiop(z) of a random variableX is defined a(X),
whereH (X) is the entropy ofX and is given byH (X) = Zzexp(z)loggp(:c).

The entropy of a particulaim — 1)-gram is the entropy of the probability distribution
over all words that can appear in th& position given that the firgt, — 1) words are fixed.
This entropy, raised to the power of two, gives the corredpanperplexity.

6.2.3 Experimental results

Table6.2reports the perplexity of the different models for NL and Veelarch queries (the
GR models are reorderings of the correspondirgram and:-term models and hence do
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Table 6.2: Perplexity and counts of-grams anch-terms.

Model NL Queries NL Queries
(Perplexity) (Perplexity) (Counts) (Counts)

l-gram 1,406.593 6,417.283 0.3M 0.2M

2-gram  193.722 104.337 3.5M 1M
3-gram 17.663 5.430 9.7TM 1.1M
2-term  893.851 384.945 48.1M 4.2M
3-term  N.A* 23.360 N.A.* 24.8M

* Dictionary runs out of memory even witht GB of RAM.

not have separate entries in the table). For NL, the corped asntained A/ randomly
sampled sentences from newswire data2010. Newswire text was chosen because, in
general, they contain cleaner NL sentences than random Vateb &or comparability of
NL values with queries, we kept the dataset size similartfedatter by randomly sampling
1M queries from our dataset. To preserve the natural frequdistybution, duplicates
were not removed from either dataset. The NL text was cdskedand only alphanumeric
characters (and whitespace) were retained. The words iindoopora were stemmed using
the Porter Stemmé(177]. Perplexity values for Standard English reported in Brown e
al. [42] are obtained from corresponding cross-entropy valueshamde are not directly
comparable to those in Tabte2

6.2.4 Interpretation

It is quite interesting to note that while the perplexity b&tunigram model for queries is
much higher than that of NLs, the perplexity of bigrams amgtams show just the opposite
trend. The explanation for this surprising trend is as feloWe observed in our data that
the rate of encountering a new word queries is much high@ufadme pe0 words) than
NL (about one peb8 words). Hence, the unigram distribution of queries is maverde

http://corpora.uni-leipzig.de/download.htmiccessed 18 May 2014.
2http://tartarus.org/martin/PorterStemméexécessed 18 May 2014.
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than NL. In fact, queries have a much larger specialized opperal vocabulary and very
small core vocabulary as compared to NLs. This unique featakes the perplexity of the
unigram model very high for queries.

On the other hand, queries are also repeated and theirtrepdtequency is known
to follow a power-law distributionZ70. In NL, sentences are rarely repeated exactly,
except for phrases likkhank you andGood nor ni ng. In our dataset, the number
of duplicates (repeated at least once) in NL and queries foered to be447 and164185
respectively. Furthermore, the mean sentence length foaméLqueries were found to be
18.159 and3.980 respectively. These two factors play a crucial role in bnggdown the
bigram and trigram perplexities for queries. One intengstionclusion of these findings
on perplexity is that for a random sentence or query, a napeaker (or search engine user
in case of queries) will be able to predict a random word presean NL sentence much
more certainly than for a query. On the other hand, if one oreregords are shown, it is
much easier to predict the rest of the words in a query tharsenéence. This is precisely
why an autocomplete feature can work much better for seargimes than a word editor.
An alternative perspective is as follows: Queries gendrageng bigrams or trigrams will
look much more realistic than sentences generated usirgathe models.

The perplexities of:-terms are greater than their correspondingrams due to the
manifold increase in the number of possibilities in the ferr(ifable6.2). The number of
3-grams is comparable to the number of the 2-grams for qubeeesuse of the presence of
a significant number df-word queries, that do not contributedegram counts.

6.3 Complex network modeling for queries

Network analysis provides an elegant mathematical framewamstudy various complex
systems$, 36,153 213. The success of such network-based techniques in thedapte
of decades is primarily due to the fact that a network canwrapaggregate properties
of a system, while considering both local and long rangeb@lointeractions present in a
system. Of special interest to us here is the applicatioetfork models to linguistics and
corpus studiesdl, 147]. The most popular and well-studied representation of guage
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corpus is the Word Co-occurrence Network (WCR3,[50,61, 69|, which we have apply
here to study the statistical properties of query logs. &rgtent past, such WCNs have
also been used for term weighting in 1B4].

6.3.1 Network definition and construction

A WCN for any given text corpus is defined as a netwafk (N, E), whereN is the set
of nodes each labeled by a unique word @@ the set of edges. Two nodés j} € N
are connected by an edg¢ej) € F if and only if i andj “co-occur” in a sentence33, 69.
Co-occurrence can be defined variously; in this chapter, viieed®cal and global models
of co-occurrence as follows.

Local co-occurrence. According to this model of WCN, immediate word neighbor-
hood is considered important and an edge is added betweamdyds if they occur within
a distance of two (i.e. separated by zero or one word) in ayquer

Global co-occurrence. In this model, an edge is added between two words if they
occur within the same query, irrespective of their posgiomhus, a global co-occurrence
network will have more edges than a local co-occurrence oritw

For both local and global networks, the edges resulting frandom collocations are
pruned using “restriction”g9] as follows. Leti and; be two distinct words from the
corpus. Lep;, p; andp;; be the probabilities of occurrence ©fj and the 2-grang: j) (or
2-term{i, j}), respectively, in the data. Then, in a restricted netwarkedge exists if and
only if p;; > pip;. All networks considered in this study are undirected anaeaighted.
Figure6.lillustrates the concept of WCN by showing the network gendratem the toy
query log below. Edges pruned due to restriction are showrgutashed lines.

sansung focus gprs config
dell laptop extrene gam ng config
extreme gaming dell laptop config
buy sanmsung focus at &t
gprs config at& sansung focus
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sansung focus gprs config até&t

Figure 6.1: lllustration of a WCN for queries.

As per conventiong9], all network statistics discussed are computed on theedrg
connected component (LCC) of the graph. Words in query logstaremed before WCNs
are built. For LCCs of WCNs generated fal/ query samples from our query logé/| ~
180, 000 (both for local and global models), whilé| ~ 1.5M (local) and|E| ~ 2.0M
(global). Thus, these are very sparse networks with avezdge density (i.e., probability
of having an edge between a random pair of nodé;E]/(“QV')) of the order ofl0~*.

6.3.2 Topological properties of WCNs

We now explain the topological properties of word co-ocence networks that we use
for characterizing real and generated query logs, namelyred distribution, clustering
coefficient, average shortest path length, and networkfsnoti

Degree distribution

The degree of a node in a network is the number of nodes thatcbnnected to. The
degree distribution (DD) of a network is the probabilitytdizution p,, of a node having a

degreek. A cumulative degree distribution (CDD), (probability of a node having degree
> k) is more robust to noisy data points and is preferred foraligation. A representative

CDD for a query WCN built froml M randomly sampled queries is shown in Fig6t2
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Figure 6.2: Sample CDD for a real query log.

(local model; global model is almost exactly similar) andfasind to resemble a two-
regime power law. This is also found for NL89] and indicates the presence okernel-
peripherystructure. Akernelis a small subgraph of the network where all nodes have very
high degrees. The nodes in tperipheryhave relatively lower degrees than the nodes in
the kernel. The majority of the nodes in a query WCN are obsetwddrm very small
peripheral clusters which are all connected to the kernel.

Clustering coefficient

Let a noder in the network have: neighbors. Then(}) edges are possible among its
neighbors. The clustering coefficient (CC)nfCC,., is the fraction of these edges that
actually exist in the network2R6. The C'C) of the entire networkV is defined as the
average ofCC, over allr € N. A high CC indicates that the network consists of one
or more dense subgraphs or clusters. The average CCs for the&/@Ms (built from
1M random queries) af@429 (local) and0.521 (global). The CC for the global network is
slightly higher because of the higher edge density. Thelsesare quite high as compared
to the CC of an E-R random grapbd, 69], which is of the order of its edge densityo(*).

CC for similar networks for NL has been reported tob€37 [69], and thus show lower
density for NL WCNs than those for queries.
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Average shortest path length

The shortest path length between a pair of nodes is the mminumber of edges that one
must traverse to reach one node from the other. The averagesthpath length (ASPL) is
defined as the mean of the shortest path lengths betweeniralighbaodes in the network
that can be reached in a finite number of steps from each otther ASPL for the WCN
built from a1 real query sample i8.519 (local) and3.004 (global). The ASPL for the
global network is slightly lower because of the higher edgesity. These values are quite
small for a network with close t680, 000 nodes, and near to the expected ASPL for an E-R
random graph of similar size and density263 (local) and3.830 (global)). ASPL for an E-

R random graph is given biy.| V| /in(k), wherek is the average degree of the graph, given
by (2 x |E|)/|N| [226. It has been argued that the low ASPL for similarly constedc
NL WCNs (2.67) is an outcome of an optimization of language structure seang for fast
recognition and retrieval of word§9]. As an aside, we also note that a network with high
CC, low ASPL and low edge density (all with respect to randonplgsa is known as a
small world[153. Hence, like social networks and WCN for NLs, WCNSs for queries is
also a small world.

Network motifs

Network motifs are small subnetworks that are found to oatgignificantly higher num-
bers in real networks than in random networR8,[L15 116, 149 200,227]. For example,
cliques with four nodes have an occurrence probability(of!! in a real WCN, while its
expected probability in an E-R random graph][with the same number of nodes and edge
density, is onlyl0~2°, A ¥"-motif is defined as a subgraph ofdistinct nodes in the net-
work unique to structural isomorphism. Counting motifs famgle graphs is computation-
ally expensive, because beyoird, motifs typically have a very large number of possible
isomorphisms. In this study, we only consider connedkéchnd U* motifs. Figure6.3
enumerates all theonnectedl® and¥* motifs. The motifs in this chapter are named fol-
lowing the convention introduced by Biemann et &3][ Recently, motif detection has
attracted attention as a useful technique to uncover straladesign principles of networks
in various domains like biochemistry, neurobiology, egylaand engineerindld9,227).
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3-chain (§3) | 3-clique (U3) | 4-chain (Y 4-star (P | 4-loop-out (Yd) | 4-box (P}) | 4-semi-clique (P) | 4-clique (P)

NIA TN N

2.941 7.185 4.101 6.057 10.315 7.212 15.463 21.484
planet, mercury, mercury,
motherboard, mercury, mereury essenser mercury, minin mercury, water, mercury., water
mercury, element, nwtherbo‘:l.nl ‘Imui ' motherboard, iron ® syster, S 'StL’l;)l‘ steel ’
'} t comp / ! P N lan, card ! requirements R4 *
lan motherboard element

Figure 6.3: Connectedl® and¥* motifs with LNMCs from the real log.

Here, we use the algorithm FANMOL[227] to detect¥® and U'* motifs. Since motif
counts are dependent on the size of a network, they must talunhormalized by their
corresponding expected counts for an E-R random graph matlethe same number of
nodes and edge densit®]7]. Since the ratios of the probabilities can be very skewesl, w
take the natural logarithm of these quantities, which wél sifr to as thd.og Normalized
Motif Countor LNMC. Thus,

Actual count of U}

C(¥7) = log Expected count of” in E-R graph

(6.3)

where,U” is thei'" n-sized motif. For example, following Figufe3, ¥3 and¥3 would
be the3-clique and thel-loop-out respectively. Figuré.3 (third row) reports the LNMC
values for¥? and¥* motifs for the real WCN (local co-occurrence model). This vectf
eight elements for motifs is referred to as thetif signatureof the network 83]. These ra-
tios indicate that the probabilities of occurrence of adl lonnected motifs in areal WCN is
several orders of magnitude higher than that in an E-R rargtaph. Figurés.3 (last row)
also contains real examples of each type of motif from thevodt. Motifs in WCNs cap-
ture semantic relatedness between the words, and cdrtaimotifs like boxesandchains
are representative of semantic concepts like synonymy alydgmy, respectively33].

6.3.3 Stability of WCNs

The network statistics described above are useful and rabdigators of the structural
properties of WCN if and only if the statistics are immune to oniperturbations or random
noise in the query log from which they have been construciée. trends in the statistics
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Table 6.3: Network statistics for various network sizes.

Log size |N|l |N|g |E|[ |E|g CC CCg ASPL, ASPLg

w 177,900 177,975 1,526,043 2,089,729 0.429 0.521  3.519 3.320
W/10 46,528 46,523 299,496 412,218 0.463 0.555  3.536 3.328
W/20 30,398 30,399 169,670 233,932 0474 0.566  3.567 3.355
W/50 17,160 17,162 77,052 106,306  0.493 0.588  3.644 3.410
W/100 10,991 10,990 41,270 56,992  0.512 0.611  3.741 3.481

should also remain reasonably fixed when the size of the legrisd. Hence, to analyze
the stability of the WCN statistics, we varied the network sigeontrolling the number of
queries from which the network is created. LE{= 1M here) be the number of sample
queries from the entire log (which has 10M queries) used to build a large WCN. We
construct smaller query logs consisting 16f/10, W/20, W/50, andW/100 queries by
random subsampling of the entire log and computing the m&tatatistics. To minimize
sampling bias, for eaclV/s-sized log, the experiments were repeat¢idhes and statistics
were averaged over thesénstances (not applicable for DD). Tat8e3 reports|N|, |E|,
CC and ASPL for each of these sizes. Figaréshows the CDD plots for the respective
networks (one specific sample from each network size; locadazurrence model). In
this figure, from the top left, we show degree distributionsrietworks constructed from
query logs of sizél’/100, W/50, W/20, W/10 andW. We do not reduce the network
size beyond?/100 becauséV/1, 000 ~ 1,000 queries which is too small for any reliable
network analysis.

The results (mean values oveexperiments) in Tablé.3 show that the statistics are
extremely robust to network size variattonSubscripts and g imply local and global
WCNs respectively. Importantly, the standard deviationghiers experiments were found
to be very low in all cases, further indicating network slighiEven when the dataset size
is increased by two orders of magnitud& (100 through/’), the CC and ASPL change
only by ~ 15 — 16% and~ 5 — 6%, respectively. We also note an interesting trend here —
both CC and ASPL increase as the network size decreasessHlightly counterintuitive,
because a large network with small ASPL is expected to havgheehCC. However, the
trend is explained as follows. As the network grows in size tluincrease in number of

3Similar stability for WCNs for NL text has been reported in Biann et al. $3].
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Figure 6.4: Sample CDD at different network sizes.

gueries, (a) new nodes join the network with edges conmgttirexisting nodes; and (b)
new edges form between existing nodes. Since new nodes dometiately have several
new connections, the first event decreases the CC and instbas&SPL. The second event
decreases the ASPL and increases the CC. However, thesefratesease and decrease
of CC and ASPL caused by the two events are not the same. In $keot&\Veb queries,
with lots of new and rare words (arising from various propeums) continuously joining
the network, it is the first event that mostly dominates andsponsible for the drop in CC
and increase in ASPL.

Examining the DD, it is evident that the network crystaltize its final form marked
by a two-regime power law, at abouif/10, which is100,000 = 0.1M queries. The motif
statistics for the local network indicate similar stalalibn trends and have been shown in
Table6.4. Motif results for the global network also show similar beloa and hence are
not reported here. From these results, we infer that for niggigle query WCN analysis,
one must have at lea8tl M queries in their sample.
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Table 6.4: U3 and¥* Motif signatures at various network sizes (local co-ocence).

Log size 3-chain 3-clique 4-chain 4-star 4-loop-out 4-box 4-semi-clique 4lique

w 3.574 7.973 4.637  6.350 10.998 8.003 16.921 23.562
W/10 3.063 7.658 4.417  6.261 10.839 7.905 16.375 22.791
W/20 2.873 7.172 4.066  5.890 10.251 7.189 15.427 21.460
W/50 2.614 6.580 3.587  5.407 9.489 6.215 14.208 19.735
w/100  2.371 6.185 3.192 4915 8.873 5.406 13.296 18.498

Table 6.5: Mean network statistics for the query LMs.

Model |N| |[E] CC ASPL KLD

Real 34,209 242,680 0.623 3.302 0.000

l-gram 28,748 311,955 0.280 2.823 0.349
2-gram 33,257 209,947 0.619 5.011 0.077
3-gram 60,594 292,210 0.591 3.472 0.068

2-term 28,978 227,146 0.630 4.968 0.054
3-term 47,292 249,966 0.634 3.538 0.031

2-term-GR 28,998 230,868 0.628 4.894 0.050
3-term-GR 47,140 249,254 0.632 3.534 0.032

Proximity of local and global co-occurrence networks. An important observation
from these experiments on network stability is the relatnv@riance in the properties of
local and global co-occurrence networks for queries. Ekengh the number of edges in
the global network is higher in number, differences in the @@ ASPL values are very
small. Moreover, trends observed in degree and motif disions are also quite similar.
Therefore, in subsequent sections, all results will be ntepaonly on local WCNSs.

6.3.4 Comparison of real and model-generated query WCNSs

We have seen that the statistical properties of the netvarekstable as long as the log con-
sists of at leadh.1 M queries. Therefore, for reliable results, we decided talochall our
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Table 6.6: U3 and¥* Motif signatures for the query LMs.

Model  3-chain 3-clique 4-chain 4-star 4-loop-out 4-box 4-semi-clique 4lique M-Diff M-Sum

Real 2.941 7.185 4.101  6.057 10.315 7.212 15.463 21.484  0.000  74.758
1-gram 2.579 6.428 3.706  4.868 8.987 6.627 13.710 19.072  8.781  65.977
2-gram 2.969 7.369 4.162  6.095 10.464 7.540 15.795 21.954  1.590 76.348
3-gram 2.971 8.049 4.631  6.001 11.383 8.286 17.281 24.153  8.109 82.755
2-term 2.874 7.073 3.989  5.733 9.935 7.210 15.075 21.034 1.835 72.923
3-term 2.907 7.832 4439  5.859 11.057 7.967 16.832 23.514  6.113 80.407

2-term-GR  2.777 7.060 3.967  5.494 9.884 7.151 15.042 21.020  2.363  72.395
3-term-GR  2.890 7.828 4431 5.822 11.048 7.954 16.825 23.520  6.132 80.318

The three lowest and the highest values in the M-Diff and MASwlumns, respectively, are markedbioldface

experiments on logs havirnig\/ queries. We sampled the entire real query log to construct
100 subsamples of M queries each, each subsampieserving the query length distribu-
tion by words. These will serve as our real logs for all the follogvexperiments. Similarly,
we stochastically generatéd0 logs, each consisting af\/ queries, for each of the seven
generative models. We constructed the WCNs for tidgseal and seven model-generated
strategies)< 100 = 800 logs and computed the DD, CC, ASPL and motif signatures for
each network. We observed negligible variance in the nétwtatistics across th&)0
samples generated from the same model, which further dératesthe robustness of net-
work modeling. Thus, we report only the average valueg &gt |F|, CC and ASPL in
Table6.5, and the average LNMC values for the connectédand ¥* motifs in Table6.6.

We note here that the values reported here for the real logotlnetessarily match those
corresponding téV in the previous section because now the sampling is donempiag

the query length distribution by words; the sampling wasenitibnally random during the
experiments on network stability for emphasizing the idestability. Henceforth in this
text, we will refer to the WCNs generated from the real querg lageal networksand the
WCNs generated from the model-based query logaedel-generated networks

Since DD cannot be summarized by a single average value, mpute the Kullback-
Leibler Divergence (KLD) 124 between the DDs (after applying add-one Laplace smooth-
ing [14Q) of the real networks and the DDs of the model-generatedarés. These values
are also reported in Tab&5. The smaller the KLD, the closer is the DD of the network to
that of the real WCN. Figuré.5shows the CDDs for one of the subsamples each from the
real and the model-generated networks. The plots have Ipdiem# two groups of four
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models each, to somewhat mitigate the problem of almost t&eip overlapping curves.
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Figure 6.5: Sample CDD for query LMs.

We can observe that even the DD of thgram model is like a two-regime power
law (Figure6.5), which means that DD is the easiest of the network stagisticeplicate.
For other generated networks, the DD is almost identicahéoréal network, a fact also
apparent from the KLD values in Tab&5. The 1-gram model also has much lower CC
and ASPL. The CC matches for all models where- 2, and the ASPL matches only for
the3-gram LM.

T T T
= Words - 1-gram
® Segments - 1-gram

0.1 4

T T T
1 10 100 1000
Degree k

Figure 6.6: (Colour online) Degree distributions for word and segmemivoeks.

Segment co-occurrence networksWe wanted to explore how segment co-occurrence
networks would behave in the current setup. As a first stegemerate queries using the 1-
gram model but use segment probabilities instead (all thiegueeries were first segmented
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Log N E CcC ASP KLD

Real 34,209 242,680 0.623  3.302  0.000

l-gram, 28,748 311,955  0.280 2.823  0.349
l-gram, 270,687 1,642,641 0.572 3.519  0.523

Table 6.7: Mean network statistics for word and segment models.

using our proposed segmentation algorithm). Also, theyglssrgth was computed based
on the number of segments, and not words. The same basiapespeere computed and
the results are present in Talél& and Figureb.6. We observe that with segment statistics
(1—gramy), even an elementary model liRegramhas matched up quite closer to real logs
than when the corresponding word statistics-(gram,,) were used (CC and ASPL). This
is because segment detection includes sophisticated aoreace statistics, and hence
such logs already contain several syntactic units preserdal logs. It is indicative that
using segment statistics could ultimately produce bettatity logs. However, the degree
distribution shows a higher deviation which needs a moreotingh examination. We keep
this as a future avenue to explore.

A general observation from the motif signatures is that hdes [33], it is possible to
be close to real networks ob* motif counts with 2- and 3-grams. To examine deeper,
we computed two aggregate statistitd:Diff — the sum of the absolute differences of the
LNMC values of real and the generated networks, Bh&um— the sum of the LNMC
values of all the connected motifs. Equati@4and6.5show the computations &-Diff
andM-Sumfor a particular LM:

M=Dif f(LM) =) > " |[LNMC(Uf) gear = LNMC (W) 1| (6.4)
k=3 1
M=Sum(LM) =Y "> LNMC(¥¥) .y (6.5)
k=3 1

It is a well-known fact that the existence of a large numbecainected motifs in a
network is an indication of its non-randomne827]. We argue that the larger the sum of
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LNMC values for connected motifs, the more structured theoek is. However, if this
sum exceeds that of the real WCN, it implies that the networleeming more restrictive
than what is natural.

With M-Diff values as low as.590, 1.835, and2.363, the 2-gram and2-term-based
models have almost the same motif signatures as the reabrietv®n the other hand,
going by the abundance of connected motifgram and3-term-based models seem to be
the most restrictivex¥ RealM-Sun). As a supporting evidence, we note that the trigram
model has lower perplexity than the unigram or bigram motihle6.2). We also note that
then-gram models have motif signatures closer to the real nétiham the corresponding
n-terms. Thusrelative word ordering in queries is important.

6.4 User intuition of real queries

One of the important aspects of any NL is the grammaticabobness and coherence of the
sentences, which is typically verified through native spesiijudgments§9,15(0. Native
speakers can also predict the next word in a sentence gieeprévious ¢ — 1) words
with a reasonable degree of accura2§?], which makes them a good point of comparison
againstn-gram models. Therefore, statistical and network moddhaged analyses of
guery syntax would not be complete withoutative speakeevaluation on acceptability of
the generated queries. The challenge, however, is to redéfrconcept of native speakers
in the context of queries, and to design the correspondiegygacceptability task.

If queries are considered as a language, then clearly agyipenkrating a query can
be considered a native speaker of the language. Thus, foexpariments, we deem an
average search-engine user as the native speaker of thelgnguage. However, asking
a user whether a query is acceptable or not seems quite angésss task — any random
sequence of keywords could constitute a query that has bseed by a real user, because
as such there is no consensus on grammatical constraintsesies} To get around this
problem we carefully designed our experiment in the follugwvay:

1. Users were given a triplet having one real query and tweigged queries.
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2. They were asked to identify the real query in this triplet.

3. The remaining two queries were to be rated on a five-poalesc

To make the comparison meaningful, the three queries shadistime words in common.
The selection of query triplets was automated by a prograenptogram conditionally se-
lected triplets from thousands of query sets if the threesehaueries of a triplet had some
words in common. The philosophy behind this evaluationtafyyis that if a generated
query is sufficiently realistic, the user will have to makeadom choice between the gen-
erated and the real query. Moreover, the rating points asdatal the queries in the triplet
will give us information about the relative quality of thederlying generative models. We
did not consider preference judgmemtd][for the models as these are useful if one is only
interested in the relative performance of the models. Heréhe other hand, we would like
to find out the absolute goodness of a model with respect tajtesies. This would not
be captured through preference-based judgments. Moredter selecting the real query,
since the users had sxorethe two remaining queries, the ranking within a triplet can b
easily inferred.

On a related note, Li et al1B4 describe an experiment where artificial queries were
rejected if they were not acceptable to human judges. Howevtheir setup, new queries
were created by string transformation methods from a reatyqusers only had to judge if
the generated queries had the same intent as the corresganijinal ones, and therefore,
their experimental framework is not applicable to our peoil

6.4.1 Experimental setup using crowdsourcing

We use crowdsourcing through Amazon’s Mechanical T§AMT) for our user experi-
ments. Apart from being a cheap and fast method for gathdaingg data 11,45,84], a
Turker (AMT task participant) is expected to be as good asvanege search-engine user
because AMT experiments are done online and often requegmmneally conduct Web
searches. Hence, crowdsourcing is amenable to our expgahsetup. We designed the
Human Intelligence Task or HIT (a unit task in AMT) as follaw3he seven LMs can

4https://www.mturk.com/mturk/welcomé‘ccessed 18 May 2014.
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be combined with real queries to creige) = 21 triplets. However, we do not combine
2-termwith 2-term-GRand3-termwith 3-term-GRas they represent the same query words
reordered, and we expect thgerm-GRand3-term-GRmodels to be generally rated better.
This leaves us withi9 combinations of Real query-Model i-Model}jtriplets. For each

of thesel9 combinations, we randomly select8d triplets such that individual queries
had some words in common — making a totall®fx 35 = 665 triplets containingl, 995
queries to be judged. Word stems were replaced by randordgted surface forms for
user readability. To reduce annotator bias, we tightenedjoigdelines as far as possible,
which are specified below. Some solved examples are showigume®.7.

1. Each question (1, 2, 3, 4, 5) in the datasheet contains ffueries — one is issued by a real human user, and the
other two are generated by an algorithm.

2. The task is to find the query that is most likely to be issued byman user anahark it 5. For examplehow
to play a cd on ny conputer.

3. The remaining queries are to be scored on a scale-ef according to the following convention.

4. Mark 4 if you think that the query is generated by an algorithm, buid@almost be the real query. For example,
queries likeaustral i an currency exchange limt.

5. Mark 3 if you think that the query is generated by an algorithm, amdakes sense, but has incorrect grammar
or spelling. For example, queries likefit to get bl ood transfussion.

6. Mark 2 if you think that the query is generated by an algorithm, apdesents incomplete information needs |or
jumbled units, but could be meaningful if completed or reordeffeor example, queries likenci ent rone
sl aves how di d.

7. Mark 1 if you think that the query is generated by an algorithm, antlspaf the query are coherent, but not as a
whole. For example, queries likkr eati ng pdf a file share tab security.

8. Mark 0 if you think that the query is generated by an algorithm, aigititally nonsensical. For example, queries
likeand anzac to jungle characters 101.

Task details are presented in Taltl8. The HIT consisted of rating all the queries
in five triplets Moreover, a set of five annotations was requested for ea¢hA#ipects
of AMT experiment setups like cost, allowed time for each I task descriptions are
crucial to receiving quick and reliable responses. For esearch, we followed the general
guidelines presented in Alonso and Baeza-Yaid§ [
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Solved Examples

1. map weather moreton island all @0 ©1 ©2 ©3 ©4 ©5
a map victoria australia home kit D0 @1 ©2 ©3 ©4 ©5
map of east timor and surroundingislands ©0 ©1 ©2 ©3 ©O4 @5

2. funrelay races for kids ®0 ®1 ©®2 ®3 ®4 @5
for kids fun easter gifts buy where to ©0 ©®1®2 ©3 ©4 ©5
musical relay races for kids 70 ®1 ®2 ®3 @4 ©5

3. white fish and potatoes recipes ©0 ©1 ©2 ©3 ©4 @5
fish potato big computer child @0 ®1 ®2 ©3 ©®4 ©5
a recipes for cook white fish ®0 ®1®2 ®3 ®4 ©5

Figure 6.7: Solved examples for annotation task posted on AMT.

6.4.2 Results and observations

The triplets for which the annotation results obtained fr&MT were inconsistent in any
way (missing rating, and none or multiplepoint ratings within a triplet) were rejected.
These rejected triplets account for the differences batwleefirst and the second columns
in Table6.9. Table6.9 reports the average rating assigned to a query within atrip}
the five annotators, averaged over all queries from a modpb(ted under the “Average
Rating” column). “#Triplets” count the number of tripletsatrhas the presence of a query
from the corresponding LM. The “Real Percentage” columrs lise percentage of times
a query generated by a model was marked as “Real’. Real queeeketected correctly
a large number of times{ 60%). It is notable that among generated queries, those from
the 3-gram model were judged as “real” the greatest number ofstiamel have the highest
average rating 03.276. Even thoug-term models are poorer than correspondingram
models on being judged as real, their average ratings argimadly better thar2-grams.
Greedy reordering (GR) is observerd to have a markedly pesffect on all the metrics.

In Table6.1Q results are reported in a tournament-like fashion. Ondeaf LMs in
rows and columns is such that light and dark cells creater¢xppately) upper and lower
traingular matrices. The values are computed from all tipdets that had queries from
both models andj. Cell[i][ j] contains the fraction of times modehas won over model
j. A dark cell indicates that the row lost significantly to th@wmnn (cell value< 0.4).
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Table 6.8: AMT experiment detalils.

Parameter Details

Task description Identify a real query hidden among modslegated
ones. Then give grades to the remaining queries.

Task keywords Web search queries, Real and generated queries
Rating queries

No. of tripletsin 1 HIT 5

Total no. of triplets 665

Annotations per triplet 5

Alloted assignment time 20 minutes

Actual assignment time 1 minute24 seconds

Turker qualification Approval rate- 50 tasks
Turker location Any
Reward per HIT 8.05

Total completion time 7 days

A light cell indicates that the row and the column faired mordess equally well (cell
value betweer.4 and0.6). An unshaded cell indicates that the row won over the column
significantly (cell value> 0.6). In this representation, the relative performance of the
models becomes evident from the row (left to right, bettewtwse) or column orderings
(top to bottom, better to worse). Not considering real cqggewhich are identified correctly
at leastt5% of the times against the next best model, all the models haeast one grey
cellin their rows (or columns). This indicates that everudfiothe trigram model competes
the best against real queries, it is not the best by a very igim It is closely followed

by the2-term-GR model. The models in the middle zone are also quoitgarable in their
performance levels.

Inter-annotator agreement (IAA). In AMT, since a single Turker need not complete
all annotations of the entire dataset, conventional idéBsfare not applicable. However,
the average standard deviation for ratings from five anacgdbr a particular query is
found to bel.032. Given that the overall rating was to be done oé+aoint scale ( — 4
and “Real” ratings), an average deviation of one point is widtceptable limits for IAA.
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Table 6.9: A summary of absolute ratings obtained through AMT.

Model #Total #Consistent Judged “Real” Average
Triplets Triplets “Real” Percentage Rating

Real 665 630 380 60.317 4.046
1-gram 210 197 19 9.645 2.406
2-gram 210 204 41 20.098 2.833
3-gram 210 210 59 28.095 3.276
2-term 175 166 30 18.072 2.880
3-term 175 160 25 15.625 2.875

2-term-GR 175 158 35 22.152 3.076
3-term-GR 175 172 38 22.093 3.163

The two highest values in the last two columns are markdmldface

6.4.3 Interpretation

These results provide us with the following interestingghss: (a) If any string was equally
acceptable, real queries would get a “Real” rating osily3% of the time by random
chance. The fact that real queries get the “Real” rating abot of the time implies
that users already have a notion of queries beuaj-formed i.e., theacceptabilityof
gueries; (b) Trigram generated queries can confuse theabseit28% of the time. In con-
trast, for NL, speakers can easily identify trigram geretagentences, which are locally
readable, but semantically incohere®8|[ This shows that trigrams capture a lot more in-
formation than bigrams and probably overfit the data2{erm and3-term queries getting
lower “Real” percentage scores thziagram and3-gram queries implies that word ordering
provides vital clues to the users. To further confirm thisdtipsis, we note that for the
reordered models (GR), the mean rating jumped f20880 to 3.076 (2-terms) and2.875

to 3.163 (3-terms) from the correspondinggram models; (d) Bigrams received a higher
“Real” percentage value but a lower average rating tharzdeem and the3-term models
(and also the corresponding GR models). This is becausarbgygenerate very realistic
gueries at times, especially when the query length is stmatlineaningless ones on other
occasions. This is supported by the observation that tinelatd deviation of the ratings for
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Table 6.10: A summary of relative ratings obtained through AMT.

Model Real 3-gram 2-term-GR 2-term 3-term 3-term-GR 2-gram Xgram

Real X 0.655 0.730 0.741  0.752 0.702 0.708 0.832
3-gram X 0.520 0.559  0.613 0.514 0.548 0.862
2-term-GR 0.480 X X 0.560 0.606 0.688 0.455

2-term 0.441 X X 0500  0.520 0519  0.762
3-term 0387 0.440 0.500 X X 0.533  0.704
3-term-GR 0486 08941 0480 X X 0.444  0.846
2-gram 0.452 0.482 0467  0.556 X 0423

bigrams is1.476, while it is lower for2-terms and3-terms (.334 and1.302 respectively);
and, (e)2-term and3-term getting almost exactly similar average ratings fertampha-
sizes the importance of word orderirgyterms are expected to generate semantically more
coherent queries, but an obvious lack of ordering hindess #tceptability to Web users.

6.5 Discussion

We now discuss some of the inferences that we draw from tlearels presented so far in
this chapter.

Motif analysis is insightful. Biemann et al. 33] observe thabox motifs in NL (Fig-

ure 6.3 often occur due teynonymywhere the pair of diagonally opposite nodes, which
are disconnected, are typically synonyms of each other imadbsense. This is because
synonyms will rarely co-occur in the same query, thus legdman absence of connect-
ing edges in the WCN. We observe thaix motifs in query logs typically occur with
two similar entities (e.g.ti t ani ¢ andspi der man, both movies) forming a pair of
disconnected nodes and two attributes (erg3 andcast ) forming the other pair of dis-
connected nodes. The other common reason for box motifeisrgpmistakes or spelling
variations (likepi t ui t ary andpi t uti ary) at two opposite ends, and related words
like hor nrone andt unor forming the other two opposite ends of the box motif. We also
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observestar motifs in query logs for a content unit (e.¢ji, t ani c) in the centre and three
intent units (e.g.cast , np3 andr evi ew) connected to it. Thus, motifs occur due to syn-
tactic and distributional constraints in the linguistic®m, and hence, they are relatively
harder to capture through a generative model.

Trigrams overfit the data. User experiments show that trigram models generate quite
realistic queries and have surprisingly low perplexity.isTis not surprising because the
average length of a query being only four, a large number efiga will be generated
with only one or two trigrams. This will effectively geneeabnly queries that have been
frequently seen in the training query log.

There is scope for better generative modelsSince trigram models overfit and bi-
gram models fall short of generating good individual qugrrealistic queries can only be
generated using more sophisticated models that can cabeirgtructural constraints of
gueries both at syntactic and semantic levels. Since moéfyais indicates the impor-
tance of content-intent relationships in queries, we kelihat a better quantification of
the distribution of these relationships can lead to impdayenerative models for queries.

Relative word ordering is important. Researchers in the past have criticized the
bag-of-words model for querie®$, 174, 245. Our analysis strengthens earlier findings
by showing the importance of word ordering constraints ierggs, as the bag-of-words
model-based query generation (using thierm model) is shown to be inadequate in both
network and user experiments.

There is a cognitive model for queriesFinally, itis interesting to note that users, or as
we can say, the native speakers of the language of querees)daed able to differentiate
real queries from artificially generated ones. This shows éim average user has already
internalized a cognitive model for queries. Further prglmhthis cognitive model through
psycholinguistic experiments would be an interesting @gerthat can provide interesting
insights into not only how query syntax is organized but dew a new language might
evolve and automatically acquire a syntax of its own.

Finally, we do not know of prior work that takes a holistic apgch towards the analysis
of the syntactic complexity of Web queries from the first pijophes. Previous works related
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to statistical and network analysis of queries have beeorteg in the respective sections.
Nevertheless, there are two lines of research pertainitigeteyntactic analysis of queries.

Linguistic analysis of queries. First, linguistic analysis and annotation of queries at
the level of segmentation or chunking2 and parts-of-speech taggingZ, 25, 26, 72]
have been important directions of research since the 2als [107]. While these studies
reveal interesting syntactic properties and trends, ssichae tharr0% of the query terms
are nouns?2] and NL question queries are on riséf], they are based on the fundamental
assumption that queries issued in a certain language, sgisEnwill borrow grammatical
artefacts of that language (i.e., nouns, verbs, noun ardpleases, etc.). This assumption
is biased because a noun in English is called a noun becduleuits a particular syntactic
distribution; it is quite unlikely that the same word willlieve as a noun in a query either
from the point of statistical distribution or its cognitiirgerpretation by the users. Thus, if
gueries are to be understood linguistically, they shouldriyzed from the first principles
rather than superimposing the grammatical syntax of NLstheceby masking their true
syntactic properties. Such linguistic analysis can sélluseful for practical applications,
but they cannot tell us much about the true syntax of Web begueries.

Entities and intents. The second line of research, which we believe is more progjsi
is the analysis of queries in terms of user intents. Suchesuthve looked into queries
from various perspectives and have come up with variouseqecsuch as entities and
attributes 9,102 155,160, 184], kernel-objects and modifier236 and query facets7s,
154, to factor the parts of a query and place it within a taxonahgemantic or syntactic
patterns. While it is not possible to review all these stutier®, a closer look at the actual
network motifs of the WCN for real queries reveal interestiyigesgy between the concept
of intent wordq 138,232 (also called modifiers or attributes) andntent wordgor entities
or kernel-objects) which is worth mentioning here.

6.6 Synthetic Web search queries

Web search query logs can be used for developing a large mahipgportant applications,
like query recommendatiod @], entity extraction 102 and query segmentation (proposed
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research). There has been a good amount of research on ggeanalysis in the last
decade. However, almost all of academia is deprived of tkiiemely potent resource.
This is because commercial Web search engines (e.g., Bimgl&and Yahoo!) restrict
public access to these logs to protect the privacy of m#liohusers. In fact, there were
serious legal issues when AOL released massive amountsof tng data, back i2006°.

In the last five years71% of all papers published on Web search query analysis in the
top-tier IR conferences W SDM, WWW, SIGIR, CIKM andECIR had at least one
author from the search industry. Fi§.8 shows a break-up across years 2007 to 2011.
The papers which did not have any author from the industheeiised TREC data, AOL
guery logs (still available on the Internet, unofficiall{fe Microsoft 2006 RFP dataset, or
proposed theoretic models that did not need not a real logMa@uation. However, TREC
Web Track ad hoc task querfesopics) are typically arounsh in number, and is not meant
for querylog analysis. Use of the AOL queries is no longer legally pereditind access to
Microsoft's RFP datasétwas granted only to participants of the WSDM 2009 workshop
on Web Search and Click Data (WSCD '09) and is thus not publiciyjiable.

40

T T
[ One author from industry
[ No author from industry

304

204

No. of publications

2007 2008 2009 2010 2011
Year

Figure 6.8: Industry authors in papers on query log analysis.

Creation of large synthetic query logs is one of the best ptessvays to solve this
data scarcity problem, because synthetic logs can be jpubhared without any breach of
privacy. However, the main challenge involving synthetiery logs is not the generation,
but rather the evaluation of the quality of the generatedigaeThe simplest method may
be to get it checked and cleaned by human annotators. Howeggpractically infeasible

Shttp://en.wikipedia.org/wiki/AOLsearchdataleak
Shttp://goo.gl/901sD
"http://goo.gl/5b7sQ
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to get a query log consisting of millions of queries checkeahuoally. In fact, there is an
even more subtle and basic problem with this approach. Giverdiverse information
needs and idiosyncrasies in query formulations of Web useis extremely hard for a
single or a handful of humans to say whether any given seguehwords is likely to
be a real Web query. An alternative automatic approach tluatran of synthetic query
logs could be to look at the number of search results retulbyeal query, presuming that
more “real” queries will return more search results. Howgttealso turns out to be a
bad indicator; bizarre queries likgor | d cup football |anmbda cal cul us can
return similar or even many more search results than pérfeatid ones likesumrer

i nternship npi 2015 (the former hag0.5M hits and the latter arountB.4 )/ hits
on Bing US, 09 November 2014).

Furthermore, beyond ensuring that individual queries @adistic, a synthetic log also
needs to faithfully replicate the aggregate propertieshefreal log. Real logs always
possess holistic properties which are typical of the infation needs of the people of
the time and geographical region from which the queries sseed. Hence, automatic
evaluation of large synthetic query logs is an importantdifictult problem that has hardly
received any attention till date. Even though there have belated attempts at question
generation in natural languag@9 150, as far as we know, there has only been one major
contribution in the area of synthetic Web queries — the mebgaresented by Li et al1B4].
Their synthetic query I¢ (namedQRU-1) contains2, 030 queries that were generated
by applying a string transformation method &0 base queries. The base queries were
sampled from the query set used for the TREQ9 and2010 Web Tracks. As a guarantee
of goodness, they report thad% of these queries were actually found in a separate log
from Bing. Even though the quality of the generated querieg\wgeod, this is too small a
log to be useful for practical applications like attributeraction [L59.

Through the concepts presented in this chapter, we areabiake the first attempt to-
wards complete automatic evaluation of synthetic querg legjng concepts fromomplex
network theory and independently verify our evaluation scheme throughvdsourced
manual labeling (intrinsic evaluation). In light of the pemt state-of-the-art in artificial
guery log evaluation and generation, the contributionsisfwork are: (a) formulating the

8http://goo.gl/iv301S


http://goo.gl/v301S

184 Chapter 6 Understanding Syntactic Complexity of Web Seardatri@si

problem of evaluation of synthetic query logs and proposifigamework for the same; (b)
application of complex network theory to modeling and ustirding the structure of real
and synthetic query logs; and (c) proposing a novel crowatsog-based approach to man-
ual evaluation of synthetic queries. However, as discussedr results, since the various
network statistics predict slightly different orderingstbe synthetic models in terms of
their closeness to the real network, it is far from obviouschlof these statistics are better
predictors of the quality and how they can be combined. Magedhe similarity values
for the network statistics as well as the AMT and segmentagsults have very different
scales, and therefore, cannot be directly compared or caadbMoreover, generating syn-
thetic queries is practical only when we have certain appba(s) in mind, and different
applications may impose very different requirements astrictgions on the properties of
the synthetic logs.

We believe that there are several other such interestingtigns that can be investigated
and new generative models can be developed by systemabgdiinizing the match of the
network statistics to that of the real WCNs. We believe thatvaonk on synthetic queries
can act as an ideal foundation for a potent area of reseaiglreiry analysis.

6.7 Conclusions

In this chapter, we have tried to understand the syntactigodexity of Web search queries,
a distinct mode of interaction between man and man-madersgst We have adopted
a three-pronged approach: applying statistical languagéets (usingn-grams andn-
terms), asking native speakers (Web search users) and cminglex network modeling
(with WCNSs). Our results underline the necessity of using iplelindependent perspec-
tives. Having entropy or perplexity similar to or lower thiih need not, by itself, be
indicative of an underlying language syste?i()]. Network analysis shows bigrams to be
within striking distance of replicating real log syntax at@pus-level. However, when na-
tive speakers are consulted, individual queries genetatédgrams are found to be much
more acceptable than those by bigrams. Only a combined agipie successful in bring-
ing out the complete picture ef-gram-based statistics being inadequate, and the need for
a language model that imbibes syntactic constraints speaoifiVeb search queries. More
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interestingly, in both network and user experiments, a comtyiehavior emerges: the re-
sults are distinct both from scenarios that assume quegieg lbandom word sequences or
following the syntactic constraints of the parent natuaaguage.






Chapter 7

Conclusions and Future Work

In this final chapter, we summarize the main contributionthefthesis (Sectioi.1) and
take a stock of our achievements visris the objectives set up in the introductory chapter.
Finally, we wrap up by pointing out some of the possible fatdirections of research that
have been opened up by this thesis (SecTi@h

7.1 Summary of the contributions

In this thesis, we have made the following contributionsw@ have developed and evalu-
ated an unsupervised flat query segmentation algorithnuiest query logs and Wikipedia
titles; (ii) we have developed and evaluated an unsupehissted query segmentation
algorithm that uses only query logs; (iii) we have developedunsupervised technique
for labeling content and intent units in queries; and (iv) lveee a proposed a framework
for the quantification of the syntactic complexity of seaqeleries. Thus we find that the
objectives that we had set out in the Introduction (Seclidhhave been largely achieved.
We recapitulate the contributions in the rest of this sectio

Development and evaluation of unsupervised flat query segméation algorithm

In this work, we have developed a query segmentation alguorihat uses only query logs,

187
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which has been subsequently enhanced with Wikipedia.tiVgs have proposed an IR-
based framework to evaluate our algorithm and to compapeit®rmance with the state-
of-the-art. We have also presented an idea for using PO&rpsatih query logs for enrich-
ing query segmentation. The contributions of this studylmasummarized as follows:

1. Earlier measures of word association generally rely omesform of unigram statis-
tics, which can often be misleading. We have proposed a moeéhod for scoring word
associations based only on the queries that contain all tinésrof the candidate multiword
expression, and assign the significance score by compasawgrences in theorrectorder
vis-a-visanyorder.

2. While traditional query segmentation algorithms havelussources like Web page
content, search result snippets and clickthrough infaonabur algorithm relies primarily
on query logs, thus discovering syntactic structure untquepieries. Wikipedia titles have
been used only to detect evidence of rare named entities.

3. Past approaches to query segmentation have been edafg@tiast manual annota-
tions, which is based on the flawed assumption that humarmkine “correct” segmen-
tation for a query. We have challenged this assumption omgitbends that the end-user
of query segmentation is the search engine. In this regagdave developed the first IR-
based evaluation framework for query segmentation that asby the standard resources
required for any IR-system evaluation — test queries, a deotipool and corresponding
human relevance judgments. The proposed algorithm hasdbesyn to outperform the
state-of-the-art in the IR evaluation setup.

4. We have shown promising initial results with an idea fdnamcing query segmen-
tation using POS patterns. Segments vital from an IR petispanay have low statistical
evidence and hence may be missed by traditional algorithmsgithe lexicon building
phase. Our novel idea learns POS sequences from frequethpatierns and uses them to
pull segments with such patterns into the lexicon, eveney tiiave low occurrence proba-
bilities in the log. Such a method has been shown to improyeeiormance. Interestingly,
it bridges the conceptual gap between the analogous pexe$sjuery segmentation and
NL chunking.
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Development and evaluation of unsupervised nested query g@mentation algorithm

We have emphasized the importance of using nested or higratquery segmentation,

which provides a richer syntactic representation of a quéfg have developed an unsu-
pervised algorithm using only query logs for inferring thessted representation of a query.
We have shown how such a representation can be vital in rgmddouments in response
to slightly longer queries. The contributions of this stwdyn be summarized as follows:

1. We have proposed an unsupervised algorithm for nestey gagmentation that
uses only query logs. Our algorithm uses simple low-ordgram statistics to arrive at the
complete hierarchical partitioning.

2. We have proposed the first deterministic approach todeeenested query segmen-
tation for improving document ranking. To this end, we hakieven how the distances
in the nested segmentation tree for a query can be used taahpendocument distances
for matched query terms, and to subsequently improve tHenmgproduced by issuing an
unsegmented query to the search engine.

Proposal of framework for unsupervised role induction for query segments

In this study, we have proposed that all query segments cdmdaelly classified as con-
tent or intent, where content units act as topics for quewiaite intent units are markers
of explicit user intent. Content and intent units can be éffety labeled within queries
using corpus distributional properties of each class. Tmributions of this study can be
summarized as follows:

1. An unsupervised framework for labeling content and intemts in the context of
individual queries has been shown to achieve reasonal#éslef/precision and recall. As
with other parts of this thesis, the algorithm uses only glegs to perform the labeling.
The novelty of the simple labeling algorithm can be attrdalito the use of co-occurrence
entropy, which is the entropy of the co-occurrence distrdmuassociated with each unit.
Co-occurrence statistics are shown to be effective disngtors of content and intent units
in queries, as well as of content and function words in NL.

2. We have proposed a new formulation for modeling overlapsicked URL sets.
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Using this formulation, we have shown how to evaluate cdntaent labeling without
relying on expensive manual annotations. The two evalnaimategies are shown to pro-
duce highly similar results, emphasizing the feasibilityising click data as an alternative
resource of labeling evaluation.

3. We have shown how content-intent labeling can be usedpraving IR perfor-
mance through simple experiments based on matching qugnyesgs in documents. Pre-
vious works that try to tag units along these lines do not ®a means of applying such
labeling to improve IR. Our experiments are based on our tipe& definitions that con-
tent segments have to be matched exactly for documents telédeant, and intent units
need not be present in the document text. While such expetsndershow direct IR ben-
efits of our labeling, we believe that knowledge of intenttsigian be leveraged in much
more intelligent ways to improve result quality than simpdyaxing the exact matching
constraint.

4. We have provided a principled taxonomy of intent unitssdahon the likely rela-
tionships between content and intent units. We have prapthed intent units in queries
broadly serve to restrict or rank result pages containingera units. We believe that the
proposed taxonomy can have important use cases in semeatths

5. Finally, the concept of content and intent units, as psegdy us, are not restricted
to specific domains or categories of queries, and providesvararching framework for
consolidating several allied lines of research in this area

Proposal of framewaork for measuring the syntactic complexy of search queries

In this study, we have proposed a holistic framework for meag the syntactic complexity
of search queries. We have used word co-occurrence net@octkeuman judgments col-
lected through crowdsourcing as independent evaluatithe @uality of model-generated
guery logs, and have shown that queries are more complexttieacommonly assumed
bag-of-words model, but is beyond what simplkgrams can capture. The contributions of
this study can be summarized as follows:

1. While it may seem to be a common perception that queriesravdry in complex-
ity, a precise quantification of this complexity had beerkiag. Our framework provides
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a way to objectively measure the syntactic complexity of arg@enerative model, and to
meaningfully compare such complexities of real and aréfiguery logs.

2. Our framework is holistic in the sense that it provideshbofcroscopic and micro-
scopic perspectives on the quality of generated query I&g=cifically, while advanced
properties of word co-occurrence networks like motif sign@s represent corpus-level ag-
gregates, judgments of average Web users on individualegu@present “native speaker’-
intuition for the query language.

3. Our cleverly designed experiment using query tripletsagsessing the goodness
of a generative model as perceived by humans, bypassestticaltyi of directly asking
a user whether a generated sequence of words is a meaninogiyl (As our final results
show, average Web users are able to identify the real quddehiamong two generated
ones about0% of the time, implying that searchers do have a cognitive rhofi¢he
acceptability of a query.

Datasets developed as part of this research

The following datasets have been developed as part of tlsepreesearch and made pub-
licly available:

1. Our dataset for evaluating flat query segmentation caapmf500 Bing Australia
gueries (relatively rarer queries with query frequencyMaenn five and fifteen in the orig-
inal Bing Australia log of May 2010), a list of numbered Web URk#h text content,
relevance judgment setgréls) for each query, query segmentations according to four al-
gorithms and three human annotators, and the best quotey geisions (as explored
through brute force). This dataset is availablentip://cse.iitkgp.ac.in/resgrp/cnerg/qa/
guerysegmentation.html

2. Our dataset for evaluating nested query segmentatidades the query sets of
SGCL12 and TREC-WT (Chaptd), and thel6 nested segmentation variants for each of
these two query sets. The code and executables for gerngtiatise nested segmentations,
as well as evaluating them in our IR-based setup, are alsqg Ishiared. This dataset is
available ahttp://cse.iitkgp.ac.in/resgrp/cnerg/qa/nestedsegatien.htm]


http://cse.iitkgp.ac.in/resgrp/cnerg/qa/querysegmentation.html
http://cse.iitkgp.ac.in/resgrp/cnerg/qa/querysegmentation.html
http://cse.iitkgp.ac.in/resgrp/cnerg/qa/nestedsegmentation.html

192 Chapter 7 Conclusions and Future Work

7.2 Directions of future work

In this final section, we discuss few of the many possiblecdtibaes of future work that
have been opened up by this thesis.

1. In Chapter3, a hypothetical oracle has been shown to be quite useful. But w
realize that it will be a much bigger contribution to the coomty if we could implement
a context-aware oracle that can actually tell the searcinenghich quoted version of
a segmented query should be chosen at runtime. Also, thestvagtgy for combining
word association scores with POS pattern counts needsefugitploration. It seems that
PTB or UTS tagsets are complementary to the Bie-S tagset,tamduild therefore be
useful to develop techniques that combine these two appesaand exploit the benefits of
both. It would be also interesting to study which kind of gesibenefit maximally from
POS-enhanced segmentation and whether they can be awtalyatientified. We believe
that there is a huge potential for unsupervised POS induatiguery understanding and
representation that has not yet been leveraged.

3. In Chapte#, it could be useful from an IR perspective to assign weightetm pairs
before their tree or query distance is considered. Themgesatgorithm and the allied re-
ranking strategy can be improved through more sophisticd&ta-driven approaches and
NLP techniques. In fact, nested query segmentation candweed as the first step towards
guery parsing, and can lead to a generalized query gramnmabelléve that our findings
can make a major impact on query understanding if effort [gr@mriately channelized
along these avenues.

4. In Chapters, a more principled way of combining our different features ¢om-
puting the intent-ness score is an important issue to beesadédd. But more generally, the
research in this chapter opens up the following broad a@asifure work: (a) Seamless
integration of intelligent techniques into search systénas allow for special treatment
of intent units to serve better pages; and (b) Developmeautdmatic classifiers for as-
signing detected intent units to their respective categoriLike all aspects of semantic
search, problems of vagueness and evaluation pose stilcheas in these directions. Our
research attempts to be a stepping stone in pinning downdfiichulties to focused areas
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and making them addressable by concerted efforts from tmenzoity.

5. In Chaptes6, the crowdsourcing experiments throw up several open mumssthat
can be verified with more detailed study. For example, it \Wdag interesting to know
whether searchers can identify cases when there are mnsuigial queries in the triplets, or
when there are none. But more generally, through this relsgarchighlight the scope for
a more realistic query generation model that imbibes mdgnmation than mere-gram
probabilities. One of the ways to approach an improved muaaeild be to incorporate
constraints based on content and intent units into the gémeiprocess.

7.3 Final words

Existence of both shallow and deep syntactic constraindgtexted through flat and nested
guery segmentation, presence of broad syntactic categafrieontent and intent, and evi-
dence of syntactic complexity beyond simplgrams — all provide support in favor of our
original hypothesis of queries evolving into a languageheirtown. However, we do not
claim that this research is complete by itself. Rather, iniy the first step towards a more
holistic goal — when queries, communicating informatioed® of millions of users, can
be established to be an independent language system froine atiree aspects — structure,
function and dynamics. Our research paves the way for amsgvarbigger question: are
gueries evolving to resemble their parent natural langoagkverging away from it?

At the time of writing this thesis, the landscape of searalmidergoing a great shift in
paradigm. The traditional presentation style of the “tarebinks” as results is increasingly
being enriched with direct answers, structured knowle@égeasentations on entities, and
specialized integrations of non-textual content types likaps, images and videos. The
process of harnessing the wealth of relevant content omalsoedia has just begun. While
newer and more complex information needs are being creaty enoment, increased
use of the query auto-completion feature potentially tidedecrease the number of distinct
gueries. All these factors will influence the dynamics of V¥elrch queries, and will play
a big role in shaping their future.
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