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ABSTRACT

The co-evolution of the Web and commercial search engines, and the inability of

such search engines to process natural language (NL) questions, have resulted in

search queries being formulated in a syntax which is more complex than a bag-of-

words model, but more flexibly structured than sentences conforming to NL gram-

mar. In this thesis, we take the first steps to understand thisunique syntactic struc-

ture of Web search queries in an unsupervised framework, andapply the acquired

knowledge to make important contributions to Information Retrieval (IR). First, we

develop a query segmentation algorithm that uses query logsto discover syntac-

tic units in queries. We find that our algorithm detects several syntactic constructs

that differ from NL phrases. We proceed to augment our methodwith Wikipedia

titles for identifying long named entities. Next, we develop an IR-based evalua-

tion framework for query segmentation which is superior to previously employed

evaluation schemes against human annotations. Here, we show that substantial IR

improvements are possible due to query segmentation. We then develop an algo-

rithm that uses only query logs to generate a nested (or hierarchical) query segmen-

tation, where segments can be embedded inside bigger segments. Importantly, we

also devise a technique for directly applying nested segmentation to improve doc-

ument ranking. Subsequently, we use segment co-occurrencestatistics computed

from query logs to find that query segments broadly fall into two classes – content

and intent. While content units must match exactly in the documents, intent units

can be used in more intelligent ways to improve the quality ofsearch results. More

generally, the relationship between content and intent segments within the query is

vital to query understanding. Finally, we generate large volumes of artificial query



xiv

logs constrained byn-gram model probabilities estimated from real query logs. We

perform corpus-level and query-level comparisons of model-generated logs with

the real query log based on complex network statistics and (crowdsourced) user

intuition of real query syntax, respectively. The two approaches together provide

us with a holistic view of the syntactic complexity of Web search queries which is

more complex than whatn-grams can capture, but yet more predictable than NL.

Keywords: Query understanding, Query syntax, Query segmentation, Query in-

tent, Query complexity
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Chapter 1

Introduction

A Web search engine is popularly perceived as aWindow to the Web– millions of users

around the world interact everyday with search engines to satisfy diverse information needs.

Web users communicate their information need to a search engine throughqueries. Over

the years, as the Web has grown larger with more and more detailed information now avail-

able online, requirements of users have also become more complex. These two processes

are highly intertwined, and the co-evolution of the Web and search engines has resulted

in user queries being formulated in a unique linguistic style, markedly distinct from the

parent natural language (NL) in which the Web documents are composed. The fact that

search engines do not really “understand” or “process” NLs drives average Web users to

specify their queries in a language that has a syntax far simpler than NL, but perhaps more

complex than the commonly assumed bag-of-words model.

1.1 Motivation

Despite substantial progress in the field of information retrieval (IR) in the last thirty years,

commercial search engines like Bing and Google still rely heavily on the degree of query

term match to assess the relevance of documents. In other words, a document that con-

tains a higher number of query words is likely to be more relevant to the query. This idea

1
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Figure 1.1: Long queries pose a challenge to commercial Web search engines.

follows from thebag-of-words model, where both the query and the document are treated

as unordered sets of constituent terms. In practice, this principle is used only to select the

candidate set of relevant documents, and the final ranked list of results is produced by using

more sophisticated algorithms like PageRank [39] (to assess the importance of the website

hosting the document) or by leveraging additional user information like clicks, page dwell

times and reformulations [109]. This approach generally works quite well for short queries

(say, up to about three words) and frequent queries (also referred to ashead queries) for

which the search engine quickly learns about the preferred pages from user behavior. How-

ever, quality of search results degrade noticeably when thequeries are relatively infrequent

(also calledtail queries) and slightly longer (say, four to ten words). We note that query

terms being rare, by itself, is not a sufficient criterion to pose difficulty for a search engine,

as it is quite possible that the pages containing these termsare also quite rare and hence

leave no scope for confusion. But when the queries are long, itis possible that some of the
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words of the query are frequent and also reside on popular websites, which subsequently re-

sults in upward shifting of non-relevant pages in the final ranked list. The lack of sufficient

user information caused by the rarity (of the query as a whole) therefore makes matters

difficult for the search engine. Obtaining the ideal rankingis crucial to user satisfaction be-

cause it is known that the searcher usually examines only thetop few results properly, and

only glances over the lower results, a phenomenon usually known as theposition bias[54].

We present our case with a representative example in Figure1.1. The figure shows re-

sults obtained through the Bing search engine for the queryms office guide book

buy online (issued on 28 February 2014). We note that two types of results are usu-

ally presented in response to a user query:organic(or natural) results, andpaid results (or

advertisements). While the former are retrieved from the World Wide Web by the search

engine’s usual algorithm, sponsors pay search engines to get their advertisement pages dis-

played when certain keywords appear in the query. In this research, we are concerned only

about organic search results. Coming back to our example, we observe that theuser intent

behind the query is to buy a reference book for using Microsoft Office, online. However,

results at ranks one, three and six all intend to sell the Microsoft Office software instead,

and hence are clearly non-relevant to the user. This is caused by the fact that the non-

relevant pages also contain most of the query words likemicrosoft, office, buy and

online, and these pages come from a trusted website likeoffice.microsoft.com.

Such challenges can be addressed if one tries to look deeper into the query, and iden-

tifies structural relationships that were previously overlooked due to the oversimplification

of the bag-of-words model. By the identification of “structural relationships”, we refer to

processes that involve locating sets of words that are mutually related. Also, it is important

to understand dependencies between these sets of words withrespect to the original user

intent. Revisiting our example, it is intuitive that the above problems could be minimized

if one knew that themicrosoft office guide book was the actual object of inter-

est, and notmicrosoft office itself. Also, inside the unit,microsoft office

andguide book are expressions whose words could not be permuted freely in the docu-

ment. Next, the guide book is thetopicof the query and the wordsbuy online are added

by the user to formulate his/her intent more specifically. For example, the user would not

be interested toread the book online. So, knowing the topic of the query along withthe

user intent, the search engine could understand that only matching the wordsmicrosoft,

office.microsoft.com
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office, buy andonline, without the wordguide or book (or its synonyms), would

not be meaningful. Further, words likebuy andonline need not even match in the doc-

ument – for example, the catalogue page of a relevant book in an e-commerce store would

be a very relevant result.

The fundamental goal of this research is to carefully scrutinize the proposition stated

above throughsyntactic analysis of queries, and to leverage our findings to improve IR.

Wherever applicable, we will focus onunsupervisedtechniques that are generally appli-

cable to queries from all domains. Supervised techniques inWeb query analysis typically

face the non-trivial challenge of building a good human-labeled training corpus that has

appropriate coverage from several query domains [168]. A complete linguistic study en-

compasses the dimensions ofstructure, functionanddynamics[8, 51]. Structure, in turn,

deals with aspects of syntax (study of principles by which sentences are constructed) and

semantics (study of meanings associated with sentences) [47, 49]. We have observed in-

teresting conceptual similarities and differences between search queries and NLs on all the

three perspectives, which we shall discuss in this chapter.But in this thesis, we prefer to in-

vestigate deep into a single aspect, and focus on query syntax. Thus, we aim to understand

syntactic relationships between individual words and groups of words within queries1. But

before we proceed, it is necessary to describe our query log data.

1.2 The Bing query log data

For all our experiments, we use a query log sampled from Bing Australia2 in May 2010.

This raw data slice consists of16.7M (M = Million) queries. Each query is accompanied

by a clicked URL, a unique hash of the URL, and the click count (number of times the

URL was clicked by users for the query). A random snapshot of the data showing distinct

queries is presented in Figure1.2. We subsequently extracted11.9M queries from the raw

data such that the queries were composed of ASCII characters only and were of length

between two and ten words. The justification for imposing a filter based on query length

is as follows. One word queries do not show evidence of syntax, and very long queries

1By queries, search queries, Web search queriesandWeb queries, we will refer to the same concept.
2http://www.bing.com/?cc=au, Accessed 19 May 2014.

http://www.bing.com/?cc=au
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Figure 1.2: A snapshot of our Bing query log.

2 3 4 5 6 7 8 9 10
0

1000000

2000000

3000000

4000000

N
um

be
r o

f q
ue

rie
s

Number of query words

 Number of queries (all)
 Number of queries (distinct)

2 4 6 8 10

1E+05

1E+06

N
um

be
r o

f q
ue

rie
s 

(lo
g

10
 s

ca
le

)

Number of query words

 Number of queries (all)
 Number of queries (distinct)

(a) Linear scales (b) Log-linear scales

Figure 1.3: Query length distributions on our query log.

(having more than ten words) are typically machine generated messages or excerpts from

NL text, and need separate query processing techniques. There are4.7M unique queries

among the extracted11.9M queries – but in order to preserve the log properties arisingout

of the natural power law frequency distribution of queries [170], duplicates were retained

for all experiments. The length distribution (defined in terms of number of words per query)

for our extracted set of11.9M queries is shown in Figure1.3. The mean query lengths for

this set are3.58 words (all queries) and3.77 words (distinct queries).
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Figure 1.4: Analogy of queries using a search engine as a medium.

1.3 Functional aspects of Web search queries

We will now present a comparison between queries and NLs fromstructural, functional

and dynamical perspectives. We present a synthesis of the salient ideas emerging from

these three orthogonal perspectives on queries that point to the strong parallels between

Web search queries and a rudimentary language system, oftentermed asprotolanguage. At

the very outset we want to note that there is a fundamental difference between the function

of human language and that of queries: while human language is used for communication

between two human beings (presumably) having very similar cognitive capabilities, queries

are used as the means of communication between a human user and a search engine, which

are incomparable not only in terms of their cognitive capabilities, but also in their biological

and cultural history of language use. This asymmetry between the communicating agents in

the context of queries can raise serious doubts about our basic proposition of queries being
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a distinct language. However, we believe that there is an alternative and perhaps a more

realistic interpretation of this communicative behavior,which is to assume that ultimately

queries are actions of the users on a shared environment represented by the search engine.

While the users might believe that they are communicating their information need to the

search engine through their queries which responds with answers (which of course is true),

the search engine’s response is dependent completely on theactions and responses of other

users in the past (Figure1.4). This is especially true for modern commercial search engines

which extensively rely on user queries, URL clicks and explicit feedbacks on relevance of

documents for learning and improvement of the search models. Thus, we can visualize

this situation as an indirect communication between two human users mediated through a

shared environment (or channel) which is the search engine.It is a well-known fact that the

channel (such as the structure of our articulatory and perceptual devices) has a profound

effect on the structure and dynamics of the evolving language.

Web search queries are small fragments of texts (symbols) that are used to commu-

nicate the information need of an individual to a search engine. In this regard, the basic

function of queries is similar to that of languages, which istransmission of information.

Hockett [93] proposed thirteen design features of a communication system. NLs possess

all these features and in this section we see that a large number of these features are present

in queries as well. Some of these features, such assemanticity, arbitrariness, discreteness

andduality of patterning, are exhibited in queries by virtue of the fact that the building

blocks of queries are, after all, words – which are also the basic units of NLs. However,

with respect to some of the other features, NLs and queries are analogous in their function.

We discuss the other design features here.

Vocal-auditory channel: All spoken human language is produced using the vocal tract

and auditory channel. While the role of vocal-auditory channel is currently irrelevant for

queries, they are produced and perceived by writing (typing) and reading of text.

Broadcast transmission and directional reception:Human language can be heard if

it is within the range of another person’s auditory channel.Additionally, a listener, who

shares the same time and space of the speaker, has the abilityto determine the source of

a sound by binaural direction finding. In the case of Web search, queries issued by a user

are recorded in the search engine log files. The engine uses these logs to generatequery
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completionsfor another user. This way, a query can be potentially broadcast to millions of

new users. A new user canchooseto be receptive of these completions (similar to signals)

by enabling this specific feature on their search engine.

Rapid fading: Waveforms of spoken language dissipate over time and do not persist.

A hearer can only receive specific auditory information at the time it is spoken. This feature

is related to the modality of language, and as queries are mainly textual, they are therefore

less ephemeral than spoken language.

Interchangeability: A person has the ability to both speak and hear the same signal.

Anything that a person is able to hear, s/he has the ability toreproduce through spoken

language. Similarly, users have the ability to understand and reformulate somebody else’s

query. If a person has seen a query, s/he can also use that query.

Total feedback: Speakers have the ability to hear themselves speak. Throughthis, they

are able to monitor their speech production and internalizewhat they are producing through

language. Searchers also know what queries they have issued, and can monitor them and

internalize their uses.

Specialization: Human language sounds are specialized for communication, that is,

humans speak mainly to transmit information. Query words too are specialized for specific

information needs of the user.

Displacement:NL has the ability to refer to things in space and time and communicate

about things that are currently not present. Queries also allow the users to seek information

about past and future events or objects.

Productivity: NL allows for the creation of new and unique meanings of utterances

from previously existing utterances and sounds. Likewise,a pre-existing set of distinct

words (around1.2M in our dataset) can be combined to formulate unseen queries.

Traditional transmission: Human language is not completely innate and acquisition

depends in part on the learning of a language. Searchers can also learn how to formulate

queries from search experts, search engine guidelines, guide books [183], search engine

feedback and mimicking other users.
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Thus, from a purely functional perspective, Web search queries are very similar to NL.

1.4 Structural aspects of Web search queries

Barr et. al. [22] were one of the first to study the linguistic structure of Websearch queries.

They examine the applicability of part-of-speech tagging to English Web queries and the

value of such tagging for enhancing search results. They show that 70% of all words in

queries are nouns, followed by adjectives (7.1%) and prepositions (3.7%). They also show

that a very large percentage of queries are noun phrases, andnot unstructured collections

of terms. They manually label a set of queries with these tagsto train a Brill tagger, and

achieve only about70% accuracy, the poor figure reflecting the unique syntactic struc-

ture of queries. They also try to classify search queries into grammatical classes based on

the syntax of part-of-speech tag sequences. They also scrutinize the practical applicabil-

ity of leveraging query-trained part-of-speech taggers for IR applications. They show that

part-of-speech information can be a useful feature in machine-learned search result rank-

ing. Their experiments also include the potential use of thetagger in selecting words for

omission or substitution in query reformulation. They conclude that leveraging the unique

linguistic structure of web-search queries can improve search experience. This thesis deals

with structural aspects of search queries, and Sections2.2 through2.4 provide a more de-

tailed review of this space.

1.5 Dynamical aspects of Web search queries

Search engines arecomplex adaptive systemsthat are able to communicate with humans

and evolve at two levels – algorithms and models. Search engines have come a long way

since the first generation search systems [145]. Even though search engine companies

rarely publish parts of their internal algorithms, the hugevolume of Web IR literature over

the last decade is an indication enough that search algorithms have evolved. Algorithmic

evolution for search engines include more sophisticated machine learning algorithms for

ranking and use of a higher number of features for retrieval.These changes are analogous
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to agents undergoing anatomical modifications over severalyears – like the unique structure

of the vocal tract and the descended position of the larynx inhumans [87].

Evolution of the model, on the other hand, is information that the search system learns

from user interactions to present better results in the future. Models are learnt by the

search engine through constant user feedback and preferences gathered during the course

of Web searches. More and more Web data is crawled to make better document models.

More query logs are used to build better query analysis models. Query log analysis can

be used to study individual search behavior, query duplications, user sessions and query

correlations [204]. Clickthrough data [109,229] and pseudo-relevance feedback [237] are

also used by search engines to enrich their models of relevance.

This evolution of models is similar to the cultural transmission of language. Adaptation

of the search engine is a population-level phenomenon, where individual users are agnos-

tic to the fact that their interactions with the search engines indeed affect the response of

the search engine for other users and vice versa. Cultural transmission for the language of

queries can be considered from two aspects: Experts teaching novices how to search, and

new users learning search tips and tricks from the collective knowledge of the Web, or rel-

evant books [183] – like traditional language transmission. An individual’s competence in

language is derived from data which is itself a consequence of the linguistic competence of

other individuals [206]. Modern theories of cultural evolution recognize that cultural tradi-

tions are socially transmitted from person to person between and within generations [212].

Individual click data and search engine usage affect the engine as a whole. Users un-

knowingly affect the response of the engine towards other users, effectively transmitting

information of some kind through the engine (Figure1.4).

Incorporation of user feedback has tremendously improved the performance and per-

ception of the popular commercial search engines. While the algorithmic components of

a search engine rarely make any attempt to understand NL or complex queries, search

engines can intelligently process very complex queries just by learning from past user be-

havior. This gives an average user the impression that the search engine is indeed getting

smarter, and consequently they are motivated to formulate more complex queries. This

results in a population-level snowball effect leading to increase in the structural complexity

of the queries.



1.6 Objectives and approach of the thesis 11

Summary of linguistic analogy. We have highlighted some similarities that Web

search queries are observed to share with an evolving language, giving evidence from three

different aspects. First, the function and some of the basicfeatures of queries are similar

to that of NL. Second, the structure of the queries are in between that of a random bag-of-

words model and a full-fledged NL form. Nevertheless, this syntax seems to be evolving in

complexity. Third, the evolutionary dynamics of queries isanalogous to models of cultural

evolution for language. Although this evolution is actually an outcome of the interactions

between the users via the search engine, it seems as though the search engine is itself evolv-

ing in this process. Given this context, it is an interestingresearch problem to understand

the linguistic syntax of queries, which may lay down stepping stones for obtaining new

insights on the evolution of human language.

1.6 Objectives and approach of the thesis

The concrete objectives of this thesis are three-fold, and are stated below:

(1) To discover the syntactic units of Web search queries.

Web search queries have evolved to follow a unique syntacticstructure that represents

user intent in a way distinct from NL document syntax. We wishto discover this underlying

syntactic structure by analyzing large volumes of query logs. Specifically, we wish to detect

relationships between words within a query, and to understand how such relationships can

be utilized to produce a more informed representation of thequery than the simple bag-of-

words model.

(2) To understand the roles played by such units in search queries.

Once we discover the syntactic units of search queries, we wish to understand the roles

these units play with respect to the search process. For example, nouns and verbs play

different roles in a typical NL sentence, and understandingthese roles is vital to the correct

interpretation of the sentence. Similarly, we expect that different classes of units in queries

will have different roles, and appropriate interpretationof these roles will give us new

insights into better query understanding and intelligent retrieval.



12 Chapter 1 Introduction

(3) To understand the complexity of syntactic structure in Web search queries.

Even though it has been a common perception that Web search queries have been grow-

ing in syntactic complexity, a precise quantification of thesame has been lacking in the lit-

erature. In this thesis, we wish to objectively measure the complexity in query syntax from

multiple perspectives. Such a study opens up the avenue for understanding the change

in query complexity over several years. This would, in turn,enable us to understand the

evolution of linguistic syntax for search queries.

The specific approaches that have been followed in the thesisto achieve the above

objectives are stated below:

(1) Unsupervised query segmentation using query logs, and its effectiveness at im-

proving information retrieval.

Syntactic units of search queries must be discovered without attempting to project docu-

ment structure onto queries. This process of dividing queries into their constituent syntactic

units is called query segmentation, and all segmentation approaches till date have relied on

some form of document resources to accomplish this task. Next, such algorithms do not

specify how to independently apply the knowledge of discovered query segments to re-

trieval, and thus do not leave scope for a generic IR-based evaluation across algorithms.

Finally, almost all segmentation algorithms restrict themselves to non-hierarchical struc-

ture, i.e. they try to simply partition a query into a non-overlapping sequence of words.

We try to address these issues in the following ways: (i) Deduce an unsupervised query

segmentation algorithm that primarily uses query logs as the input resource; (ii) Propose

an IR-based evaluation framework for query segmentation; (iii) Design an algorithm for

hierarchical or nested query segmentation that can discover richer query structure, again

relying only on query logs; and, (iv) Propose an approach fordeterministically applying

the knowledge of hierarchical query segmentation to improve document ranking.

(2) Unsupervised role induction of discovered query segments.

Query segmentation is the first step to query understanding,and its scope goes be-

yond simple multiword expression detection. The intuitivenext stage would be to deduce

the roles discovered segments perform in search queries with respect to the retrieval and
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ranking processes. Past approaches to such role induction have mostly dealt with specific

types of queries, like noun phrase queries and named entity queries, or were supervised ap-

proaches restricted to domains like jobs and movies. Our approach here will try to perform

the following tasks: (i) Propose a classification scheme forquery segments based on their

roles in the query, that would be generally applicable for queries from all domains; and,

(ii) Develop a lightweight and unsupervised technique for labeling query segments based

on our taxonomy.

(3) Analysis of syntactic complexity of search queries.

There has been no quantifying study that discusses the syntactic complexity of search

queries. The approach that we take to close this research gapis as follows: (i) Investigate

the perplexity of some simple query generation models to understand the syntactic com-

plexity of queries; (ii) Further, investigate the properties of word co-occurrence networks

built real and generated queries to obtain a corpus-level understanding of syntactic com-

plexity; and, (iii) Examine human intuition about query-level syntax using crowdsourcing

experiments with real and generated queries.

1.7 Contributions of the thesis

In this thesis, we have developed and evaluated unsupervised approaches to query segmen-

tation and segment role induction. We have also tried to quantify the syntactic complexity

of Web search queries using multiple perspectives. The specific contributions are summa-

rized below.

(1) Development and evaluation of flat and nested query segmentation algorithms

that rely on query logs and a named entity list:

We have proposed an unsupervised method of flat query segmentation that uses Web

queries as the primary resource, which helps discover syntactic units of queries that often

differ from NL phrases. We have enhanced this technique withWikipedia titles to detect

relatively rarer named entities. Next, we overcame severalconceptual challenges to design

and implement the first IR-based evaluation framework for query segmentation, that es-
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tablished the usefulness of segmentation in IR. Finally, we have proposed an unsupervised

algorithm for nested query segmentation and the first strategy to use the nested query rep-

resentation for improving IR performance. We have shown that the tree structure inherent

in the hierarchical segmentation can be used for effective re-ranking of results.

(2) Development and evaluation of a framework for classifying query segments as

content or intent:

We have proposed that all query segments can be classified as content or intent. While

content segments must match exactly in documents, intent units can act as indicators of

user intent and can be used in other ways (like restricting and re-ranking retrieved pages)

to improve result quality. Simple counts and entropies of word co-occurrence distributions,

estimated from only query logs, can be used for effective unsupervised labeling of content

and intent units. A taxonomy for mined intent units has been presented, providing readers

with a qualitative analysis of the nature of such units. We have tried to consolidate ongoing

works on associating intents with query words by providing an overarching framework.

(3) Proposal of a framework for understanding syntactic complexity of queries:

We have provided corpus and query level setups for examiningwhether queries can

be said to be a distinct linguistic system. We have built artificial logs based on statisti-

cal language models, and subsequently used complex networkmodels and native speaker

intuition (general Web search users), to quantify their deviation from real data. Our com-

bined approach is successful in bringing out the fact thatn-gram statistics are inadequate

for modeling queries, and the ideal generative model has to imbibe both syntactic and se-

mantic constraints specific to Web queries. Finally, overall results obtained can indeed be

considered positive cues in favor of acceptance of our original hypothesis of Web search

queries evolving into a distinct language.

Thus, to summarize the contributions of this thesis in a single sentence, we have (i)

developed and evaluated unsupervised algorithms for flat and nested query segmentations,

(ii) developed and evaluated a framework for labeling query segments as content or intent,

and (iii) developed a framework for understanding syntacticcomplexity of search queries

based on word co-occurrence networks and Web user intuition.
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1.8 Organization of the thesis

The rest of the thesis is organized as follows.

In Chapter 2, we provide a review of past literature, while identifying research gaps

and scope for further work.

In Chapter 3, we develop an unsupervised flat query segmentation algorithm using

query logs and enhance it with Wikipedia titles. We also devise an IR-based evaluation

framework for flat query segmentation, and show that the proposed algorithm has the best

retrieval performance.

In Chapter 4, we develop an unsupervised nested query segmentation algorithm and

show how improvements in document ranking can be obtained byappropriately leveraging

the tree representation of the query arising out of the segmentation.

In Chapter 5, we present the concepts of content and intent segments along with in-

depth discussions, and provide an unsupervised labeling strategy based on segment co-

occurrence statistics computed from query logs.

Chapter 6 presents a framework for understanding the syntactic complexity of search

queries by comparing corpus-level and query-level statistics between real and language

model-generated artificial query logs.

Finally, Chapter 7 concludes the thesis by summarizing the contributions and indicat-

ing a few issues for future work that have been opened up by thestudies in this thesis.





Chapter 2

Literature Review

Scientific and engineering innovation, coupled with decreasing hardware costs and increas-

ing commercial benefits, have made search engines extremelypowerful over the last two to

three decades [140]. Almost all Web users today regularly visit a search enginepage and

have their queries “answered” within a few milliseconds. Thus, not surprisingly, the same

span of time has seen a significant amount of research being conducted on almost every as-

pect of Web-based retrieval. The general area of this thesisis query analysis, an important

aspect of Web IR1. Research on query analysis tries to infer as much information as possi-

ble from the small number of words contained in the input query. In the next few sections,

we outline relevant research on thesyntacticaspects of query analysis, that are concerned

with learning the relationships among query words and how these can be exploited for bet-

ter retrieval. While initial research assumed the simple bag-of-words independence model

used in Boolean retrieval, the field has since progressed to experimenting with advanced

techniques that include dependence models, query segmentation, and intent analysis. Most

of these works include ideas that specifically suit the context of (Web) IR and are not di-

rectly borrowed from natural language processing (NLP). This need for basic independent

analysis for query understanding strengthens the hypothesis of queries possessing unique

linguistic style.

As stated in Chapter1, the objectives of this thesis are to develop algorithms andeval-

1Other vital facets include Web crawling, document indexing, and user interface design.

17



18 Chapter 2 Literature Review

uation frameworks for query segmentation and segment role induction, and to study the

syntactic complexity of Web search queries. Hence, we primarily survey past research in

related areas and highlight scope of further work. We note that in this thesis, we only deal

with unstructuredtext queries and documents. Research onstructuredandsemi-structured

retrieval (like retrieval from relational databases and XML retrieval [77,167]) is out of the

scope of this work.

2.1 The bag-of-words model and beyond

Boolean model

One of the earliest retrieval models in IR is theBoolean retrieval model[193]. In this

model, the query is formulated as a Boolean expression of words, which means that the

query words are combined with Boolean operators like NOT, ANDand OR2. An example

of a query in the Boolean model would bemadonna AND (life OR bio), which

would imply that the user is looking for documents with the term madonna, and any one

of the termslife orbio. The Boolean model treats each query (and each text document)

as an unordered set of words, or, more commonly abag-of-words. In effect, only the

presence or absence of each query term (as specified in the Boolean query) matters. Thus,

in Boolean retrieval, a document either matches a query, or itdoes not, and there is no

concept of document ranking.

Vector space model

Thevector space model[198] is a notable improvement over the Boolean model where

documents can be ranked in response to a query. The ranking isperformed with respect to

the term weightsof the matched query words in the documents. Concretely, every query

or every document is viewed as ann-dimensional vector, wheren is the size of the corpus

vocabulary. Theith entry in the vectors of the query and the document contains the term

weight of the vocabulary term with indexi in the query and the document, respectively.

One component of the term weight is theterm frequency(TF) of the word (in the query

2Throughout this work,wordsandtermsare used interchangeably.
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or in the document, as applicable). However, certain words may be present in almost all

the documents and hence may not have much discriminating power with respect to the

ranking. To scale down the weights of such terms in the vectors, the term weight includes a

second factor called the inverse document frequency (IDF).The IDF of a term with respect

to a corpus is defined as the logarithm of the ratio of the totalnumber of documents in

the corpus to the number of documents that contain the term. Thus, very common terms

will have a low IDF. The term weight is usually a product of the(often normalized) TF

and the IDF, and such retrieval models are often referred to as using the TF-IDF ranking

scheme. Thesimilarity scorebetween the query and the document is usually defined to be

the cosine similarityof the query and document vectors. Documents with higher cosine

similarity with the query are ranked higher in the final results. The vector space model and

the TF-IDF ranking scheme are extremely popular in IR and several other applications [7,

18, 91, 132, 180, 214], and their variants are in active use even today [90, 96, 146, 163].

Nevertheless, the vector space model still considers a query as a bag-of-words, and ignores

the significance associated with relative word ordering.

Term weighting

An important concept associated with the vector space modelis term weighting, that

assigns different weights to different query terms. This isa significant improvement within

the bag-of-words framework, and term weighting has since been vital in almost all IR appli-

cations. For example, Robertson and Jones [187], Salton and Buckley [195], Kwok [127]

and Greiff [79], define progressively improved expressions for term weighting based on

various usage statistics in the corpus. Term weighting has been equally important inprob-

abilistic models of IRlike the Okapi BM25 [111, 112, 186], where documents are ranked

by probabilistic estimates of whether they have content relevant to the information need,

given the query and the document representations. Term weighting can also be used for the

reductionof descriptive verbose queries by neglecting terms with lower weights [125,131],

but alternative approaches have proven to be more effectiveat this task [27,126].

Language models

Statisticallanguage models(LM) are one of the early mechanisms to allow direct in-

corporation of query term order into the retrieval process [176,207]. In the LM framework,
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each document is treated as a sample text from a language, andeach query as a text gen-

eration process. Document ranking is performed based on theprobabilities of generating a

query from the LMs of the retrieved documents. An LM basically computes a probability

distribution over any sequence of words drawn from a vocabulary. Thus, a document is a

good match to a query if the document model is likely to generate the query, which will in

turn happen if the document contains the query words frequently [140]. The simplest prob-

abilistic LM, theunigram model, does not take into account conditioning by word context,

and estimates probabilities of each term independently. Hence, it is conceptually equiva-

lent to the bag-of-words representation. However,bigram language modelscondition word

probabilities on the previous term and hence use the notion of relative word ordering. For a

trigram model, the probability of a new word depends on the probabilities of the preceding

two words. Specifically, Song and Croft [207] report performance improvements on two

datasets using word pairs along with the unigram model, and indicates that further benefits

may be obtained using the trigram model.

Lafferty and Zhai [128] were the first to proposequery language models. They show

that combining past work on document models with query generative LMs can lead to

substantial IR benefits. Such benefits have been shown to be most significant for short

queries. Estimating a model for each query, they evaluate the LM in an IR setup with the

goal of minimizing the total risk involved. Moreover, they suggest that LMs for queries

can be used in modeling user preferences, query contexts, synonymy and word senses. The

concept of (query) LMs has remained popular and has since been used in a variety of real

applications [64,99,137,216], where usually the bigram and trigram models suffice.

Dependence models

Even though the idea that modeling term dependencies in documents is useful for IR

was around since 1983 [196, 235], it was not until after twenty years that dependencies

betweenquery termsbegan being considered. One of the pioneering works was doneby

Gao et al. [74], who extend the earlier language modeling approach [176, 207] based on

the unigram model by relaxing the independence assumption.They introduce a query term

dependence or linkage factor as a hidden variable, and modelthe dependencies as acyclic,

planar and undirected graphs. According to their generative model, a query is created from

a document in a two-step process. First, the linkages are generated, and second, each query
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term is generated sequentially, constrained by the learnt linkages. Their unsupervised ap-

proach for learning and applying query term dependencies toIR significantly outperform

the probabilistic models [111,112,189] and the traditional unigram and bigram-based lan-

guage models [176,207,211] on publicly available data.

Another influential work on query term dependence models, based on Markov Ran-

dom Fields (MRF) [119], is by Metzler and Croft [148]. Their framework allows use of

advanced text features like phrases (word sequences) by weighting the document score

in response to a query based on the occurrences of single terms, ordered phrases, and un-

ordered phrases in the document. They propose three models of term dependence: the inde-

pendence model (bag-of-words), the sequential dependencemodel (SDM) (adjacent query

words are dependent on each other), and the full dependence model (FDM) (all query words

are dependent on each other). The SDM is thus similar to the bigram LM [207]. While both

SDM and FDM improve significantly over the independence model, SDM is generally seen

to perform better for longer queries, while FDM is usually better for shorter queries. This

seems to indicate that long range dependencies are not very frequent in search queries, and

the more computationally efficient SDM is preferred more as queries become longer.

Subsequent work by Bendersky et al. [28] explore the noun phrase dependence model

(NDM) (wherenoun phrasesin queries are considered as features for the MRF retrieval

model [148]) and the two-stage dependence model (TDM) (where noun phrases longer

than two words are subdivided into smaller expressions). NDM and TDM assume all terms

within the boundaries of a noun phrase chunk [1] to be dependent upon each other, and

no dependencies to exist between chunks. The TDM is observedto outperform the earlier

models, while requiring even less computation time than theSDM. Like the MRF model,

term dependence has also been successfully incorporated into the Divergence From Ran-

domness (DFR) retrieval model [171]. In another interesting work, term dependence has

been used in query reduction for verbose queries [169]. Verbose queries are usually similar

to NL sentences, and the authors use syntactic features extracted from dependency parses

of verbose queries to rank terms in order of their importance.

Term proximity models

In our last topic in this section, we will look at term proximity models which reward
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Table 2.1: Corpus details for term dependence and proximity models.

Corpus Paper Used TREC Queries #Queries Avg. Length

WSJ87-92 Hou et al. [97] 1999 Ad Hoc Track 50 5.4

AP88-89 Hou et al. [97] 1999 Ad Hoc Track 50 5.4

Robust Hou et al. [97] 2004 Robust Track 100 4.1

WT10g Hou et al. [97] 2001 Ad Hoc Track 50 4.9

He et al. [88] 2000-’01 Web Track 100 4.2

Zhao et al. [246] 2000-’01 Web Track 100 4.2

TREC8 Zhao et al. [246] 2004 Robust Track 250 2.7

GOV2 He et al. [88] 2004-’06 Terabyte Track 150 3.1

Zhao et al. [246] 2004-’06 Terabyte Track 150 3.1

Blog06 He et al. [88] 2006-’08 Blog Track 150 2.1

Zhao et al. [246] 2006-’08 Blog Track 150 2.1

ClueWeb Category B He et al. 2011 [88] 2009 Relevance Feedback Track 50 2.1

ClueWeb 2009 Vuurens and de Vries [224] 1992-’99 Ad Hoc, 2011-’13 Web Tracks550 3.5

documents that contain query terms close to each other, a significant deviation from the

lines of work presented earlier that rely directly and indirectly on occurrence frequencies

(or probabilities) of words andn-grams. The underlying assumption in term proximity

models is that relevant documents will have several query words occurring nearby one an-

other. There is no generally agreed-upon definition of term “proximity”; one can compute

the smallest span that contains all the query words in the document, or one can aggre-

gate the average distance between all the matched query terms in the document. Tao and

Zhai [217] first explore the concept of term proximity and perform a thorough exploration

of five such intuitive heuristics. To show the utility of termproximity in IR, they integrate

a term proximity factor into the BM25 probabilistic retrieval model [189] and the KL-

divergence retrieval model [128] and report statistically significant improvements. They

conclude that the minimum distance between any two pairs of matched query words is

maximally correlated with document relevance. Cummins and O’Riordan [56] examine

seven more proximity functions, and use a genetic programming framework tolearn their

best combination function, which is subsequently integrated into a retrieval model. Their

findings agree with those of Tao and Zhai [217] regarding the best correlation of minimum

document distance of query term pairs with relevance, but they emphasize the importance
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of consideringall pairs of query terms. Their results show improvements for both short and

long queries over the chosen baselines. More recently, He etal. [88] continue in the same

paradigm of incorporating a proximity function into a probabilistic retrieval model. Their

proximity functions based on window-basedn-gram frequency counts and co-occurrence

probabilities show improvement over BM25 [189], its bigram and trigram variants, and the

MRF retrieval model [148].

Bai et al. [20] raise an important question of identifying lengths of sequences within

which term proximities should be considered. They focus on long queries and find that

the proximity of sequences of three to five words is the most effective, and suggest that

sequences of such length are indicative ofuser intent. They also show improvement when

n-gram sequences are appropriately weighted in proportion to their frequency in query

logs. Song et al. [208] propose a different approach of using query term proximity, and

do not look at pairwise term closeness in the document. Instead, they first group sets of

query words into non-overlapping sequences, and view thesesequences as providing con-

text for the constituent terms. The relevance contributionof a query term occurrence in the

document is measured by how many query terms occur in its context and how compact the

span[217] is. They replace term frequency in the BM25 model [189] by the accumulated

relevance contribution of the span containing the term. Details of the collections used by

some of the most recent literature on dependence and proximity models is presented in

Table2.1.

2.2 Identifying syntactic units

Having seen how query representation has progressed from the simple bag-of-words model

to incorporating term dependence and proximity, we will nowsurvey the research that

tries to identify syntactic units inside a query. By syntactic units, we refer to groups or

sequences of words that are coherent from some perspective.For example, they may either

be named entities like names of people, places or objects, multiword expressions or noun

phrases of English or simply expressions that, if treated asa unit, help in the retrieval of

more relevant pages. Breaking a query into such syntactic units is (ideally) beneficial to

the search engine; it is not necessary that they will always have well-defined meaning, or
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appear “well-formed” to a human user. We have already had glimpses of such attempts

in the research covered so far, for example, in the work by Bendersky et al. [28], where

in order to infer a two-stage dependence model, the query needed to be partitioned into a

noun phrase and the remaining part of the query, or in Song et al. [208], where grouping

words into coherent sequences was essential for modeling term proximity. Here we will

first cover works on named entity recognition and noun phrasedetection, before we move

on to the relatively popular and more general theme of query segmentation.

Named entity recognition

Named entities like names of people and movies in queries canalso be viewed as syn-

tactic units, and identifying them can help significantly inimproving IR precision or gen-

erating good query suggestions. We note that techniques from the general topic of named

entity recognition in NL documents are hardly applicable inthe context of queries, because

of reasons like lack of capitalization, adequate context, and grammatical syntax. Research

has been performed on named entity recognition in queries (NERQ), with Guo et al. [81]

first bringing the problem into focus, who report that70% of search queries contain named

entities. They propose a probabilistic approach to identify them using query log data as the

only resource, based on the Latent Dirichlet Allocation model [35]. Further, the authors

also automatically classify the detected entities into predefined classes likemovies, games

and music. Subsequently, Du et al. [63] note that query sessions data contain valuable

context information and use it to improve upon the method proposed by Guo et al. [81].

Noun phrase detection

Identifying noun phrase units likeyear of the horse, present political

scene or the wall of shame is often useful for better retrieval and other applica-

tions like query expansion. Just as for named entity recognition, the lack of grammar and

context make the task non-trivial for queries. The effectiveness of such syntactic query

parsing for IR was first promoted by Zhai [239], who provides a probabilistic model for

detecting noun phrases in queries. The author shows that indexing noun phrases along with

words systematically produces better retrieval performance. Usually, noun phrase detec-

tion techniques involve the use of an English part-of-speech tagger (POS) trained on NL

corpora [28,82,243], due to the lack of large volumes of human POS annotated query logs.
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While the efficacy of such a method may seem questionable, Hagen et al. [82] report99%

precision and90% recall for two such taggers when evaluated on a test set of1000 queries.

This is possibly explained by the highly skewed class distribution of query words, where

70% of the words are nouns, and adjectives at7% come a distant second.

Bendersky et al. [28] and Hagen et al. [82] use noun phrase detection as a step towards

query segmentation (discussed later), and show direct IR benefits of the process. Lima

and Pederson [58] provide a fresh perspective and generate a syntactic parseof the query

using an EM algorithm based on a probabilistic context-freegrammar. The parsed query

is then used for noun phrase recognition. However, their grammar consisting of300 hand

written rules, and the complexity of the overall algorithm,make their approach diffcult

to be representative and operational at Web scale. This may be a possible reason why

the paper, presenting the very novel idea of aquery grammardid not spark substantial

research, apart from the work by Manshadi and Li [142] where the authors formulate a

probabilistic phrase structure grammar for tagging product queries. Carvalho et al. [57]

adopt a purely statistical approach and use wordn-gram statistics for finding noun phrases,

and show improvements in retrieval performance when phrasal knowledge is incorporated

into the retrieval model.

Query segmentation

Query segmentation is by far the most prominent line of research towards the goal of

syntactic partitioning of query words, with more than twenty papers published till date that

are directly on the topic. Even though this “volume” of research may not be enough to make

this an independent “field” in query analysis, it nevertheless highlights the recognition

of the need for such techniques from researchers around the world. Query segmentation

partitions the entire query into a sequence of non-overlapping words, and is not restricted

to finding named entities or noun phrases. An example of a segmented query iswindows

xp | home edition | hd video | playback, where the pipes (|) represent

segment boundaries.

Query segmentation was proposed by Risvik et al. [185], where the authors use fre-

quencies and mutual information [52] of n-grams learnt from Web documents and query

logs to come up with meaningful segmentations for queries. In the next ten years, we see a
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plethora of work on Web search query segmentation using diverse resources like Wikipedia

titles [28,82,84,216], Web documents [29,99,185,216,240], Googlen-grams [28,82–84],

clickthrough data [120, 137], and search result snippets [37]. Distinct algorithmic ap-

proaches like eigenspace similarity [240], conditional random fields [238], support vector

machines [29] and expectation maximization [137,216] have been used to accomplish this

task, often using word co-occurrence statistics and normalized frequencies [37,82–84,114,

168,185]. The concept of query LMs, as presented earlier, have also been used to perform

query segmentation [99, 137, 216]. Unsupervised methods [37, 82–84, 114, 137, 168, 185,

216,240] have outnumbered supervised techniques [28,29,238,241,242], as the latter re-

lies on human annotations for training which is quite expensive to obtain in large volumes.

Moreover, it is always difficult to achieve good query coverage from various domains in

the datasets used for supervised learning [168]. Query segmentation has also been applied

to domains other than Web search, like e-Commerce [120,168] and patent search [73].

Query segmentation has generally been evaluated by comparing the machine output

against a set of queries segmented by humans [29, 82, 84, 137, 216, 241, 242]. The basic

assumption underlying this evaluation scheme is that humans are capable of segmenting

a query in a “correct” or “the best possible” way, which, if exploited appropriately, will

result in maximum benefits in IR performance. This is probably motivated by the exten-

sive use of human judgments and annotations as the gold standard in the field of NLP

(like POS labeling and phrase boundary identification). However, this idea has several

shortcomings. Among those who validate query segmentationagainst human-labeled data,

most [29, 37, 83, 84, 137, 216, 240–242] report accuracies on a corpus of500 queries re-

leased by Bergsma and Wang in2007 (BWC07) [29] sampled from the2006 AOL query

log [170]. BWC07 facilitated comparison of various segmentation algorithms based on

matching metrics against human annotations. However, BWC07 suffered from limitations

like consisting of noun phrase queries only, containing several ambiguous queries (no con-

sensus among annotators on40% of the queries), and having a few spelling and character

encoding errors. As Hagen et al. [84] rightly note, none of the above reasons should be

regarded as “shortcomings” in the work by Bergsma and Wang, since their goal was simply

to evaluate their noun phrase segmentation algorithm on a dataset which they would make

publicly available, andnot to create a benchmark dataset corpus, which it subsequently

became. Subsequently, Hagen et al. [84] create a much larger and cleaner dataset of about
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50, 000 queries (Webis-QSeC-10), also sampled from the2006 AOL log, which is two or-

ders of magnitude greater than BWC07 and free from all the drawbacks identified with

BWC07. The queries in Webis-QSeC-10 are accompanied by ten annotations each and

collected through crowdsourcing, and then thoroughly cleaned and filtered in a series of

principled steps to be as representative of the entire log aspossible. Currently, about10%

of this dataset is publicly available3.

2.3 User intent and role annotation

In this section, we discuss methods for understanding user intent, another dimension of

query analysis, which has attracted a fairly large amount ofresearch. The intention be-

hind a query (like finding some specific site, or performing anonline transaction) is vital

to inferring the kind of pages that the user would be interested in viewing. Originally, after

Broder’s seminal paper on intent classification [40] twelve years back, the notion of intent

was associated with the query as a whole. In recent years, thefocus has shifted to identi-

fying specific words in queries that explicitly carry user intent. Role annotation is closely

associated with this line of research, where query words aremarked up according to the

part they play in the query.

Query-level intent

Broder [40] classifies user intent behind most queries as beinginformational, naviga-

tional, or transactional. Informational queries are issued to find information on a topic

and are the classic type of queries handled traditionally byIR systems. But for Web

search engines, users often have other special needs – resulting in navigational queries

(queries issued for finding a specific URL to navigate to) and transactional queries (used

to find places on the Web for performing transactions like buying or selling items, and

uploading or downloading files). Even though informationalqueries still formed the ma-

jority (about73%), navigational (about26%) and transactional (about36%) ones had a

fair share. This taxonomy was well-accepted by the community and Broder’s paper was

followed by several attempts at manual and automatic classification into the above intent

3http://www.webis.de/research/corpora, Accessed 31 May 2014.

http://www.webis.de/research/corpora
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classes [76,129,133,175,190]. We briefly outline a few of these here.

Jansen et al. [104] built an automated classifier which classifies queries intothese broad

classes with an accuracy of about74%. They also state that there are queries with vague or

multiple intent, giving rise to a need for probabilistic classification. Ashkan et al. [13] focus

on commercial queries (a subset of transactional queries) in which the user is interested in

making an immediate or a future purchase. Other transactional queries are said to be of a

non-commercial nature. In this work, the researchers claimthat advertisement clickthrough

data, when combined with the associated query log information and the content of the

search engine result pages, can be effective in identifyinguser intent in the context of

commercial queries. Predicting advertisement click ratesfor future queries is provided as

a potential application. Baeza-Yates et al. [15] use various supervised and unsupervised

techniques like support vector machines (SVM) [215] and probabilistic latent semantic

analysis (PLSA) [95] for examining user intent. The goal or motivation behind a query

is classified into informational, non-informational, and ambiguous. Queries are chosen

from various categories like business, computers, sports,and science. They claim that

supervised methods perform well given user goals and query categories, but unsupervised

techniques help in subsequent validation, refinement, and selection of the one which best

suits the users’ needs. Proper intent identification also has ramifications on the appropriate

evaluation of the search system [191,192]. Over the years, researchers have identified the

need to have finer intent classes like jobs, products, traveland people [98,136].

Word level intent

The search query is a translation of the user’s intent into a short sequence of keywords.

This imposes great value on every word in the query from the perspective of a search

engine. Recent research has started focusing on specific words that are direct indicators of

user intent, and trying to identify and leverage them for better result quality. Identifying

such words as performing the roles of intent carriers can be termed asrole annotationfor

the query words. Wang et al. [225] were one of the first to explore this line of thought,

where they refer to such words asquery aspectwords (such aspictures, video,

download, lyrics, games andmovie). They propose that each aspect represents

one particular user information need. These are often left implicit by users, which leads

to underspecified queries. They mine these aspects from search sessions data, and suggest
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that using them can help users in (re-)formulating their queries better.

Yin and Shah [231] and Yin et al. [233] use of the termsintent phrasesand intent

wordsfor the above class of words. They focus on named entity queries where one part of

the query is the named entity, and the other part (intent wordor phrase) indicates generic

and popular user intent for that class of entities. They loosely define intent words for a

category as those words thatco-appearwith many entities of a category in user queries.

For example,pictures, movies andsongs are some of the intent words for the

categoryactors). The goal in Yin and Shah [231]’s work is to automatically build a

taxonomy of such intent words ofspecific classesfrom query logs, while Yin et al. [233]

try to extract structured information about the query entities from users’ search trails (post-

search browsing behavior).

Li [ 135] propose that noun phrase queries are composed ofintent headsand intent

modifiers. For example, the queryalice in wonderland 2010 cast can be said

to be composed ofalice in wonderland, 2010 andcast, wherecast is proposed

to be theintent head (main user intent), while the other parts are termed asintent

modifiers. The author usessupervisedmethods based on Markov and semi-Markov

conditional random fields to identify these units and annotate their roles. They evaluate

their approach on queries fromthree domains– jobs, movies and national parks.

Yu and Ren [236] present two intent roles,kernel-objects(like harry potter and

omega watch) andmodifiers(like game andsong), for query words to better interpret

query syntax. They term queries with an identifiable kernel object and modifier asrole

explicit queries, and focus on detecting such queries and labeling query words according to

their framework. They show that a supervised classifier based on features like query length,

presence or absence of named entities and interrogative words can achieve a precision of

about90% on identifying role explicit queries. The authors then use search sessions data

to mine candidate modifiers. Subsequently, they propose a simplified wordn-gram role

model which estimates the generating probability of a role-explicit query from a query

log and then performs intent role annotation, achieving more than73% in terms of word

annotation accuracy. Thus, while named entities, nouns andintent modifiers in past work

would generally be the kernel, aspect words, intent words and phrases, and intent heads

would usually be the modifiers in Yu and Ren’s framework.
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In a work recently published in the speech community [85], the authors employ search

query click logs to extract intent information using weakly-supervised methods. They use

clicked URLs for supervision and extend knowledge graphs based on relational informa-

tion. The posterior probabilities estimated from the graphical model can map discovered

intents (likeplay andshow trailer for movies) to search queries. These queries are

subsequently used as additional training examples to augment bootstrapped relation iden-

tification models.

An associated line of research with a significant volume of work in the last few years in-

volvesentities, attributes, classes, instances, and relations[9,102,156,159–161,184,221],

with notable work being done by Paşca et al. [155,156,159–161,221]. While entities re-

fer to items like people, places, movies and books, attributes are specific properties of the

relevant entities (like age, area, cast and title). Entities can be generalized to classes (the

entity aspirin belongs to the classmedicine). Specific entities belonging to a class

are also referred to as instances of that class (aspirin in this case). Finally, a relation

articulates the connection between an entity and any of its attributes. For example, the re-

lationis the capital of connects the attribute Paris with the entity France. In our

context, entities and attributes can be considered to be roles played by words or groups of

words in queries, analogous to named entities and intent phrases [231,233], intent modi-

fiers and intent heads [135], or kernel objects and modifiers [236]. The general goal of the

line of work on entities and attributes is to building structured representations of knowl-

edge from the huge amount of unstructured data on the Web. Apart from enabling search

engines to present users with a more informed set of results,this would facilitate identifica-

tion of interesting relationships among various entities and can be helpful in a large set of

Web search applications. In general, most of the supervisedand unsupervised approaches

rely on the approximate matching of relevant distributional patterns or templates [4, 165]

in queries and Web documents for extracting entities [102,155,156,161,172,221] and at-

tributes [9,157–160,162,184]. Finally, Lin et al. [138] associate intent withverbsor actions

in queries likebuy anddownload, and define actions as “empirically observable, direct

manipulation or information request on an entity”.

Query intent can also be represented through a set offacets, like spatial and time sen-

sitivities, genre, topic and scope [76,154]. These are aspects that can be attributed to the

query as a whole. Proper identification of such facets has been shown to improve the per-
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formance of query intent classification [76].

2.4 Deeper syntactic analysis

In this section, we will briefly look at research that has beendirected at understanding the

linguistic syntax of Web queries. Linguistic analysis and annotation of queries based on its

parent NL, like POS tagging [22,26,72,169], has been an important direction of research.

These studies reveal interesting syntactic properties andtrends, such as more than70% of

the query words are nouns [22] and NL question queries are on the rise [166].

POS tagging for queries

Use of POS tagging forquery analysisis not a very recent idea. Allan and Raghavan,

in 2002 [10], showed how to use POS patterns to mitigate the problem of ambiguity for

very short queries. In their study, they find frequent POS patterns near one-word queries

and convert them to clarification questions. These questions, based on statistical language

models, are shown to reduce query ambiguity a substantial number of times. Barr et al. [22]

provided the first measurements on POS tagging of Web search queries. Examining a sam-

ple of 3, 283 queries, they found that a large majority (about70%) of all query words are

nouns, while adjectives are the second most used POS with a presence of7%. The authors

also show that as expected, the Brill Tagger [38] achieves a low accuracy of about48%

when trained on NL, which improves to about79% when trained on queries. Nonetheless,

taggers trained on NL corpora have been shown to be useful in avariety of real scenar-

ios [25,28,82,152]. Hagen et al. [82] report a precision of99% and a recall of90% when

the Stanford Tagger [219,220] is used in the task of detecting noun phrase queries. Accu-

rate POS tagging of queries is still an active area of research. Recently, Ganchev et al. [72]

show that transfer of POS tags from URL snippets retrieved by the search engine to the

query words can significantly improve POS tagging accuracies.

Understanding syntactic complexity

Mean query lengths have been slowly but steadily rising overthe years (from2.2

in 2000 [209] to 3.5 words in 2006 [170] to 3.77 in 2010 (own data)), which implies
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that the number of relatively longer queries has also been increasing. This is generally

believed to be an indication that queries are becoming more complex as well. Techni-

cally though, length may not always be directly proportional to complexity. For example,

the querieseternal sunshine of the spotless mind andcode to turn

text blue excel both have six words. But the latter is more complex than the former,

which is simply the name of a movie and is thus easily processed. However, this brings

to light the lack of clarity on (syntactic) “complexity” itself, and there have not been any

studies till date that has defined or quantified such complexity. We note that a complex

query is distinct from a complex search task [205], and the latter can be solved with a se-

quence of “simple” queries. “Query complexity” is used in a different sense in Radinsky

and Ailon [179], where the authors refer to the complexity of the order of pages that need

to be judged by assessors. Also, here we refer to the complexity in the syntactic structure

of the query from a language perspective, and not in the oldersense of the term, which

referred to the degree of usage of advanced search operatorslike AND, MUST APPEAR

or PHRASE [92,105].

Nevertheless, the notion of query complexity, in some cases, can be correlated with the

concept of query “difficulty”, and a few studies have been directed at the latter topic [12,

86, 152, 234]. For example, Hauff et al. [86] define a difficult query as one that has a

low IR performance (as measured by a metric like average precision [197]). They provide

ways to predict the difficulty of a query, which can help the search engine in taking non-

standard avenues for difficult queries, like applying queryexpansion, suggesting alternative

search terms, adjusting advertisements, or returning results from specialized collections.

They show that their method, based on the discrepancy between the query and document

language models, outperforms past approaches, and validate their hypotheses on two large

Web collections. Mothe and Tanguy [152] propose alinguistic analysisof the query text

for predicting query difficulty. The authors find correlations between morphological (like

number of words and average word length), syntactic (like syntactic depth and span) and

semantic (like degree of polysemy) features of queries, andthe average precision and recall

scores obtained by systems for these queries. Their resultsencourage the use of linguistic

processing in IR systems [130]. Aligned with this line of thought, Liu et al. [139] classify

queries byreadability, or reading level, and show that queries from users of different age

levels (like tenth grade, undergraduate and graduate) can be effectively separated using
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an SVM [218] based on syntactic and semantic features. The authors alsopropose that

improvement in search experience can be obtained by matching the query and documents

not only by content but also by level.

2.5 Model-generated queries

Biemann [32] showed the importance of model-generated sentences for the discovery and

understanding of NL syntax. A good generative model for NL sentences is able to synthe-

size realistic text with high probability. Such a model can account for several distinct syn-

tactic properties of language, which is more than simply a body of “time-linear sequence of

symbols”. The complexity of such a generative model is a reflection of the syntactic com-

plexity of the language itself. He introduced a random text generation model that agrees

well with NL with respect to word frequency distribution, word length, sentence length

and co-occurrence neighborhood. His model was not constrained by anyapriori probabil-

ity distribution – the corpus characteristics emerged froma two-level process involving one

parameter for the word generator and one parameter for the sentence generator. His model

was the first random text generator that modelled sentence boundaries beyond inserting

a special blank character at random. Rather, sentences are modelled as a path between

sentence beginnings and sentence endings which imposes restrictions on the words at sen-

tence beginnings and endings. The model was proposed to be a simple but plausible model

for the emergence of large-scale language characteristics, without assuming an underly-

ing grammar or semantics. The model-generated sentences were found to be non-sensical

in meaning, but maintained some of the distributional properties of NL corpora. Further,

Biemann showed that statistics of word co-occurrence networks [61,69] provide a reliable

framework for comparing real and model-generated corpora.

There have been attempts at question generation in NL [89, 150] and in the general

IR framework [14]. Azzopardi et al. focus on methods for building simulated queries in

six European languages and explore their quality against real queries. Using probabilistic

query generation from document language models, they explore factors which may influ-

ence the generation of queries, and propose a model with improved document and term

selection properties, showing that simulated queries can be generated that are comparable
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to real queries. The authors claim that building models of querying behavior provides a

deeper insight into the querying process so that better retrieval mechanisms can be devel-

oped to support the user.

However, there has only been one major contribution that is adapted specifically to

synthetic Web search queries – the research presented by Li et al. [134]. Their generated

query log4 (namedQRU-1) contains2, 030 queries that were generated by applying a string

transformation method on100 base queries. The base queries were sampled from the query

sets used for the TREC2009 and2010 Web Tracks. As a guarantee of goodness, they report

that70% of these queries were actually found in a separate log from Bing.

The goal of the work by Li et al. [134] was to create synthetic Web queries that would

benefit the community in research on query representation and understanding. The QRU-

1 dataset was constructed based on the topics (queries) thatwere developed during the

TREC 2009 and 2010 Web Tracks. For each of the hundred topics used in Web Tracks

in these two years, the authors assign approximately twentysimilar queries. The similar

queries assigned to the original TREC topic represent the same user intent, but are ex-

pressed in different forms, including synonyms, stemming variations, spelling errors and

abbreviations. The synthetic queries in the QRU-1 dataset are automatically generated from

a model trained from Bing search log data with the title of the TREC topic as the input.

Subsequently, a manual cleaning of the artificial queries was also performed and unlikely

queries are discarded, based on predetermined guidelines.The guidelines were as follows:

(a) The generated query represents the same user intent as the original query. The original

TREC topics are often ambiguous, and may contain more than onesense. The generated

query was to be retained if it represents any of the senses, orif it is judged by the annotator

as representing a likely sense; (b) It is likely to be input byusers, including typographical

errors. Interestingly, the authors observed that70% of the remaining similar queries actu-

ally occur in another Bing search log. Since the specific queries were generated artificially

instead of being directly collected from the search log, theauthors claim that the privacy of

the searchers is not violated.

The dataset of synthetic queries can be used in tasks like query rewriting [244], query

suggestion [43], query segmentation [84] and query expansion [228]. As an example, the

4http://bit.ly/1cSHSfP, Accessed 1 June 2014.

http://bit.ly/1cSHSfP
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authors demonstrate the usage of their queries for improving the relevance of web search

results using query reformulation [110]. To study the effectiveness of generated queries

for query reformulation, the authors record the retrieval performance of the most effective

formulation of the query (including the original topic and the generated queries) for a given

TREC topic. Thus, they simulate the actions of an oracle user who always selects the best-

performing query among all the proposed candidates, and calculate the upper bound on

the retrieval effectiveness that can be achieved using the QRU-1 dataset. They conducted

retrieval experiments using the web corpus ClueWeb Category B5, which is a set of ap-

proximately50 million pages. They use two retrieval models, the standard BM25 retrieval

model [188] and the state-of-the-art sequential dependence model (SDM) [148]. Retrieval

experiments are implemented using the Indri open-source search engine6 and evaluated us-

ing the MAP, nDCG and ERR metrics [46]. For each of these metrics, the authors reported

the following statistics for the retrieval models: (a) the baseline metric value achieved by

the original query; (b) the best metric value achievable by either the original query or one of

the generated queries; (c) the percentage of generated queries that outperform the original

query; and (d) the percentage of queries, whose performanceis improved by using at least

one of the generated queries.

Their results demonstrate that the generated queries can significantly improve the re-

trieval performance both for the retrieval models. By using the QRU-1 dataset, the retrieval

effectiveness was improved for about two thirds of the queries. The authors note, however,

that not all of the generated queries are equally helpful. Therefore, automatic query selec-

tion for effective reformulation seems to be an important research topic. Even though the

quality of the generated queries were good, this is too smalla log to be useful for practical

applications like attribute extraction [159].

Pasca et al. [159] introduce a weakly supervised approach for the acquisition of entity

attributes from query logs, by automatically expanding theset of real queries from which

attributes are extracted withadditional synthetic querieswhich have not yet been submitted

to the search engine. Expanding the input data produces a more general approach, which

can be applied to existing methods for attribute acquisition from query logs for increased

coverage. Application of past extraction patterns to the new set of queries permits the

5http://www.lemurproject.org/clueweb09.php/, Accessed 16 November 2014.
6http://www.lemurproject.org/indri/, Accessed 16 November 2014.

http://www.lemurproject.org/clueweb09.php/
http://www.lemurproject.org/indri/
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acquisition of additional attributes that would otherwisebe missed due to the absence of

real issued queries containing such instance-attributes pairs.

In order to generate new queries, Pasca aggregates known queries into templates as-

sociated with known phrase fillers. The known phrase fillers for each template are then

expanded into new candidate phrase fillers. New queries are generated based on query

analysis alone, and is thus more scalable compared to a document-based analysis. Among

the inferred queries, the ones of higher interest to attribute extraction are those derived from

a query template that fixes either a potential attribute or a potential instance. In experiments

using a large set of anonymized search queries, the synthetic queries allow for the acquisi-

tion of accurate attributes over an evaluation set of75 instances introduced previously.

2.6 Queries as a distinct language

In a series of studies that have been cited more than a total of2000 times, Jansen et al. and

Spink et al. [103, 106, 107, 209] were the first to refer to Web search queries as a unique

language. In their papers, they provided the first measurements of several aspects of query

logs. They find that a small fraction of search terms are used with very high frequency,

even though the size of the overall vocabulary is very large.This large vocabulary is partly

created by a large number of spelling errors, non-English terms, and Web URLs. Interest-

ingly, they remark that general Web users “talk” in their searches in their own way. They

emphasize the need for further study of both ends of the word rank frequency distribution,

and of other “linguistic characteristics of Web queries so that user query language can be

anticipated and supported”. They also note that the distribution of topics in Web search

queries does not resemble the distribution of the corresponding subjects in Web pages.

Encouragingly, they emphasize that studies investigatingthe linguistic aspects of search

queries have potential to benefit IR systems and Website development.

In independent studies from those by Spink et al. and Jansen et al., Guichard [80]

and Dessalles [60] note that Web search queries seem to resemble a “protolanguage”, a

linguistic state that bridges the gap between a wholly alingual state and the full possession

of language [30]. This was motivated by their observation that users often enter words
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in grammatically incoherent orders when formulating theirsearch queries. Much more

recently, Huang et al. [99] observe that search queries are composed in a very different

linguistic style from that of the document body. They identify the scope for leveraging this

style discrepancy for search query processing on a large scale, and show improvements

in tasks like spelling correction and query segmentation using language models estimated

from large volumes of query logs.

2.7 Scope of further work

In this chapter, we have provided a literature survey on the evolving perspectives on search

query syntax. We have seen how IR systems that originally treated queries as bags-of-

words in the Boolean and vector space models, have gradually learnt to incorporate relative

term ordering through language models, dependence models and term proximity models.

Specifically, we have looked at past efforts on (i) identifying syntactic units in Web queries,

(ii) annotating roles of syntactic units in queries and their relationships to query intent, and

(iii) understanding the syntactic complexity of search queries. In (i), we first reviewed

research on named entity recognition and noun phrase detection in queries (where the aim

was to identify units that were typically named entities andnoun phrases), followed by

query segmentation, which partitions the entire query intonon-overlapping sequences of

words. In (ii), we saw how the overall query intent is now being associated with specific

words mentioned by the user, and surveyed attempts at automatically inferring roles of such

words within queries (for example, intent heads, intent phrases and query modifiers). In

(iii), we found that a number of researchers in the past have indicated that queries possess

linguistic features of their own. Parallelly, we also saw that a group of researchers believe

that since essentially queries are borrowing from a parent NL, techniques like POS tagging

that work for the parent NL should be applicable for queries as well. Finally, we looked at

principles of understanding the syntactic complexity of NLtext, and the role that artificial

synthesis can play in determining such complexity. We now outline a few directions for

further work along each of these three lines.

Past approaches to query segmentation miss out on the uniquesyntactic properties of

queries due to a bias towards projecting NL syntax on to queries. A better query segmen-
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tation algorithm that primarily relies on query logs to discover syntactic units in queries

needs to be developed and applied to document retrieval. At this stage when query seg-

mentation has been around for about a decade, the research community would also be

benefited by a generic retrieval-based evaluation framework, that can conveniently decou-

ple the algorithm and the evaluation modules. This is motivated by the fact that the end

user of segmentation is the search engine and human annotations may not always reflect

the best partitioning from an IR perspective. Finally, development of a nested, or hierar-

chical query segmentation strategy using query logs that can discover segments embedded

inside bigger segments, along with a mechanism for using it for improving IR, can address

the problems of granularity and word adjacency requirements that are associated with flat,

or non-hierarchical segmentation.

There is a need to consolidate several proposals for a segment role induction framework

that talks about related concepts but are applicable to different classes of queries. Such an

overarching framework should be generally applicable for all types of queries, and not

restricted to categories like noun phrase queries, named entity queries, or entity-attribute

queries. It has been proposed that the Web (document) space and user (query) space must

be modeled separately [102]. Thus, to identify true user intent, a role induction framework

must rely only on query logs, and must be able to label units inthe context of a query with

minimum runtime overhead for query processing. It is also preferable if the framework

uses unsupervised learning to associate roles with segments. Finally, it is important to

make direct connections between the role induction strategy and its application to improve

the quality of search results.

Several works that posit linguistic approaches to query understanding (for example,

POS tagging) are based on the fundamental assumption that queries issued in a certain

language, say English, will borrow grammatical artifacts of that language (like nouns and

noun phrases). This assumption is biased for the following reason: a noun in English

is called a noun because it follows a particular syntactic distribution; it is quite unlikely

that the same word will behave as a noun in a query either from the point of statistical

distribution or its cognitive interpretation by the users.Thus, if queries are to be understood

linguistically, they should be analyzed from the first principles rather than superimposing

the grammatical syntax of NLs and thereby masking their truesyntactic properties. On

the other hand, while some researchers have hypothesized that queries form a new and



2.7 Scope of further work 39

unique linguistic system, there is no systematic and comprehensive study of the syntactic

properties of Web queries that can convincingly bring out this fact. The challenge, of

course, is to identify the unique syntactic features of an NLthat make it different from any

random or artificially generated sequence of symbols. Thus,a holistic approach based on

the first principles is required that can provide an estimateof the syntactic complexity of

search queries, and quantify its proximity to its parent NL.

With a detailed understanding of the state-of-the-art, we now move on to report our

contributions in this thesis. In the next two contributory chapters, we study algorithms and

evaluation strategies for non-hierarchical and hierarchical query segmentation. Specifically,

Chapter3 proposes a (flat) query segmentation algorithm using query logs and Wikipedia

titles, and develops a retrieval-based evaluation framework for assessing the potential of a

segmentation algorithm. In Chapter4, we devise a nested query segmentation algorithm

based on only query logs, and present a deterministic way of leveraging the hierarchical

query syntax to improve document ranking. Chapter5 focuses on inducing and understand-

ing simple roles that segments perform in search queries. The final contributory chapter,

Chapter6, analyzes the syntactic complexity of search queries at corpus and query-levels

using model generated datasets.





Chapter 3

Discovering Syntactic Units by Flat

Query Segmentation

3.1 Introduction

This chapter and the next deal with query segmentation and techniques to use it for im-

proving retrieval and ranking. Specifically, this chapter deals with flat, or non-hierarchical

query segmentation, where we propose an algorithm based on query logs and Wikipedia

titles, and a retrieval-based evaluation framework. The next chapter studies nested, or hi-

erarchical query segmentation, and a method for directly using it to improve document

ranking. A background study which brought forward the importance of the problems, as

well as the existing literature related to the problems, have been presented in Chapter2.

Query segmentation is the process of dividing a query into its individual syntactic

units [137]. To be specific, aflat segmentation strategy partitions the query into a se-

quence of non-overlapping words. For example, the search query singular value

decomposition online demo can be broken down into the constituent syntactic

units of singular value decomposition andonline demo. All Web docu-

ments containing the individual termssingular, value anddecomposition are not

necessarily relevant for this query. Rather, one can almost always expect to find the segment

41
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singular value decomposition in the relevant documents. In contrast, although

online demo is a segment, finding the phrase or some variant of it may not affect the

relevance of the document. Hence, the scope of query segmentation goes beyond the de-

tection of multiword named entities. Rather, segmentation leads to a better understanding

of the query and is crucial to the search engine for improvingIR performance.

Previous research has expressed and addressed the need for identification of these units.

Towards this end, various external resources such as Webpages [29, 99, 185, 216, 240],

search result snippets [37] and Wikipedia titles [28,82,84,216] have been used. Although

these methods can help in retrieval, query expansion and query suggestion, we strongly be-

lieve that they miss out on the unique syntactic properties of queries due to a bias towards

projecting NL syntax on queries. Thus, we think that the linguistic syntax of queries is

distinct from that of the parent NL (i.e., English, in our case); the first step towards under-

standing this syntax is to understand the nature of the constituent word groups. These word

groups should be identified solely on the basis of queries, because use of external resources

raises the risk of projecting NL syntax onto the queries; anda proper understanding of this

syntax coupled with automatic techniques for parsing it canlead to significant performance

improvements in various IR tasks. In this work, we take the first steps to unravel the syntax

of queries by proposing an unsupervised method for query segmentation that primarily uses

query logs. As we shall see, the segments identified by our method do not necessarily align

with NL segments, yet it is clear that they are meaningful.

Next, we note that there is a broad consensus in the literature that query segmentation

can lead to better retrieval performance [28, 29, 84, 137, 216]. However, most automatic

segmentation techniques [29,37,84,137,216,240] have so far been evaluated only against

against queries segmented by human annotators. Such an approach implicitly assumes that

a segmentation technique that scores better against human annotations will also automati-

cally lead to better IR performance. We challenge this approach on multiple counts. First,

there has been no systematic study that establishes the quality of human segmentations

in the context of IR performance. Second, grammatical syntax in queries is not as well-

understood as NL sentences where human annotations have proved useful for training and

testing of various NLP tools. This leads to considerable inter-annotator disagreement when

humans segment search queries [216]. Third, good quality human annotations for segmen-

tation can be difficult and expensive to obtain for a large setof test queries. Thus, there is
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a need for a more direct IR-based evaluation framework for assessing query segmentation

algorithms. This is the second objective of this contributory chapter.

The rest of the chapter is organized as follows. In Section3.2, we provide our algo-

rithm for query segmentation using query logs and Wikipediatitles. Section3.3introduces

our evaluation framework and its design philosophy. Section 3.4 presents the dataset and

the segmentation algorithms compared on our framework. Section 3.5 discusses the ex-

perimental results and insights derived from them. In Section 3.6, we discuss a few re-

lated issues about our dataset construction and inter-annotator agreement. In Section3.7,

we present ideas for bringing together the allied concepts of query segmentation and NL

chunking. We conclude this chapter by summarizing our contributions and suggesting fu-

ture work in Section3.8.

3.2 Query segmentation algorithm

We are given a query log, which is a large collection of searchqueries. Let us consider a

candidate MWEM = 〈w1 w2 w3 . . . wn〉 wherewj-s denote the words constitutingM.

Let {q1, q2, q3, . . ., qk} denote the subset of queries in the log that contain all the words

ofM, though not necessarily occurring together as ann-gram. Our premise is that search

queries can be viewed as bags of multiword expressions (MWEs), which is to say that any

permutation of the MWEs constituting a particular search query will effectively represent

the same query. Thus, to test if an observedn-gram is an MWE, we could ask the question

if the constituents of an MWE appear together more frequentlythan they would under a

bag-of-words null model. We now formalize this intuition ina new test of significance for

detecting MWEs in Web search queries.

Let Xi be the indicator variable for the event “M occurs in the queryqi”, and let

Prob[Xi = 1] denote the probability of this event. Also, letli be the length of queryqi in

words. Then, there are(li−n+1) locations whereM can be positioned inqi, and for each

choice of location there are(li − n)! ways of permuting the remaining(li − n) non-MWE

words ofqi. Thus, we can write the probability of[Xi = 1] under the bag-of-words model

(our null model) as follows:
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Prob[Xi = 1] =
(li − n+ 1)× (li − n)!

li!
=

(li − n+ 1)!

li!
(3.1)

We defineX =
∑

i Xi (which models the number of times the words ofM appear

together in thek queries). We use Hoeffding’s Inequality [94] to obtain an upper-boundδ

on the probability of[X = N ], whereN denotes the observed value ofX in the data (also

referred to as the frequency ofM):

Prob[X ≥ N ] ≤ exp(−
2(N − E(X))2

k
) = δ (3.2)

where, the expectationE(X) is given byE(X) =
∑

i Prob[Xi = 1]. We obtainδ for

eachn-gram (or candidate MWE)M and define−logeδ as the MWE score forM:

Score(M) = −logeδ =
2(N − E(X))2

k
(3.3)

If δ is small, then the surprise factor is higher, indicating a greater chance ofM being

an MWE, and vice versa. We note that unigrams have a score of zero, since their observed

and expected frequencies are equal.

Since queries are generally shorter than NL sentences, onlybigrams and trigrams are

considered (n = 2, 3). For computational reasons, we compute the MWE scores only

for n-grams whose constituent words have each appeared in at least α queries in the log

(whereα is a user-defined threshold). We add ann-gram to the list of significantn-grams

if its MWE score exceedsβ (a second user-defined threshold). In our experiments we used

α = 10 andβ = 0.6k (wherek is the number of queries in which all the words of the

n-gram occur, though not necessarily together). We note thatin this case,β is specific to

every MWE and there is no global threshold. Choosingβ in such a way allows us to be

more selective with the lexicon entries with respect to statistical significance than a global

threshold. We now have a list of significantn-grams and their associated MWE scores. We

use this list to perform unsupervised query segmentation asfollows: First, we compute a

score for each possible segmentation by adding the MWE scoresof individual segments.
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Then, we pick the segmentation that yields the highest segmentation score. Here we use a

dynamic programming approach to search over all possible segmentations.

There are two important novelties in the method:(a) A decision is made on the signifi-

cance of an MWE only on the basis of the number of queries which contain all the terms of

the MWE, thus disallowing frequently misleading unigram statistics to interfere with the

decision, and(b) the segmentation procedure is capable of segmenting queries using only

query logs, not relying on any other external resource. On manual examination of the seg-

mentation results, we found that many segments discovered by our scheme do not seem in-

tuitive to humans, because the human concept of segmentation is largely influenced by NL

grammar. For example, the queryhow to spot a fake bill is segmented ashow

to | spot a fake | bill by our method (pipes mark segmentation boundaries).

While a fake bill is a noun phrase, and therefore, a valid “segment” accordingto the

Standard English grammar, one cannot deny the fact thathow to expresses a class of in-

tent in queries and is found to be associated with diverse concepts such assave money,

play guitar or make tea. Interestingly,spot a fake, which makes very little

sense as an MWE, is in fact quite commonly seen in queries expressing a generic ac-

tion phrase applicable to diverse objects such asvideo, gucci bag or mona lisa

painting. Some other examples of generic query intents discovered bythis method are

information about, difference between andhistory of the.

The proposed algorithm is also capable of detecting named entities such aswindows

media player and nikon d5000, including relatively infrequent ones likevery

hungry caterpillar. However, longer and rarer named entity identification requires

world knowledge and can be addressed by using external resources such as Wikipedia,

though adequate care has to be taken so that the generic intent phrases are not lost in the

process. We next outline the proposed procedure for augmenting our segmentation algo-

rithm using Wikipedia titles.

3.2.1 Enhancement with Wikipedia titles

We now explain how to augment the output of our algoirthm (or any n-gram score
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Algorithm 1 Wiki-Boost(Q′, W )
1: W ′ ← ∅

2: for all w ∈ W do

3: w′ ← Seg-Phase-1(w)

4: W ′ ← W ′ ∪ w′

5: end for

6: W ′-scores← ∅

7: for all w′ ∈ W ′ do

8: w′-score←MI(w′) based on Q′

9: W ′-scores← W ′-scores ∪ w′-score

10: end for

11: U -scores← ∅

12: for all unique unigrams u ∈ Q′ do

13: u-score← probability(u) in Q′

14: U -scores← U -scores ∪ u-score

15: end for

16: W ′-scores← W ′-scores ∪ U -scores

17: return W ′-scores

aggregation based segmentation algorithm) with Wikipediatitles1. We call this procedure

Wiki-Boost. Inputs required are a list of queriesQ′ already segmented by the original

algorithm (say,Seg-Phase-1) andW , the list of all stemmed Wikipedia titles (4, 508, 386

entries after removing one-word entries and those with non-ASCII characters at the time

of experimentation in April 2011). We compute the Mutual Information (MI) score [185]

of ann-segment Wikipedia titlew′ (segmented bySeg-Phase-1) by taking the higher of

the MI scores of the first(n− 1) segments with the last segmentand the first segment and

the last(n − 1) segments. The frequencies of alln-grams are computed fromQ′. Scores

for unigrams are defined to be their probabilities of occurrence. Thus, the output of the

Wiki-Boostis a list of MI-scores for each Wikipedia title inW .

Following this, we use a second segmentation strategy (say,Seg-Phase-2) that takes as

input q′ (the queryq segmented bySeg-Phase-1) and tries to further join the segments of

1http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-all-titles.gz, Accessed March 24, 2014

http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-all-titles.gz
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q′ such that the product of scores of the candidate output segments, computed based on

the output ofWiki-Boost, is maximized. A dynamic programming approach is again found

to be helpful in searching over all possible segmentations in Seg-Phase-2. The output of

Seg-Phase-2 is the final segmentation output.

3.3 Query segmentation evaluation

Now that we have a working flat segmentation algorithm in place, we now move on to our

framework for an IR-based evaluation. We propose a retrieval-based evaluation framework

for query segmentation that requires only human relevance judgments (RJs) for query-URL

pairs for computing the performance of a segmentation algorithm – such relevance judg-

ments are anyway needed for training and testing of any IR engine. A fundamental problem

in designing an IR-based evaluation framework for segmentation algorithms is to decou-

ple the effect of segmentation accuracy from the way segmentation is used for IR. This

is because a query segmentation algorithm breaks the input query into, typically, a non-

overlapping sequence of words (segments), but it does not prescribe how these segments

should be used during the retrieval and ranking of the documents for that query. We resolve

this problem by providing a formal model of query expansion for a given segmentation; the

various queries obtained can then be issued to any standard IR engine, which we assume to

be a black box.

We conduct extensive experiments within our framework to understand the performance

of several state-of-the-art query segmentation schemes [84,137], our own algorithms and

segmentations by three human annotators. Our experiments reveal several interesting facts

such as: (a) Segmentation is actively useful in improving IRperformance, even though sub-

mitting all segments (detected by an algorithm) in double quotes to the IR engine degrades

performance; (b) All segmentation strategies, including human segmentations, are yet to

reach the best achievable limits in IR performance; (c) In terms of IR metrics, some of the

segmentation algorithms perform as good as the best human annotator and better than the

average/worst human annotator; (d) Current match-based metrics for comparing query seg-

mentation against human annotations are only weakly correlated with the IR-based metrics,

and cannot be used as a proxy for IR performance; and (e) Thereis scope for improvement
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for the matching metrics that compare segmentations against human annotations by differ-

entially penalizing the straddling, splitting and joiningof reference segments. In short, the

proposed evaluation framework not only provides a formal way to compare segmentation

algorithms and estimate their effectiveness in IR, but also helps us to understand the gaps

in human annotation-based evaluation. Finally, the framework provides valuable insights

regarding the segmentations that can be used for improvement of the algorithms.

3.3.1 The evaluation framework

We now present our framework for the evaluation of query segmentation algorithms based

on IR performance. Letq denote a search query and letsq = 〈sq1 , . . . , s
q
n〉 denote a seg-

mentation ofq such that a simple concatenation of then segments equalsq, i.e., we have

q = (sq1 + · · · + sqn), where + represents the concatenation operator. We are given a seg-

mentation algorithmA and the task is to evaluate its retrieval performance. We require the

following resources:

1. A test setQ of unquoted search queries.

2. A setU of documents (or URLs) out of which search results will be retrieved.

3. Relevance judgmentsr(q, u) for query-URL pairs

(q, u) ∈ Q× U . The set of all relevance judgments are collectively denoted byR.

4. An IR engine that supports quoted queries as input.

The resources needed by our evaluation framework are essentially the same as those

needed for the training and testing of a standard IR engine, namely, queries, a document

corpus and a set of relevance judgments. Akin to the trainingexamples required for an IR

engine, we only require relevance judgments for a small and appropriate subset ofQ × U

(each query needs only the documents in its own pool to be judged) [222].

It is useful to separate the evaluation of segmentation performance, from the question

of how to best exploit the segments to retrieve the most relevant documents. From an
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IR perspective, a natural interpretation of a segment couldbe that it consists of words

that must appear together, in the same order, in documents where the segment is deemed

to match [29]. This can be referred to asordered contiguity matching. While this can

be easily enforced in modern IR engines through use of doublequotes around segments,

we observe that not all segments must be used this way (see Metzler and Croft [148] for

related ideas and experiments in a different context). Somesegments may admit more

general matching criteria, such asunordered or intruded contiguity(e.g., a segmenta b

may be allowed to matchb a ora c b in the document). The case of unordered intruded

matching may be restricted underlinguistic dependenceassumptions (e.g.,a b can match

a of b or b in a). Finally, some segments may even play non-matching roles (e.g.,

when the segment specifies user intent, likehow to andwhere is). Thus, there may

be several different ways to exploit the segments discovered by a segmentation algorithm.

Within the same query, different segments may also need to betreated differently. For

instance, in the querycannot view | word files | windows 7, the first one

might be matched using intruded ordered occurrence (cannot properly view), the

second may be matched under a linguistic dependency model (files in word) and the

last under ordered contiguity.

Intruded contiguity and linguistic dependency may be difficult to implement for the

broad class of general Web search queries. Identifying how the various segments of a

query should be ideally matched in the document is quite a challenging and unsolved re-

search problem. On the other hand, an exhaustive expansion scheme, where every segment

is expanded in every possible way, is computationally expensive and might introduce noise.

Moreover, current commercial IR engines do not support any syntax to specify linguistic

dependence or intruded or unordered occurrence based matching. Hence, in order to keep

the evaluation framework in line with the current IR systems, we focus on ordered con-

tiguity matching which is easily implemented through the use of double quotes around

segments. However, we note that the philosophy of the framework does not change with

increased sophistication in the retrieval system – only theexpansion sets for the queries

have to be appropriately modified.

The theoretical framework proposed for matching terms inside segments at the doc-

ument side is more general, and can potentially handle ordered, unordered and intruded

matches and linguistic dependencies. However, current commercial search engines cannot
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Table 3.1: Example of generation of quoted versions for a segmented query.

Segmented query Quoted versions

we are the people song lyrics

we are the people "song lyrics"

we are "the people" song lyrics

we are | the people | song lyrics we are "the people" "song lyrics"

"we are" the people song lyrics

"we are" the people "song lyrics"

"we are" "the people" song lyrics

"we are" "the people" "song lyrics"

handle such advanced matching scenarios due to the additional time complexity introduced.

Hence, in our implementation, we only considered strictly ordered matches for segment

terms, supported in any standard text search engine (generally through the use of double

quotes, often referred to asphrase matching).

We propose an evaluation framework for segmentation algorithms that generates all

possible quoted versions of a segmented query (see Table3.1) and submits each quoted

version to the IR engine. The representative query example has been chosen by hand to

illustrate the task. The corresponding ranked lists of retrieved documents are then assessed

against relevance judgments available for the query-URL pairs. The result quality of the

best-performing quoted version is used to measure the retrieval performance of the query

segmentation algorithm.

Quoted query version generation

Let the segmentation output by algorithmA be denoted byA(q) = sq = 〈sq1 , . . . , s
q
n〉.

We generate all possiblequoted versionsof the queryq based on the segments inA(q).

In particular, we defineA0(q) = (sq1 + · · · + sqn) with no quotes on any of the segments,

A1(q) = (sq1 + · · · + “sqn”) with quotes only around the last segmentsqn, and so on. Since

there aren segments inA(q), this process will generate2n versions of the query,Ai(q), i =

0, . . . , 2n−1. We note that ifbi = (bi1, . . . , bin) be then-bit binary representation ofi, then
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Ai(q) will apply quotes to thejth segmentsqj iff bij = 1. We deduplicate this set, because

{Ai(q) : i = 0, . . . , 2n − 1} can contain multiple versions that essentially represent the

same quoted query version (when single words are inside quotes). For example, the query

versions"harry potter" "game" and"harry potter" game are equivalent in

terms of the input semantics of an IR engine. The resulting set of unique quoted query

versions is denoted byQA(q).

Document retrieval using IR engine

For eachAi(q) ∈ QA(q) we use the IR engine to retrieve a ranked listOi of documents out

of the document poolU that matched the given quoted query versionAi(q). The number

of documents retrieved in each case depends on the IR metricswe will want to use to assess

the quality of retrieval. For example, to compute an IR metric at the topk positions, we

would require that at leastk documents be retrieved from the pool.

Measuring retrieval against relevance judgments

Since we have relevance judgments (R) for query-URL pairs inQ× U , we can now com-

pute IR metrics such as normalized Discounted Cumulative Gain (nDCG) [108], Mean

Average Precision (MAP) [197] or Mean Reciprocal Rank (MRR) [223] to measure the

quality of the retrieved ranked listOi for queryq. We use@k variants of each of these mea-

sures which are defined to be the usual metrics computed afterexamining only the top-k

positions. For example, we can computenDCG@k for queryq and retrieved document-list

Oi using the following formula:

nDCG@k(q,Oi , R) = r(q,O1
i ) +

k
∑

j=2

r(q,Oj
i )

log2 j
(3.4)

whereOj
i , j = 1, . . . , k, denotes thejth document in the ranked-listOi andr(q,Oj

i )

denotes the associated relevance judgment fromR.
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Oracle score using best quoted query version

Different quoted query versionsAi(q) (all derived from the same basic segmentationA(q)

output by the segmentation algorithmA) retrieve different ranked lists of documentsOi. As

discussed earlier, automatic apriori selection of a good (or the best) quoted query version is

a difficult problem. While different strategies may be used toselect a quoted query version,

we would like our evaluation of the segmentation algorithmA to be agnostic of the version-

selection step. To this end, we select the best-performingAi(q) from the entire setQA(q)

of query versions generated and use it to define ouroracle scorefor q andA under the

chosen IR metric [131]. For example, the oracle scoreΩ·(·, ·) for nDCG@k is as defined

in the equation below:

ΩnDCG@k(q,A) = max
Ai(q)∈QA(q)

nDCG@k(q,Oi , R) (3.5)

whereOi denotes the ranked list of documents retrieved by the IR engine when pre-

sented withAi(q) as the input when processing queryq and segmentation algorithmA,

whereAi(q) is described during quoted query version generation andi indexes the set of

quoted versions. We note thatQA(q) (set of unique quoted query versions) always contains

the original unsegmented version of the query.R refers to the set of all relevance judg-

ments. We refer to such anΩ·(·, ·) as theOraclescore. The evaluation metricnDCG@k

is defined in Equation3.4 wherek refers to the number of documents retrieved for each

query andnDCG is computed after looking at the top-k documents only.

This forms the basis of our evaluation framework. We note that there can also be other

ways to define this oracle score. For example, instead of seeking the best IR performance

possible across the different query versions, we could alsoseek the minimum performance

achievable byA irrespective of what version-selection strategy is adopted. This would give

us a lower bound on the performance of the segmentation algorithm. However, the main

drawback of this approach is that the minimum performance isalmost always achieved by

the fully quoted version (where every segment is in double quotes) (see Table3.8). Such

a lower bound would not be useful in assessing the comparative performance of query

segmentation algorithms.
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QVRS computation

Once the oracle scores are obtained for all queries inQ, we can compute the average oracle

score achieved byA. We refer to this as the Quoted Version Retrieval Score (QVRS) of

A with respect to test setQ, document poolU and relevance judgmentsR. For example,

using the oracle with the nDCG@k metric, we can define the QVRS score as follows:

QV RS(Q,A, nDCG@k) =
1

|Q|

∑

q∈Q

ΩnDCG@k(q,A) (3.6)

Similar QVRS scores can be computed using other IR metrics, such as MAP@k and

MRR@k. For our experiments, we report results using nDCG@k, MAP@k, and MRR@k,

for k = 5 and10 as most Web users examine only the first five or ten results.

3.4 Dataset and compared algorithms

In this section, we describe the dataset used and briefly introduce the algorithms compared

on our framework.

3.4.1 Test set of queries

We selected a random subset of500 queries from our query log (Section1.2). We used

the following criteria to filter the logs before extracting arandom sample: (1) Exclude

queries with non-ASCII characters, (2) Exclude queries thatoccurred fewer than 5 times

and more than 15 times in the logs, and (3) Restrict query lengths to between five and

eight words. Shorter queries rarely contain multiple multiword segments, and when they

do, the entire queries are mostly single named entities thatcan be easily detected using

dictionaries. Moreover, traditional search engines usually give satisfactory results for short

queries. On the other hand, queries longer than eight words (only 3.24% of all queries in

our log) are usually error messages, complete NL sentences or song lyrics, that need to be

addressed separately.
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A note on query frequency.We would like to clarify here that query frequency was not

used as a filter to build our training corpus. However, while constructing a small (relative

to the size of the training log) test corpus of500 queries, we chose to impose a frequency

restriction for the range five to fifteen, i.e., only queries having a count in this range were

considered for sampling. This is because we wanted to focus on relatively rarer queries

in the log, which would not have sufficient clickthrough dataand hence improved query

analysis techniques like segmentation are meaningful to the search engine. The upper

(fifteen) and lower (five) bounds of this range were determined heuristically for building

the original candidate set for randomly sampling500 queries. Specifically, we observed

that lowering the threshold beyond five introduced several apparently non-sensical queries

and ones with typographical errors. Since we did not want to involve manual cleaning of

the test set, and since such queries are not desirable while building a benchmark collection,

we chose to retain the lower frequency threshold at five.

We denote this set of500 queries byQ, the test set of unsegmented queries needed

for all our evaluation experiments. The average length of queries inQ (our dataset) is

5.29 words. The average query length was4.31 words in the Bergsma and Wang2007

Corpus2 (henceforth, BWC07) [29, 84]. Each of these500 queries were independently

segmented by three human annotators (Computer Science graduate students each issuing

around20-30 search queries per day in the age group25-30 years) who were asked to mark a

contiguous chunk of words in a query as asegmentif they thought that these words together

formed a coherent semantic unit. The annotators were free torefer to other resources and

Web search engines during the annotation process, especially for understanding the query

and its possible context(s). We shall refer to the three setsof annotations (and also the

corresponding human annotators) asHA, HB andHC .

It is important to mention that the queries inQ have some amount of word level over-

lap, even though all the queries have very distinct information needs. Thus, a document

retrieved from the pool might exhibit good term level match for more than one query in

Q. This makes our corpus an interesting testbed for experimenting with different retrieval

systems. There are existing datasets, including BWC07, that could have been used for this

study. However, refer to Section3.6.1for an account of why building this new dataset was

2http://bit.ly/1fBJ5O9, Accessed 31 March 2014.

http://bit.ly/1fBJ5O9
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crucial for our research.

3.4.2 Document pool and RJs

Each query inQ was segmented using all the nine segmentation strategies considered in

our study (six algorithms and three humans). For every segmentation, all possible quoted

versions were generated (total4, 746) and then submitted to the Bing API3 and the top

ten documents were retrieved. We then deduplicated these URLs to obtain14, 171 unique

URLs, formingU . As mentioned earlier, we used nine strategies for retrieval and found that

on an average, adding the quoted query versions by any one of the strategies to the versions

generated by the remaining eight strategies resulted in about one new quoted query version

for every two queries. These new versions may or may not introduce new documents to

the pool. We observed that for71.4% of the queries there is less than50% mean overlap

between the top ten URLs retrieved for the different quoted versions. This indicates that

different ways of quoting the segments in a query does make a difference in the search

results. By varying the pool depth (ten in our case), one can roughly control the number of

relevant and non-relevant documents entering the collection.

For each query-URL pair, where the URL has been retrieved for atleast one of the

quoted versions of the query (approx.28 per query), we obtained three independent sets

of relevance judgments from human users. These users (again, graduate students in the

25 − 30 year age group) were different from annotatorsHA, HB andHC who marked

the segmentations, but having similar familiarity with search systems. For each query, the

corresponding set of URLs was shown to the users after deduplication and randomization

(to prevent position bias for top results), and the users were asked to mark whether the URL

was irrelevant (score =0), partially relevant(score =1) or highly relevant(score =2) to

the query. We then computed the average rating for each query-URL pair (the entire set

formingR) over the three annotators, which has been used for subsequent nDCG, MAP and

MRR computations. nDCG [108] is defined as in Equation3.4. MAP [197] and MRR [223]

are defined as follows:

3http://msdn.microsoft.com/en-us/library/dd251056.aspx, Accessed 31 March 2014.

http://msdn.microsoft.com/en-us/library/dd251056.aspx
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Table 3.2: Segmentation algorithms compared on our framework.

Algorithm Training data

Li et al. [137] Click data, Webn-gram probabilities

Hagen et al. [84] Webn-gram frequencies, Wikipedia titles

Proposed Query logs

Proposed + Wiki Query logs, Wikipedia titles

PMI-W [84] Webn-gram probabilities (used as baseline)

PMI-Q Query logs (used as baseline)

MAP =
1

|Q|

|Q|
∑

q=1

∑n
k=1 P@k × rel(k)

Number of relevant documents
(3.7)

MRR =
1

|Q|

|Q|
∑

q=1

1

Rankq
(3.8)

where|Q| is the number of queries in our query test setQ, n is the number of search

results,P@k is theprecisionat rankk (i.e., the fraction of thek retrieved documents that

are also relevant),rel(k) is zero or one according as the document at rankk is non-relevant

or relevant, andRankq is the rank of the first relevant or “correct” result for queryq.

Since we needed to convert our graded relevance judgments tobinary values for computing

MAP@k, URLs with ratings of1 and2 were considered as relevant (responsible for the

generally high values) and those with0 as irrelevant. For MRR, only URLs with ratings of

2 were considered as relevant. Please refer to Table3.9 in Section3.6.3for inter-annotator

agreement figures and other related discussions. We will refer to this dataset asSGCL12

(last name initials of the four inventors Saha Roy, Ganguly, Choudhury and Laxman, and

the year in which this work was performed (2012)) in future sections and chapters.
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3.4.3 Segmentation algorithms

Table3.2 lists the six segmentation algorithms that have been studied in this work. Li et

al. [137] use the expectation maximization algorithm to arrive at the most probable segmen-

tation, while Hagen et al. [84] show a simple frequency-based method produces a perfor-

mance comparable to the state-of-the-art. Our proposed technique (Section3.2) uses only

query logs for segmenting queries. As discussed earlier, the technique can be improved

if Wikipedia titles are used for the detection of long named entities (Section3.2.1). The

Point-wise Mutual Information (PMI)-based algorithms [84,114,185] are used as baselines.

The thresholds for PMI-W and PMI-Q were chosen to be8.141 and0.156 respectively, that

maximized theSeg-F(Section3.5.2) on our development set [84].

3.4.4 Public release of data

The test set of search queries along with their manual and some of the algorithmic segmen-

tations, the theoretical best segmentation output that canserve as an evaluation benchmark

(BQVBF in Section3.5.1), and the list and contents of URLs that serve as our document

corpus is available for public use4. The relevance judgments for the query-URL pairs have

also been made public which will enable the community to use this dataset for evaluation

of any new segmentation algorithm.

3.5 Experiments and observations

In this section we present experiments, results and the key inferences made from them.

4http://cse.iitkgp.ac.in/resgrp/cnerg/qa/querysegmentation.html, Accessed 31 March 2014.

http://cse.iitkgp.ac.in/resgrp/cnerg/qa/querysegmentation.html
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Table 3.3: Oracle results for IR-based evaluation of segmentation algorithms.

Metric Unseg. Li Hagen Proposed Proposed + PMI-W PMI-Q HA HB HC BQVBF

query et al. [137] et al. [84] Wiki

nDCG@5 0.688 0.752* 0.763* 0.745 0.767* 0.691 0.766* 0.770 0.768 0.759 0.825

nDCG@10 0.701 0.756∗ 0.767* 0.751 0.768* 0.704 0.767* 0.770 0.768 0.763 0.832

MAP@5 0.882 0.930* 0.942* 0.930* 0.945* 0.884 0.932* 0.944 0.942 0.936 0.958

MAP@10 0.865 0.910* 0.921* 0.910* 0.923* 0.867 0.912* 0.923 0.921 0.916 0.944

MRR@5 0.538 0.632∗ 0.649* 0.609 0.650* 0.543 0.648* 0.656 0.648 0.632 0.711

MRR@10 0.549 0.640* 0.658* 0.619 0.658* 0.555 0.656* 0.665 0.656 0.640 0.717

The highest value in a row (excluding theBQVBF column) and those with no statistically

significant difference with the highest value are marked inboldface. The values for

algorithms that perform better than or have no statistically significant difference with the

minimumof the human segmentations are marked with *. The pairedt-test was performed

and the null hypothesis was rejected if thep-value was less than0.05.

3.5.1 IR experiments

For the retrieval-based evaluation experiments, we use theLucene5 text retrieval system,

which is publicly available as a code library. In its defaultconfiguration, Lucene does

not perform any automatic query segmentation, which is veryimportant for examining

the effectiveness of segmentation algorithms in an IR-basedscheme. Double quotes can be

used in a query to force Lucene to match the quotedphrase(in Lucene terms) exactly in the

documents. Starting with the segmentations output by each of the six algorithms as well

as the three human annotations, we generated all possible quoted query versions, which

resulted in a total of4, 746 versions for the500 queries. In the notation of Section3.3, this

corresponds to generatingQA(q) for each segmentation methodA (including one for each

human segmentation) and for every queryq ∈ Q. These quoted versions were then passed

through Lucene to retrieve documents from the pool. For eachsegmentation scheme, we

then use the oracle described in Section3.3 to obtain the query version yielding the best

result (as determined by the IR metrics – nDCG, MAP and MRR computed according to

the human relevance judgments). These oracle scores are then averaged over the query set

to give us the QVRS measures.

5http://lucene.apache.org/java/docs/index.html, Accessed 31 March 2014.

http://lucene.apache.org/java/docs/index.html
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Table 3.4: Matching metrics withBQV as reference.

Metric Unseg. Li Hagen Proposed Proposed + PMI-W PMI-Q HA HB HC BQVBF

query et al. [137] et al. [84] Wiki

Qry-Acc 0.044 0.056 0.082* 0.058 0.094* 0.046 0.104* 0.086 0.074 0.064 1.000

Seg-Prec 0.226* 0.176* 0.189* 0.206* 0.203* 0.229* 0.218* 0.176 0.166 0.178 1.000

Seg-Rec 0.325* 0.166* 0.162* 0.210* 0.174* 0.323* 0.196* 0.144 0.133 0.154 1.000

Seg-F 0.267* 0.171* 0.174* 0.208* 0.187* 0.268* 0.206* 0.158 0.148 0.165 1.000

Seg-Acc 0.470 0.624 0.661* 0.601 0.667* 0.474 0.660* 0.675 0.675 0.663 1.000

The highest value in a row (excluding theBQVBF column) and those with no statistically

significant difference with the highest value are marked inboldface. The values for

algorithms that perform better than or have no statistically significant difference with the

minimumof the human segmentations are marked with *. The pairedt-test was performed

and the null hypothesis was rejected if thep-value was less than0.05.

Table 3.5: PMI-Q and Li et al. [137] with respect to matching and IR metrics.

Metric nDCG@10 MAP@10 MRR@10 Qry-Acc Seg-Prec Seg-Rec Seg-F Seg-Acc

PMI-Q 0.767 0.912 0.656 0.341 0.448 0.487 0.467 0.810

Li et al. [ 137] 0.756 0.910 0.640 0.375 0.524 0.588 0.554 0.810

The highest value in a column is marked inboldface.

The results are summarized in Table3.3. Different rows represent the different IR

metrics that were used and columns correspond to different segmentation strategies. The

second column (marked “Unseg. Query”) refers to the original unsegmented query. This

can be assumed to be generated by a trivial segmentation strategy where each word is al-

ways a separate segment. Columns 3-8 denote the six differentsegmentation algorithms

and 9-11 (markedHA, HB andHC) represent the human segmentations. The last column

represents the performance of thebestquotedversions (denoted byBQVBF in table) of the

queries which are computed bybrute force, i.e. an exhaustive search over all possible ways

of quoting the parts of a query (2l−1 possible quoted versions for anl-word query) irrespec-

tive of any segmentation algorithm. The results are reported for two sizes of retrieved URL

lists (k), namely five and ten.

The first observation we make from the results is that human aswell as all algorith-

mic segmentation schemes consistently outperform unsegmented queries for all IR metrics.
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Second, we observe that the performance of some segmentation algorithms are compara-

ble and sometime even marginally better than some of the human annotators. Finally, we

observe that there is a considerable scope for improving IR performance through better

segmentation (all values less thanBQVBF ). We found that applying the proposed query

segmentation algorithm (using Wikipedia titles) can be potentially useful to334 out of the

500 queries in our test set onnDCG@10, i.e., about67% of the queries can be benefited.

For the remaining166 queries, the non-segmented query will retrieve equally good results

as a segmented one. This exact number will vary somewhat on the exact segmentation

algorithm used and the associated metric, but from the general result trends of statistical

significance, the variation will not be very high. The inferences from these observations

are stated later in this section.

3.5.2 Performance under traditional matching metrics

In the next set of experiments, we study the utility of traditional matching metrics that

are used to evaluate query segmentation algorithms againsta gold standard of human seg-

mented queries (henceforth referred to as thereferencesegmentation). These metrics are

listed below [84]:

1. Query accuracy (Qry-Acc): The fraction of queries where the output matches ex-

actly with the reference segmentation.

2. Segment precision (Seg-Prec): The ratio of the number of segments that overlap in

the output and reference segmentations to the number of output segments, averaged

across all queries in the test set.

3. Segment recall (Seg-Rec): The ratio of the number of segments that overlap in the

output and reference segmentations to the number of reference segments, averaged

across all queries in the test set.

4. Segment F-score (Seg-F): The harmonic mean ofSeg-PrecandSeg-Rec.

5. Segmentation accuracy (Seg-Acc): The ratio of correctly predicted boundaries and

non-boundaries in the output segmentation with respect to the reference, averaged
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across all queries in the test set.

We computed the matching metrics for various segmentation algorithms againstHA,

HB andHC . According to these metrics, “Proposed + Wiki” turns out to be the best

algorithm which agrees with the results of IR evaluation. However, the average Kendall-

Tau rank correlation coefficient [118] between the ranks of the strategies as obtained from

the IR metrics (Table3.3) and the matching metrics6 was only0.75. This indicates that

matching metrics are not perfect predictors for IR performance. In fact, we discovered

some costly flaws in the relative ranking produced by matching metrics. One such case

was rank inversions between Li et al. [137] and PMI-Q. The relevant results are shown

in Table3.5, which demonstrate that while PMI-Q consistently performsbetter than Li et

al. [137] under IR-based measures, the opposite inference would havebeen drawn if we

had used any of the matching metrics.

In Bergsma and Wang [29], human annotators were asked to segment queries such

that segments matched exactly in the relevant documents. This essentially corresponds

to determining the best quoted versions for the query. Thus,it would be interesting to

study how traditional matching metrics would perform if thehumans actually marked the

best quoted versions. In order to evaluate this, we used the matching metrics to compare

the segmentation outputs by the algorithms and human annotations againstBQVBF . The

corresponding results are presented in Table3.4. The results show that matching metrics

are very poor indicators of IR performance with respect to theBQVBF . For example, for

three out of the five matching metrics, the unsegmented queryis ranked the best. This

shows that even if human annotators managed to correctly guess the best quoted versions,

the matching metrics would fail to estimate the correct relative rankings of the segmentation

algorithms with respect to IR performance. This fact is alsoborne out in the Kendall-Tau

rank correlation coefficients reported in Table3.6. Another interesting observation from

these experiments is thatSeg-Accemerges as the best matching metric with respect to IR

performance, although its correlation coefficient is stillmuch below one.

6This coefficient is1 when there is perfect concordance between the rankings, and−1 if the trends are

completely reversed.
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Table 3.6: Kendall-Tau coefficients between IR and matching metrics.

Metric Qry-Acc Seg-Prec Seg-Rec Seg-F Seg-Acc

nDCG@10 0.432 −0.854 −0.886 −0.854 0.674

MAP@10 0.322 −0.887 −0.920 −0.887 0.750

MRR@10 0.395 −0.782 −0.814 −0.782 0.598

The highest value in a row is marked inboldface.

3.5.3 Inferences

Segmentation is helpful for IR.By definition,Ω·(·, ·) (i.e., the oracle) values for every IR

metric for any segmentation scheme are at least as large as the corresponding values for

the unsegmented query. Nevertheless, for every IR metric, we observe significant perfor-

mance benefits for all the human and algorithmic segmentations (except for PMI-W) over

the unsegmented query. This indicates that segmentation isindeed helpful for boosting

IR performance. Thus, our results validate the prevailing notion and some of the earlier

observations [28,137] that segmentation can help improve IR.

Human segmentations are a good proxy, but not a true gold standard. Our results

indicate that human segmentations perform reasonably wellon IR metrics. The best of the

human annotators beats all the segmentation algorithms, onalmost all the metrics. There-

fore, evaluation against human annotations can indeed be considered as the second best

alternative to an IR-based evaluation (though see below for criticisms of current matching

metrics). However, if the objective is to improve IR performance, then human annotations

cannot be considered a true gold standard. There are at leastthree reasons for this, as

explained below.

First, in terms of IR metrics, some of the state-of-the-art segmentation algorithms are

performing as well as human segmentations (no statistically significant difference). Thus,

further optimization of the matching metrics against humanannotations is not going to

improve the IR performance of the segmentation algorithms.Thus, evaluation on human

annotations might become a limiting factor for the current segmentation algorithms.
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Second, the IR performance of the best quoted version of the queries derived through

our framework is significantly better than that of human annotations (last column, Ta-

ble 3.3). This means that humans fail to predict the correct boundaries in many instances.

Thus, there is a scope for improvement for human annotations.

Third, IR performance of at least one of the three human annotators (HC) is worse than

some of the algorithms studied. In other words, while some annotators (such asHA) are

good at guessing the “correct” segment boundaries that willhelp IR, not all annotators can

do it well. Therefore, unless the annotators are chosen and guided properly, one cannot

guarantee the quality of annotated data for query segmentation. If the queries in the test set

have multiple intents, this issue becomes an even bigger concern.

Matching metrics are misleading. As discussed earlier and demonstrated by Ta-

bles 3.4 and 3.6, the matching metrics provide unreliable ranking of the segmentation

algorithms even when applied against a true gold standard,BQVBF , that, by definition,

maximizes IR performance. This counter-intuitive observation can be explained as follows:

either the matching metrics, or the IR metrics (or probably both) are misleading. Given that

IR metrics are well-tested and generally assumed to be acceptable, we are forced to con-

clude that the matching metrics do not really reflect the quality of a segmentation with

respect to a gold standard. Indeed, this can be illustrated by a simple example.

Example. Let us consider an example query to bethe looney toons show

cartoon network, whose best quoted version turns out to be"the looney toons

show" "cartoon network". The underlying segmentation that can give rise to this

quoted version and therefore can be assumed to be the reference is:

Ref: the looney toons show | cartoon network

The segmentations

(1) the looney | toons show | cartoon | network

(2) the | looney | toons show cartoon | network

are equally bad if one considers the matching metrics ofQry-Acc, Seg-Prec, Seg-Recand

Seg-F(all values being zero) with respect to the reference segmentation. Seg-Accvalues

for the two segmentations are3/5 and1/5 respectively. However, the BQV for (1) ("the

looney" "toons show" cartoon network) fetches better pages than the BQV

of (2) (the looney toons show cartoon network). So the segmentation (2)
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Figure 3.1: Distribution of multiword segments across segmentation strategies.

provides no IR benefit over the unsegmented query and hence performs worse than (1)

on IR metrics. However, the matching metrics, except forSeg-Accto some extent, fail to

capture this difference between the segmentations.

Distribution of multiword segments across queries gives insights about effective-

ness of segmentation strategy.The limitation of the matching metrics can also be un-

derstood from the following analysis of the multiword segments in the queries. Figure3.1

shows the distribution of queries having a specific number ofmultiword segments (for ex-

ample,1 in the legend indicates the proportion of queries havingonemultiword segment)

when segmented according to the various strategies. We notethat for Hagen et al. [84],

HB, HA and “Proposed + Wiki”, almost all of the queries have two multiword segments.

For HC , Li et al. [137], PMI-Q and the proposed method, the proportion of queries that

have only one multiword segment increases. Finally, PMI-W has almost negligible queries

with a multiword segment.BQVBF is different from all of them and has a majority of

queries with one multiword segment. Now given that the first group generally does the best

in IR, followed by the second, we can say that out of the two multiword segments marked

by these strategies, only one needs to be quoted. PMI-W, as well as unsegmented queries,

are bad because these schemes cannot detect the one crucial multiword segment, quoting

which improves the performance. Nevertheless, these schemes do well for matching met-
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rics againstBQVBF because both have a large number of single word segments. Clearly

this is not helpful for IR. Finally, the proposed scheme, without Wikipedia titles, performs

poorly despite being able to identify a multiword segment inmost of the cases because it is

not identifying the one that is important for an exact-matchbased retrieval performance.

Hence, the matching metrics are misleading due to two reasons. First, they do not

take into account that splitting a useful segment (i.e., a segment which should be quoted

to improve IR performance) is less harmful than joining two unrelated segments. Second,

matching metrics are, by definition, agnostic to which segments are useful for IR. There-

fore, they might unnecessarily penalize a segmentation fornot agreeing on the segments

which should not be quoted, but are present in the reference human segmentation. While

the latter is an inherent problem with any evaluation against manually segmented datasets,

the former can be resolved by introducing a new matching metric that differentially pe-

nalizes splitting and joining of segments. However, we would like to emphasize here that

with the IR system expected to grow in complexity in the future (supporting more flexible

matching criteria), the need for an IR-based evaluation likeours’ becomes imperative.

Based on our new evaluation framework and corresponding experiments, we observe

that “Proposed + Wiki” has the best performance. Nevertheless, the algorithms are trained

and tested on different datasets, and therefore, a comparison amongst the algorithms might

not be entirely fair. This is not a drawback of the framework and can be circumvented

by appropriately tuning all the algorithms on similar datasets. However, the objective of

the current work is not to compare segmentation algorithms;rather, it is to introduce the

evaluation framework, gain insights from the experiments and highlight the drawbacks of

human segmentation-based evaluation.

Effect of choice ofβ on algorithm performance. The parameterβ (Section3.2)

in our segmentation algorithm controls the number of entries that enter the segmentation

lexicon and has values specific to eachn-gram instead of a global threshold. We had tuned

β on a development set to maximize the segmentation accuracy against a set of human

annotations, trying out values from0 to k through steps of0.1k, i.e, 0, 0.1k, 0.2k, and

so on uptok. The way we have definedβ, the ideal value ofβ depends on the query

log and not on the document collection. However, tuningβ to optimize different metrics

will result in different optimal values of beta. For example, when we tried to optimizeβ
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Table 3.7: Effect ofβ on IR performance.

β nDCG@10

0 0.756

0.1k 0.754

0.2k 0.753

0.3k 0.753

0.4k 0.752

0.5k 0.751

0.6k 0.751

0.7k 0.750

0.8k 0.747

0.9k 0.747

k 0.743

The highest value in a row is marked inboldface.

on nDCG@10, an IR metric, we obtained the bestβ to be0, which effectively means no

pruning on statistical significance. However, in a practical situation, due to memory and

time complexity concerns, it may not be possible to admit alln-grams into the lexicon, and

havingβ provides us with a principled way of pruning the lexicon entries. The effect of

variation inβ pn nDCG@10 is shown in Table3.7.

3.6 Related issues

In this section, we will briefly discuss a few related issues that are essential for understand-

ing certain design choices and decisions made during the course of this research.

3.6.1 Motivation for a new dataset

TREC data has been a popular choice for conducting IR-based experiments throughout the

past decade. Since there is no track specifically geared towards query segmentation, the

queries andqrels (query-relevance sets) from the ad hoc retrieval task for the Web Track

would seem the most relevant to our work. However,74% of the50 queries in the2010 Web
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track ad hoc task7 had less than three words. Also, when these50 queries were segmented

using the six algorithms, half of the queries did not have a multiword segment. As discussed

earlier, query segmentation is useful but not necessarily for all types of queries. The benefit

of segmentation may be observed only when there are multiplemultiword segments in the

queries. The TREC Million Query Track, last held in2009, has a much larger set of40, 000

queries8, with a better coverage of longer queries. But since the goal of the track is to test

the hypothesis that a test collection built from several incompletely judged topics is more

useful than a collection built using traditional TREC pooling, there are only about35, 000

query-document relevance judgments for the40, 000 queries. Such sparseqrels are not

suitable here – incomplete assessments, especially for documents near the top ranks, could

cause crucial errors in system comparisons. Yet another option could have been to use

BWC07 asQand create the correspondingUandR. However, this query set is known

to suffer from several drawbacks [84]. A new dataset for query segmentation9 containing

manual segment markups collected through crowdsourcing has been recently made publicly

available (after we had completed construction of our set) by Hagen et al. [84], but it lacks

query-document relevance judgments. These factors motivated us to create a new dataset

suitable for our framework, which has been made available online for use by the research

community (see Section3.4.4).

3.6.2 Retrieval using Bing

Microsoft’s Bing is a large-scale commercial Web search engine that provides an API ser-

vice. Instead of Lucene, which is too simplistic, we could have used Bing as the IR engine

in our framework. However, such a choice suffers from two drawbacks. First, Bing might

already be segmenting the query with its own algorithm as a preprocessing step. Sec-

ond, there is a serious replicability issue: the document pool that Bing uses, i.e. the Web,

changes dynamically with documents added and removed from the pool on a regular basis.

This makes it difficult to publish a static dataset with relevance judgments for all appropri-

ate query-URL pairs that the Bing API may retrieve even for the same set of queries. In

7http://trec.nist.gov/data/web10.html, Accessed 31 March 2014.
8http://trec.nist.gov/data/million.query09.html, Accessed 31 March 2014.
9http://bit.ly/1mETNX5, Accessed 31 March 2014.

http://trec.nist.gov/data/web10.html
http://trec.nist.gov/data/million.query09.html
http://bit.ly/1mETNX5
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Table 3.8: IR-based evaluation using Bing API.

Metric Unseg. All quoted for Oracle for

query Proposed + Wiki Proposed + Wiki

nDCG@10 0.882 0.823 0.989*

MAP@10 0.366 0.352 0.410*

MRR@10 0.541 0.515 0.572*

The highest value in a row is marked inboldface. Statistically significant (p < 0.05 for

pairedt-test) improvement over the unsegmented query is marked with *.

view of this, the main results were reported in this thesis using Lucene.

However, since we used Bing API to constructUand correspondingR, we have the

evaluation statistics using the Bing API as well. In Table3.8 we present the results for

nDCG@10, MRR@10 and MAP@10 for “Proposed + Wiki”. The table reports results for

three quoted version-selection strategies: (i) Unsegmented query only (equivalent to each

word being within quotes), (ii) All segments quoted, and (iii) QVRS(oracle for “Proposed

+ Wiki”). For all the three metrics,QVRSis statistically significantly higher than results for

the unsegmented query. Thus, segmentation can play an important role towards improving

IR performance of the search engine. We note that the strategy of quoting all the segments

is, in fact, detrimental to IR performance. This emphasizesthe point that how the segments

should be matched in the documents is a very important research challenge. Instead of

quoting all the segments, our proposal here is to assume an oracle that will suggest which

segments to quote and which are to be left unquoted for the best IR performance. Philo-

sophically, this is a major departure from the previous ideas of using quoted segments,

where issuing a query by quoting all the segments implies segmentation to be a way to

generate a fully quoted version of the query (all segments indouble quotes). This defini-

tion severely limits the scope of segmentation, which ideally should be thought of as a step

forward towards better query understanding.
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Table 3.9: Inter-annotator agreement on features as observed from ourexperiments.

Feature Pair 1 Pair 2 Pair 3 Mean

Qry-Acc 0.728 0.644 0.534 0.635

Seg-Prec 0.750 0.732 0.632 0.705

Seg-Rec 0.756 0.775 0.671 0.734

Seg-F 0.753 0.753 0.651 0.719

Seg-Acc 0.911 0.914 0.872 0.899

Rel. judg. 0.962 0.959 0.969 0.963

For relevance judgments, only pairs of(0, 2) and(2, 0) were considered disagreements.

3.6.3 Inter-annotator agreement

Inter-annotator agreement (IAA) is an important indicatorfor reliability of manually cre-

ated data. Table3.9reports the pairwise IAA statistics forHA, HB andHC . Since there are

no universally accepted metrics for IAA, we report the values of the five matching metrics

when one of the annotations (sayHA) is assumed to be the reference and the remaining

pair (HB andHC) is evaluated against it (average reported). As is evident from the table,

the values of all the metrics, except forSeg-Acc, is less than0.78 (similar values reported

in Tan and Peng [216]), which indicates a rather low IAA. The value forSeg-Accis close to

0.9, which to the contrary, indicates reasonably high IAA [216]. The last row of Table3.9

reports the IAA for the three sets of relevance judgments (therefore, the actual pairs for this

column are different from that of the other rows). The agreement in this case is quite high.

There might be several reasons for low IAA for segmentation,such as lack of proper

guidelines and/or an inherent inability of human annotators to mark the correct segments

of a query. Low IAA raises serious doubts about the reliability of human annotations for

query segmentation. On the other hand, high IAA for relevance judgments naturally makes

these annotations much more reliable for any evaluation, and strengthens the case for our

IR-based evaluation framework which only relies on relevance judgments. We note that

ideally, relevance judgments should be obtained from the user who has issued the query.

These have been referred to asgold annotations in previous research [21], as opposed to
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silver or bronzeannotations which are obtained from expert and non-expert annotators

respectively who have not issued the query. Gold annotations are preferable over silver or

bronze ones due to relatively higher IAA. Our annotations are silver standard, though very

high IAA essentially indicates that they might be as reliable as gold standard. The high

IAA might also be due to the unambiguous nature of the queries.

3.7 Enhancement with POS tags

Having discussed our primary algorithm and evaluation framework for flat query segmen-

tation, we will explore an interesting idea and discuss how segmentation relying on word

association scores (WAS) can be improved by using POS sequences to detect relatively rare

segments. Conceptually, query segmentation is analogous tochunkingof NL text. Chunk-

ing breaks sentences into syntactic structures like noun phrases or prepositional phrases [3].

Automatic text chunking is usually performed by learning part-of-speech (POS) patterns

from large volumes of human annotated corpora [123, 181]. The annotations, in turn,

are performed using linguistic rules guided by the grammar of the language. Chunking,

however, is distinct from the identification of multiword expressions (MWEs) likethe

last straw, which are word sequences whose meanings are non-compositional [78].

Such MWEs are generally identified using word association scores (WAS) like PMI [52] or

LLR [65]. Lack of well-defined grammatical syntax and absence of human POS-annotated

query logs have led researchers to useMWE detection techniquesto perform unsuper-

visedquery segmentation[82]. However, several potential query segments (chunks) are

not MWEs (e.g.,buy online, how to, driving rules). Our work aims to bridge

this gap between the concepts and techniques behind query segmentation.

Our generic strategy to augment WAS-based segmentation techniques with POS infor-

mation is as follows. First, we construct a lexicon of potential word n-grams from the

corpus (say, a query log). This is usually the first step in a WAS-based query segmentation

algorithm [84,216]. Then we identify underlying POS sequences (or POSn-grams) of the

lexicon entries, and count their frequency of occurrence. Amodified score is then com-

puted for each wordn-gram which is a combination of its original WAS and the lexicon

frequency of its POSn-gram. New entries are introduced into the lexicon according to this
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Figure 3.2: Augmenting unsupervised query segmentation with POS sequences.

modified score. This process is iterated till convergence ofthe lexicon. Thisaugmented

lexicon is used for query segmentation, where the newly derived scores perform the role

of the original WAS. This lexicon augmentation is anofflineprocess and thus does not add

any runtime overhead to the segmentation process.

We conduct experiments using an English POS tagger based on the Penn Treebank

(PTB) tagset and a recently proposed compact universal tagset [173]. We also experiment

with a tagset that has been induced from the query log in a completely unsupervised fash-

ion [31]. Our results show that POS information from all the three tagsets can lead to

significant performance improvement for an unsupervised segmentation algorithm.

Figure3.2presents a schematic of the proposed framework to combine WAS and POS

information for unsupervised query segmentation. Our method requires a POS tagger for

queries, a WAS to be computed from a query log, and a lexicon augmentation scheme.

3.7.1 POS tagging

POS tagging is defined as the process of assigning POS labels to the words of a text

fragment based on the context. For example, if the input textfragment isthe yellow

book, the corresponding POS labels would bethe DT yellow JJ book NN (i.e., De-

terminer, Adjective and Noun respectively). The frameworkproposed here is not tied to

any specific POS tagging strategy or tagset. To bring out thisfact, here we perform experi-

ments with two different taggers – the supervised Stanford Log-Linear POS Tagger [219],

and a fully unsupervised POS induction technique using graph clustering based on Bie-
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Table 3.10:Sample clusters produced by Bie-S.

Cluster 1: bake, casserole, dessert, fry, meatballs, ...

Cluster 2: athletics, baseball, cycling, football, golf, ...

Cluster 3: army, citizenship, customs, defence, government, ...

Cluster 4: battlefield, diablo, godfather, hitman, sims, ...

mann [31]. The Stanford Tagger uses the PTB tagset that has36 tags10. Recently, Petrov et

al. [173] proposed a universal tagset (UTS) which contains12 tags and provided a mapping

between the PTB (and many other) tags and UTS tags. In order tounderstand the effect of

granularity of the tagset, we also run experiments for the UTS tagset, which are obtained

by one-to-one mappings of the PTB tags of the queries labeledby the Stanford Tagger.

Since English Web search queries do not necessarily follow the syntax of the English

language, the appropriateness of tagsets such as PTB or UTS for tagging Web search

queries is questionable. Therefore, we also experiment with a completely unsupervised

POS induction technique based on graph clustering by Biemann[31] that induces the tagset

as well as the tagger from the first principles without makingany assumptions about the

syntactic structure of the language. Moreover, the technique automatically generates the

number of tags (clusters). The original method is simplifiedfor queries so as to assign a

unique tag to a word (by suitably removing the Viterbi tagging step in [31]), irrespective

of the context. This ensures a fast and lightweight tagger that is suitable in a Web search

setting. We refer to this tagger (and the associated tagset)as Bie-S (S = Simplified). Ta-

ble3.10shows parts of sample clusters generated by the Bie-S algorithm on our query log.

As we can see, clusters are focused aroundtopicslike food, sports, governance, and video

games. The method resulted in405 distinct tags.

3.7.2 Lexicon augmentation scheme

Intuition. Traditional unsupervised query segmentation algorithms use a WAS to build

a lexicon of meaningfuln-grams [216], which is subsequently used to generate the most

likely segmentation for a query. Such methods fail to identify rare wordn-grams as poten-

10http://bit.ly/JY5lwb, Accessed 31 March 2014.

http://bit.ly/JY5lwb
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tial segments. The rarern-grams, nevertheless, almost always follow the same syntactic

structure (or POS sequence pattern) as the frequent ones, and their rarity is by virtue of

the rarity of the words rather than the underlying syntacticconstruction. This fundamental

observation led us to the intuition that the WAS of rarer wordn-grams could be boosted

up if the underlying POS pattern is observed frequently in the set of segments originally

extracted by a WAS. In other words, we can learn the common syntactic structures of the

segments by extracting statistically significant word co-occurrences, and then in turn, use

this knowledge to extract rarer segments. This intution, which is the primary contribution

of this work, is formalized in the following steps.

1. Given a query logQ, the queries are POS tagged using a tagger. Also, a WAS is

computed for every unique wordn-gram,w, appearing inQ.

2. An initial lexiconL0 is constructed with the wordn-grams (say,the rolling

stones) that have WAS≥ δ, a user-defined threshold. LetLi be the lexicon after

theith iteration of the algorithm.

3. Every entry inLi is assigned a unique POS tag sequence based on how that word

n-gram was tagged inQ (say,the DT rolling VBG stones NNS). In the rare

case when the same wordn-gram is tagged differently in different queries, we assign

the most common POS tags to words in thatn-gram sequence as found inQ.

4. For each POSn-gram (or POS pattern)Pj (say, DT-VBG-NNS), we count the number

of timesPj appears inLi. Let us denote this bycount(Pj , i).

5. We define a score forPj as follows:

score(Pj , i+ 1) = score(Pj , i)ln(e+ αe−i/ln(1+count(Pj ,i)) (3.9)

where iterationi ≥ 0 andα is a tuning parameter. We definescore(Pj, 0) = 1.

6. The WAS for every uniquew in Q is then combined with its corresponding pattern

score as shown in Equation3.10:

score(w, i+ 1) = score(w, i)× score(PPOS(w), i) (3.10)

wherePOS(w) is the indexj of the underlying POS pattern ofw. We define

score(w, 0) to be WAS(w).
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7. Li+1 is constructed by including allw for whichscore(w, i) ≥ δ.

8. Steps 3 to 8 are then repeated until convergence, whereLi ≡ Li−1.

The multiplicative factor in Equation3.9is based on the proximity transformation func-

tion used by Tao and Zhai [217], which has all the mathematical characteristics to suit the

current purpose: (a) the value of the function diminishes with each successive iteration,

which is necessary because otherwise eventually alln-grams will enter the lexicon; (b) as

i grows, this factor approaches unity, which ensures convergence; (c) this factor is pro-

portionate to the logarithm ofcount(Pj , i), which is usually desirable because frequency

distributions ofn-grams typically follow power laws.

We use our proposed segmentation algorithm without Wikipedia titles to prevent mask-

ing the effect of POS sequences. In our POS-augmented approach, wedo not use the

initial lexiconL0 to segment queries; rather we use the lexiconLî wherêi is the iteration at

which convergence occurs. We refer to the segmentation produced usingL0 as the original

segmentationOrig, over which we aim to improve.

3.7.3 Experiments

Our Bing query log (Section1.2) was POS tagged using the Stanford Tagger (using both

PTB and UTS tags) as well as the Bie-S algorithm. For evaluating segmentations generated

by our approach, we use our retrieval-based approach on the set of 500 queries described

earlier (SGCL12, Section3.4). Queries1 to 250 have been used as the development set and

251 to 500 as the test set.

Table 3.11 reports nDCG, MAP and MRR for the original algorithm and the POS-

augmented strategy for the three tagsets used. All the tagsets result in improvements over

the original segmentation, which is statistically significant for nDCG@5. This implies

that many better pages are presented in the top-five slots, which is very important for a

Web search setting. The improvements are because of the meaningful but raren-grams

that are discovered by our POS-based method and were originally missed by the WAS

alone. At convergence, the PTB, UTS and Bie-S tagsets added337k, 447k and452k (k =
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Table 3.11: IR performance with different tagsets.

Metric Orig PTB UTS Bie-S

nDCG@5 0.743 0.751† 0.751† 0.751†

nDCG@10 0.747 0.753 0.752 0.752

MAP 0.901 0.905 0.905 0.905

MRR 0.587 0.601 0.598 0.602

Statistically significant improvement overOrig is marked using† (one-tailed pairedt-test,

p < 0.05).

Table 3.12:Gaining, unaffected and losing queries.

Tagset Gain Same Loss

PTB 67 (+0.048) 150 33 (−0.060)

UTS 57 (+0.055) 162 31 (−0.068)

Bie-S 67 (+0.042) 140 43 (−0.050)

Numbers in parentheses indicate the average gain/loss in nDCG@10 for each class of

queries with respect to the original segmentations.

thousand) new wordn-grams toL0 respectively. Mean IR performances on the test set

for the three tagsets are almost exactly the same (a gain-loss analysis reported later reveals

some differences). With respect to this application, the UTS tagset doesnot result in any

lossof informationwhen the36 PTB tags are collapsed to the 12 UTS tags.

Table3.12reports the numbers of gaining, unaffected and losing queries (in terms of

nDCG@10, with respect to the original segmentation without POS information) for each

tagset for the optimumα-s. We observe that our method benefits a significant proportion

of the queries (23 − 27%), much higher than the fraction of queries for which the nDCG

value drops (12 − 17%). The three tagsets affect the relatively same number of queries

in all the three ways, even though the number of queries negatively affected is slightly

higher for the Bie-S tagset. Since these queries are relatively rare with query frequency
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Table 3.13:Example queries showing IR improvement.

Tagset Segmented Query nDCG@10

Orig picture | in | picture | lcd tv 0.606

PTB, UTS picture in picture | lcd tv 0.788

Bie-S picture in | picture | lcd tv 0.747

Orig samsung | i900 | omnia | free | games 0.691

PTB, UTS, Bie-S samsung i900 | omnia | free games 0.810

Orig richard burns rally | pc | cheats 0.675

PTB, UTS, Bie-S richard burns | rally | pc cheats 0.751

Tagset PTB UTS Bie-S

Lexicon convergence iteration 30 70 30

Segmentation convergence iteration80 70 90

Peak IR performance iteration 50 50 10

Optimumα 100 10 1000

The lowest value in a row is marked inboldface.

Table 3.14:Number of iterations and the optimalα.

between five and fifteen11, improvement on a significant fraction of these queries would be

of considerable interest to commercial Web search engines.Relative magnitudes of average

gains and losses appear comparable.

Table3.13shows representative queries that undergo segmentation change due to the

augmented lexicon with a consequent IR benefit. It is evidentthat all the three tagsets

are able to detect relatively rarern-grams (for example,picture in picture and

samsung i900) which did not feature in the initial lexicon. Our method canalso ad-

just n-gram scores so as to insert new segment boundaries at betterlocations from an IR

perspective (richard burns rally→ richard burns | rally).

11http://cse.iitkgp.ac.in/resgrp/cnerg/qa/querysegmentation.html, Accessed 31 March 2014.

http://cse.iitkgp.ac.in/resgrp/cnerg/qa/querysegmentation.html
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Convergence.Even after the convergence of the lexicon, it is possible that the segmen-

tations change over further iterations because the scores of the items in the lexicons can

continue to change, albeit converging towards specific values. Therefore, we explore an al-

ternative convergence criterion, which is when the segmentation of the queries stabilize for

our development set. Nevertheless, we observed that the segmentations so obtained do not

necessarily lead to maximum IR performance (say, in terms ofnDCG@10). In Table3.14

we report the number of iterations required for these two types of convergence – lexicon

and segmentation, and also the number of iterations after which peak IR performance was

achieved. For all our experiments, the parameterα was tuned on the development set us-

ing grid-search for maximizing nDCG@10, and the optimal values for each tagset are also

reported in Table3.14. We observe that Bie-S, which is adeterministicand hence afast

approach, takes only10 iterations to reach its peak IR performance. This is comparable

to the nDCG of other tagsets, whereas the other approaches take 50 rounds. This is def-

initely a big advantage for the unsupervised POS induction approach. For all the tagsets,

the nDCG@10 at segmentation convergence is slightly less than the peak value, though

this difference is not statistically significant.

Frequent POS patterns. The ten most frequent patterns in the lexicons for the PTB

and the UTS tagsets turned out to be NN NN, NN NN NN, JJ NN NN, JJ NN, NN NNS, NN

NN NNS, NN IN NN, FW FW, JJ JJ NN, JN NN NNS, and NOUN NOUN, NOUN NOUN

NOUN, ADJ NOUN NOUN, ADJ NOUN, NOUN ADP NOUN, NOUN VERB, NOUN NOUN

VERB, VERB NOUN, ADJ ADJ NOUN, NOUN VERB NOUN respectively. The Bie-S tags

are system-generated and hence are not readily interpretable.

3.8 Conclusions

In this chapter, we have proposed an unsupervised method of query segmentation that uses

Web queries as the only resource. The method unravels syntactic units of queries that are

distinct from NL phrases. We have shown how our segmentationalgorithm can be enhanced

by using lists of named entities like Wikipedia titles. End-user of query segmentation is the

retrieval engine; hence, it is essential that any segmentation algorithm should be evaluated

in an IR-based framework. In this chapter, we have also overcome several conceptual chal-
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lenges to design and implement the first such scheme of evaluation for query segmentation.

Using a carefully selected query test set and a group of segmentation strategies, we show

that it is possible to have a fair comparison of the relative goodness of each strategy as mea-

sured by standard IR metrics. The proposed framework uses resources which are essential

for any IR system evaluation, and hence does not require any special input. Our entire

dataset – complete with queries, segmentation outputs and relevance judgments – has also

been made publicly available to facilitate further research by the community. Moreover,

we gain several useful and non-intuitive insights from the evaluation experiments. Most

importantly, we show that human notions of query segments may not be the best for max-

imizing retrieval performance, and treating them as the gold standard limits the scope for

improvement for an algorithm. Also, the matching metrics extensively used till date for

comparing against gold standard segmentations can often bemisleading. We would like

to emphasize that in the future, the focus of IR will mostly shift to tail queries. In such a

scenario, an IR-based evaluation scheme gains relevance because validation against a fixed

set of manual segmentations may often lead to overfitting of the algorithms without yield-

ing any real benefit. Finally, we show how the gap between the techniques used for the

conceptually similar processes of chunking and segmentation can be reduced using POS

sequence information from query logs, with our results showing significant improvement

with all the three tagsets. In the next chapter, we will see how nested, or hierarchical query

segmentation, provides a more powerful representation of the query which can be used to

overcome several challenges faced by flat segmentation.



Chapter 4

Discovering Syntactic Units by Nested

Query Segmentation

4.1 Introduction

As we have seen in the last chapter, flat query segmentation [29,82,137] partitions complex

queries into syntactic units made of non-overlapping word sequences. An example of such

aflat or non-hierarchical segmentationis shown below:

windows xp home edition | hd video | playback

where pipes (|) represent flat segment boundaries. In flat segmentation, itis hard to

specify the appropriategranularity or the expected length of the segments. For exam-

ple, algorithms that prefer shorter segments may split the first segment intowindows

xp andhome edition, while others may choose not to break the sequencevideo

playback. This issue of an “ideal” granularity creates confusion in aretrieval-based

setting. First, whether longer or shorter segments should be preferred purely depends on

the query and document pair in question during the search process. Hence, a flat seg-

mentation algorithm consistently adopting either of the two strategies (long or short seg-

ments) will fail in several contexts. Next, when the generated segment (say,windows xp

79
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home edition) is matched only partially in the document (say, asoffice xp home

edition or windows xp pro edition), a flat segmentation algorithm relying on

exact (or approximate) string matching fails to understandthat the latter case is much more

relevant than the former.

These difficulties of granularity associated with flat segmentation can effectively be ad-

dressed if we allow nesting or embedding of segments inside bigger segments. For instance,

instead of a flat segmentation, our running example query could be more meaningfully rep-

resented as follows:

(((windows xp) home) edition) ((hd video) playback)

Figure 4.1: Nested segmentation tree.

Here, the atomic segments, i.e.,windows xp and hd video, are progressively

joined with other words to produce larger segments as follows –windows xp home,

windows xp home edition, andhd video playback. We shall refer to this

process asnested(or hierarchical) query segmentation. The hierarchy in this form of

syntactic analysis is better visualized through anested segmentation treeas shown in Fig-

ure4.1. It is intuitive from this representation thatwindows xp andhd video are non-

negotiable (atomic units) when it comes to matching within documents, and the strength

of ties between word pairs can be said to weaken as they move farther in terms of the path

through the tree. This observation, in fact, forms the basisof our re-ranking scheme that is

aimed at addressing the issue of non-exact segment matchingin documents.

In this work, we systematically develop an algorithm and an evaluation methodology

for nested query segmentation, which, unlike the frameworkproposed in the previous chap-

ter, is a strategy that can actually be used to apply nested segmentation to IR. Our nested
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segmentation algorithm is based on some very simple yet powerful local statistical and lin-

guistic information. Through a detailed evaluation of the various aspects involved and using

two different datasets, we demonstrate that nested segmentation is not only a more infor-

mative representation of the query, but also can be exploited to gain better IR performances

especially for slightly long queries (greater than or equalto three words). Note that nested

segmentation (orchunking), which is a very intuitive representation of natural language

(NL) sentences [2] and more specificallyphrase structure grammar[49], has hardly been

used for representing queries. A possible reason for the lowattention paid to this prob-

lem could be that the deduction of hierarchical syntax in NL sentences heavily relies on

accurate POS tagging of the words and an underlying grammar.More importantly, such an

analysis adds a non-trivial runtime overhead during query processing. Furthermore, there

is no prevalent notion of grammatical syntax for Web search queries which could provide

a sound basis for a hierarchical syntax.

In absence of linguistic cues, we adopt a purely statisticalapproach. The intuitions

behind our approach are as follows. State-of-the-art flat segmentation algorithms involve

a word association score optimization over all the words of the query, and hence flat seg-

ments contain vital information that should be utilized effectively. Our objective is to dis-

cover more detailed query syntax by finding interesting relationshipswithin flat segments,

andbetweendifferent flat segments. Syntaxwithin flat segments is determined by an ex-

haustive search over lower order constituentn-grams, and such an approach is feasible in

this context because the lengths of flat segments rarely exceed five words. The relative

strengths of bigrams straddling flat segment boundaries is exploited in inferring the rela-

tionshipsbetweendifferent flat segments. Relevant bigram statistics, again,are already

available. These strategies help us discover the hierarchical syntax within a query, which is

subsequently harnessed during document re-ranking. This document re-ranking strategy, in

turn, is our instrument for directly applying nested segmentation to improve result quality.

Contributions of this work. This research is the first to harness the power of deep

query syntax through nested segmentation and use it to improve ranking. A highlight of

our approach is a principled way of dealing with cases where certain words of a query

(segment) are absent in the documents, i.e., an exact match of a segment is not found.

Specifically, in this research, keeping the above perspectives in mind, we (a) develop an

unsupervised and lightweighttechnique for nested segmentation that uses query logs as the
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only resource; (b) design adeterministicdocument re-ranking strategy exploiting the nested

representation of the query; (c) demonstrate that the use ofnested segmentation can lead to

significant improvement in document re-ranking over the state-of-the-art flat segmentation

strategies.

The rest of this chapter is organized as follows. Section4.2discusses current techniques

in flat query segmentation, their limitations, and the corresponding benefits of nested seg-

mentation. Basic concepts and necessary terminology are defined in Section4.3. Sec-

tion 4.4 presents our algorithm for generating nested segmentations. Next, in Section4.5,

we discuss the technique for using nested segmentation to improve result ranking. We

describe datasets used in Section4.6. Section4.7 describes the experimental results and

observations. Section4.8reviews research on proximity and dependence models, indirectly

related to this work. Section4.9concludes this chapter by summarizing our contributions

and highlighting future research directions.

4.2 Issues with flat segmentation

In this section, we explain the limitations associated withflat segmentation and how nested

segmentation can conceptually overcome such shortcomings.

4.2.1 Limitations of flat segmentation

There are two important conceptual deficiencies of flat segmentation: its definition and its

use in IR. These two issues are, in fact, very closely related because it seems impossible

to posit a definition of a segment without an IR model in place.More often than not, the

definition of segmentation is presented vaguely as groupingof syntactic units [29,137]. Ul-

timately, it is the segmentation strategy that provides an implicit definition of the concept.

Needless to say, such definitions and guidelines leave out scope for a subjective interpreta-

tion of segments leading to low inter-annotator agreement on manually annotated queries

(about58 to 73% on most metrics [216]). In our previous chapter, we have highlighted

issues with evaluation against human annotations. However, the problem is deeper than
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just being an outcome of imprecise definition. Rather, it stems from the fact that the no-

tion of segments cannot be defined in the absence of an IR model– because unlike NL,

there are no cognitive correlates of segments, like phrasesor clauses, in queries. At best,

an annotator can be asked to group multiword (named) entities together, which drastically

reduces the scope of segmentation and makes it equivalent tothe problem of (named) entity

identification in queries.

There is no clear consensus on the best use of segmentation inretrieval or ranking

models, although there have been proposals such as the use ofdependence models [28],

language models [137] and double quotes [82]. A commonly assumed restrictive principle

in this context is that the words of the same segment must appear adjacent to each other

in the document. This has resulted in the use of double quotes(as operators to ensure

exact matches) to surround segments in several experimental frameworks (our own work

and [29, 82]. However, as we have seen in the previous chapter, putting quotes around

all segments degrades performance, and while use of quotes for certain segments yields

better results, detection of these segments at runtime is still a hard task. Finally, the use

of exact segment matching leaves the following important question unanswered: how does

one deal with the situation when the exact segment is only partially found in the document?

A “segment found/not found” type of binary scoring would notbe the best choice, as we

have seen through our running example that some of the words may be entirely replaceable

(edition) while others are not (windows). Current proposals of using flat segmentation

for IR [28,82,137] do not provide guidelines for handling such cases explicitly. In general,

quoting-based strategies severely limit the scope of segmentation and effectively narrow it

down to multiword entity detection.

4.2.2 Advantages of nested segmentation

The aforementioned problems, in essence, are manifestations of the deeper issue of gran-

ularity at which segmentation needs to be done, i.e., whether to prefer longer or shorter

segments, and whether this choice is context-sensitive. These problems vanish if we allow

hierarchical or nested segmentation, where the human annotator or the algorithm is allowed

to mark meaningful units in a hierarchical fashion and is required to go as deep as possible
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preserving the semantics of the query. This will result in multi-level segmentation where at

the lowest level, we will have multiword expressions for which quoting or exact matching

would make sense during retrieval (e.g.,windows xp andhd video in Figure4.1),

whereas at higher levels it would make more sense to employ less strict matching where

the terms are expected to be closer in a relevant document butnot necessarily adjacent to

each other (for example, a few words may be allowed to intrudebetween the pairvideo

andplayback).

Nesting is conceptually identical to hierarchical chunking [2,3] or phrase structure pars-

ing of NL sentences [49]. For example, a complex noun phrase((a flight) (from

Indianapolis) (to Houston)) can bechunkedby parenthesizing smaller units.

Thus, similarly nesting query segments can effectively resolve the problem of granularity.

In the context of queries, a straightforward algorithm for nested segmentation would be to

continue splitting a query or segments until certain boundary conditions are met. However,

as we will show, this approach overlooks the rich local syntax present in the query which

can be used to customize nested segmentation.

Huang et al. [99] introduce a simple algorithm for hierarchical query segmentation as an

application for Web scale language models. However, they donot suggest how nested seg-

mentation could be used in IR. It is worth mentioning that termproximity models [56,217]

and term dependence models [74, 148], which are based on the fundamental assumption

that certain query terms are expected to occur in close proximity in the relevant documents,

are obliquely related to the concept of segmentation, because terms that are within a seg-

ment or appear closer in a segmentation tree can be expected to appear closer in the relevant

documents. We shall borrow some of these ideas to build our re-ranking framework.

4.3 Terms and definitions

In this section, we formally define the types of segmentationand the different distances

used to build up the algorithms and re-ranking models in the subsequent sections.
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4.3.1 Types of segmentation

Flat segmentation.A flat segmentation for a query is defined as a partitioning of the query

words into non-overlapping word sequences. Each sequence of terms between two segment

boundaries is called aflat segment. In general, a flat segment corresponds to a meaningful

syntactic unit within the query.

Nested segmentation.A nested segmentation for a queryq is defined as a recursive par-

titioning of q such that each partition is either an indivisible (possiblymultiword) unit or

another nested segment. The partitions are marked using parentheses, and so a nested seg-

mentation is represented as a complete parenthesization ofthe words inq. For example,

(((windows xp) home) edition) ((hd video) playback) is a possible

nested segmentation for the corresponding query. By convention, parentheses are always

present around single words, and at the ends of the query.

Note that this definition does not enforce a strictbinary partitioningof the query; it

is often possible that an atomic unit is composed of more thantwo words (bed and

breakfast). The query can also be constituted of multiple disparate concepts, like

(price comparison) ((ps3) (nintendo) (xbox)), where more than two

elements (ps3, nintendo andxbox) are conceptually at the same level.

A nested segmentation treeis an alternative representation of nested segmentation,

where the query terms are leaf nodes and every multiword segment is represented by an

internal node whose children includeall and onlythe nodes corresponding to the words or

other segments that constitute this segment. Figure4.1graphically illustrates this concept.

This tree representation not only provides an intuitive visualization of nested segmentation,

but is also useful in defining the topological distance between a pair of terms in the query.

4.3.2 Types of distances

Document distance.The distance between a pair of words in a document can be consid-

ered as the difference in the positions of the two words in thedocument, or equivalently,

one more than the number of intervening words. Since a pair ofwords can occur multiple
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times in a given document, the notion of distance, so defined,is ambiguous. Consequently,

various proximity heuristics have been proposed in the pastto compute the effective dis-

tance between two words in a document [56,217]. These include the minimum, maximum

and mean of the distances between all paired occurrences of the two words in the document.

Let a andb be two terms in the queryq, which are also present (matched) in a retrieved

documentD. Past research [56,217] has shown that amongst the various proximity heuris-

tics, minimum distancehas the highest inverse correlation with document relevance, i.e.,

the lower the minimum distance betweena andb in D, the higher the chances thatD is

relevant toq. However, past measures do not directly reward a document ifit has multiple

instances ofa andb occurring within low distances of each other. Let there bek instances

of orderedpairwise occurrences ofa andb (ordered pairs of positions ofa andb, (p1, p2)

wherep1 < p2) in D at minimum distancesd1, d2, . . . , di, . . . , dk, such that thedi-s are in

ascending order. We combine the ideas of minimum distance and multiple occurrences of a

term pair to formulate the following definition of accumulative inverse document distance

(AIDD) for a andb in documentD:

AIDD(a, b;D)a 6=b =
1

d1
+

1

d2
+ . . .+

1

dk
(4.1)

By this method, a document with several(a, b) pairs close by will have a highAIDD.

Since our concept is based on minimum distance, we do not needa document length nor-

malizer. A threshold onk is nevertheless necessary to avoid consideringall pairwise dis-

tances ofa and b, as distant pairs could be semantically unrelated. Further, to remove

unrelated occurrences from computation, we score matches only if the pair occurs within a

given window size,win, i.e., we do not considerdi when it exceedswin.

We compute the pairwise distances using position vectors (pv) of a andb in D [56].

For example,pv(a) = {1, 5, 10} andpv(b) = {2, 3} mean thata has occurred in positions

one, five and ten andb in two and three (inD), respectively. We currently ignore sentence

boundaries while computing AIDD. Such a style of computation of pairwise distances can

lead to re-counting of specific instances ofa and b. For example, the three minimum

distance pairs in this case would be (1, 2), (1, 3) and (5, 3). Here, with patterns like"...

a a b b b c..."), one could address the problem by choosing the optimum distance
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pair (a, b) using dynamic programming. This entails search in exponential time over the

entire document, limited by the number of occurrences of theless frequent word. However,

such an approach has been shown to be less effective than the simple case when re-counting

is tolerated (see [56] for a more detailed discussion). Moreover, such patterns are quite rare

in running text of documents.

Query distance.The query distanceqd(a, b; q) between two termsa andb in a queryq

is defined as the difference between the positions ofa andb in q, or equivalently, one more

than the number of intervening words in the query. For instance, for our running example

query, the distance betweenxp andvideo is four. In special cases when the same word

appears multiple times in a query (johnson and johnson home page), each term

instance is treated as distinct during pairwise comparisons.

Tree distance.The tree distancetd(a, b;n(q)) between two termsa andb in n(q), the

nested segmentation of a queryq, is defined as the shortest path (i.e., the number of hops)

betweena andb (or vice versa) through the nested segmentation tree forq. A tree ensures

a unique shortest path betweena andb, which is through the common ancestor ofa andb.

For example,td(xp, video; n(q) in Figure4.1) = 7. The minimum possible tree distance

between two words is two. We hypothesize that term pairs having low tree distance must

appear close together in the document. Note thattd betweena andb can vary for the same

q, depending onn(q). As with query distance, when the same word appears multipletimes

in a query, each word instance is treated as distinct during pairwise comparisons.

4.4 Algorithm for nested query segmentation

The goal behind devising a principled nested segmentation strategy is to discover deep

syntactic relationships in a query, which are often presentwithin a flat segment, and/or

betweenmultiple flat segments. We do not propound simple top-down (begin with the query

as a single unit and continue splitting till all units are single words) or bottom-up (begin

with each word as a single unit and continue merging till the whole query becomes one unit)

approaches for deducing the hierachical syntax in a query because such methods are naı̈ve

and do not involve any optimization step over all the words ofthe query. State-of-the-art flat
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Table 4.1: Joining and splitting of flat segments for nested segmentation.

Step Syntactic representation of the query

Input flat seg windows xp home edition | hd video | playback

Parenthesized (windows xp home edition) (hd video) (playback)

Split ((windows xp home) (edition)) (hd video) (playback)

Split (((windows xp) (home)) (edition)) (hd video) (playback)

Join (((windows xp) (home)) (edition)) ((hd video) (playback))

Join and output ((((windows xp) (home)) (edition)) ((hd video) (playback)))

All text except new segment markers are greyed out.

segmentation algorithms like Hagen et al. [84], Li et al. [137] and our methods (Chapter3)

involve principled optimization criteria leading to the discovery of flat segments, and a

good nesting strategy should exploit this knowledge to the best capacity.

There are three primary constraints or features of a query segmentation algorithm that

need to be considered before designing an algorithm for thispurpose. First, the accu-

racy and robustness (i.e., reasonable performance on a widevariety of queries); second, the

speed (segmentation is an online process and therefore to bepractically useful, it must have

a very short turnaround time); and third, lack of annotated data. It might be worthwhile to

elaborate a little on this last point. It may be argued that ifwe can get sufficient queries

annotated by human experts for nested segmentation, the data could be used for supervised

learning of nesting algorithms. Indeed, most of the NL parsing algorithms do rely on su-

pervised learning on human-annotated treebanks [144]. However, there is an important

difference between these two cases. NL parsing is guided by an underlying (context-free

or phrase structure) grammar which linguists have designedthrough years of systematic

analysis of NLs. The annotators, who are themselves trainedlinguists, use the knowledge

and framework of the grammar to annotate the tree syntax for sentences. Likewise, the

parsing algorithms search in the space of all possible parsetrees that conform to this gram-

mar. Queries do not follow grammatical rules, or at the leastno such grammar has been

formulated or deciphered till date. Neither do we have annotators who are experts or native

speakers of the “query language”. Therefore, structural annotation of queries [25,26,199]

has always been subjective, often leading to low inter-annotator agreement. Moreover, cre-

ation of annotated data, for example, the treebanks for NLs,takes a tremendous amount of
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Figure 4.2: Illustrating our approach for nested query segmentation.

time and effort. It is also not straightforward to ascertainwhether NL parsing algorithms

can be efficiently adapted for fast online processing.

Approach. Since flat segmentation is a well-researched problem, we develop our algo-

rithm for nested segmentation by starting with a flat segmentation of the query and trying to

split within a flat segment andjoin adjacent flat segments recursively. Since flat segments

are rarely longer than four to five words, nesting can be done rather fast with some clever

manipulations of low ordern-gram statistics (n = 2, 3). Thus, in our setup, given a flat

segmentation for a query as input, a nesting strategy consists of the following two steps:

(a) Split individual flat segments recursively till atomic units are obtained; (b) Join adjacent

flat segments recursively till the whole query is one single unit. The split and the join steps

are independent of each other and can be performed in any order. This process is illustrated

in Table4.1and Figure4.2with the help of our running example query.

4.4.1 Splitting flat segments to discover syntax within a flat segment

Our main motivation for designing simple segment nesting strategies stems from the fact

that most flat segmentation algorithms compute some form of scores forn-grams as a key
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step of their respective methods (generallyn ≤ 5) [84, 216]. In doing so, most often the

scores of the contiguous lower ordern-grams (n−1, n−2, . . .) are also known. We exploit

these scores to deduce the syntax within a flat segment. Any word association measure can

be used to score ann-gram in our method (in our experiments, we use the method discussed

in the previous chapter (Equation3.3)).

We adopt a simple greedy approach in this research. Then-gram that has the highest as-

sociation score within a flat segment (where the number of words in then-gram is less than

the number of words in the corresponding flat segment) is immediately grouped together as

a unit, i.e. asub-segment. In this work, we restrictn to a maximum of three, i.e. we search

for highest scoring bigrams and trigrams exhaustively within a flat segment. We define

a sub-segment as a smaller segment created by the division ofa larger segment. Recur-

sively, this newly grouped sub-segment’s left and rightn-grams (possibly null) and the sub-

segment itself are processed in the same greedy fashion tillevery string to be processed can-

not be divided further. For example, in the flat segmentwindows xp home edition,

windows xp home has the highest score among the five possiblen-grams (two trigrams

and three bigrams). Thus, it is grouped together first. Sinceedition cannot be pro-

cessed further, we repeat the search withinwindows xp home and groupwindows

xp inside it, which leads to the following parenthesized form for the original flat segment:

((windows xp) home) edition. For the flat segmentthe legend of zelda

twilight princess, we havelegend of zelda grouped first (withlegend

of being grouped inside it in a subsequent step) followed bytwilight princess.

This sequence thus results in the embedded syntax:(the) ((legend of) zelda)

(twilight princess).

4.4.2 Joining flat segments to discover syntax across flat segments

Joining flat segments is essential to completing the nested segmentation tree, which in turn

ensures a path between every pair of words in the query. At first sight, it seems that to be

able to make a decision regarding the joining of two flat segments withm andn words

respectively, one needs to have (m + n)-order statistics. However, we found an elegant way

to join segments using two simple local statistics explained next.
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Bigram statistics of words at segment boundary.The bigram at a flat segment bound-

ary, i.e. the last word of a flat segment and the first word of thenext flat segment, can

be effectively used to take the segment joining decision. Inour running example, if we

wish to decide whether to joinwindows xp home edition andhd video, or hd

video andplayback, we check the relative order of the scores of the (ordered) bi-

grams formed by the underlined words only. The bigram with the higher score (in this

casevideo playback) dictates which pair should be joined. This process is similarly

repeated on the new parenthesised segments obtained until the whole query forms one unit.

This local and context insensitive approach may seem to failin cases, and we do not claim

that using bigrams only is sufficient in this process. Nevertheless, as we shall see, it works

quite well in practice. In this research, we use the well-established concept of pointwise

mutual information (PMI) [84,114,185] to score bigrams. LetB = <w1 w2> be a bigram

constituted of wordsw1 andw2. PMI(B) is defined as follows:

PMI(B) = log2
p(w1w2)

p(w1)p(w2)
(4.2)

wherep(w1w2), p(w1) andp(w2) refer to the probabilities of occurrences ofB, w1 and

w2 in thequery log, i.e. the number of queries each of them is present in, normalized by

the total number of queries in the log.

Determiners, conjunctions and prepositions. It often happens that the last (or the

first) word in a segment is a determiner, conjunction or preposition (DCP). In these cases, it

is almost always meaningful to combine such a segment with the next segment (or the previ-

ous segment) to make a meaningfulsuper-segment(a larger segment created by the joining

of two smaller segments). Examples are(bed and) (breakfast) and(sound)

(of music). In our algorithm, we prioritize such cases over the bigram scores during

the joining process. The list of DCP used is freely available online1.

1http://www.sequencepublishing.com/cgi-bin/download.cgi?efw, Accessed 6 April 2014.

http://www.sequencepublishing.com/cgi-bin/download.cgi?efw
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4.5 Using nested segmentation in IR

The use of flat query segmentation in IR has been based upon theconcept of proximity,

which states that two words which are in the same segment should also occur within a

short distance of each other in the relevant documents; whereas words in different flat

segments need not necessarily occur close to each other [185]. A stricter but more popularly

assumed and experimented version of this hypothesis is thatwords within a flat segment

should occur next to each other exactly in the same order in the relevant document as in

the query [216]. This is typically implemented through the use of double quotes around

segments, which most search engines interpret as an instruction for exact phrase match. As

discussed earlier, this severely limits the scope of query segmentation and often results in

misleading conclusions. Nevertheless, there is no obviousanalogy between quoting of flat

segments and that of nested segments, because it is unclear as to which level of nesting

the quotes should be applied. More importantly, quoting is against the basic philosophy of

nested segmentation because then we are not harnessing the true benefits of the hierarchical

representation of the query terms.

4.5.1 Re-ranking using the tree and document distances

Here we define a scoreRe-rank Status Value2 (RrSV ) of every documentD that was re-

trieved and ranked in response to an unsegmented queryq. The RrSV for each such

document is determined based on the following principle –a pair of words that have a low

tree distance in the nested representation of the query should not have a high document dis-

tance.In other words, while re-ranking a document, the document distance (Section4.3.2)

between a pair of words should be penalized by a factorinverselyproportional to their tree

distance. We recall that tree distance between two wordsa andb in a queryq, td(a, b;n(q))

is the path betweena andb in the nested segmentation (n(q)) tree ofq, and the document

distance betweena andb in a documentD, AIDD(a, b;D), is defined by Equation4.1.

TheRrSV for a documentD is thus defined as

2The nomenclature is inspired by the Retrieval Status Value (RSV ) of a document with respect to a

query, which is a term that is popular in IR literature [140].
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RrSVD =
∑

ti,tj∈q∩D
ti 6=tj

td(ti,tj ;n(q))<δ

AIDD(ti, tj ;D)

td(ti, tj ;n(q))
(4.3)

whereti-s are query terms matched in the document andn(q) is the nested segmentation

for q. However, we do not wish to penalize the case when the words are close by in the doc-

ument and are relatively far apart in the tree. This is because it is always preferable to have

all query words close by in the document [56]. Rather, we want to penalize a document only

when specific word pairs (those that have a low tree distance)have high document distance.

In our example, we would penalize the casewindows andxp, which are close by in the

tree, have a high document distance. We will not care whenwindows andplayback,

which have a high tree distance are nearby in the document or not. These situations and

the corresponding desired penalties are presented in Table4.2. This analysis drives us to

create a tree distance threshold (cut-off) parameterδ. In other words, iftd(a, b;n(q)) < δ,

only then is the word paira andb considered in the computation ofRrSV .

Table 4.2: Penalty cases for query word pairs.

Tree distance Document distance Penalty

Low Low Low

Low High High

High Low X

High High X

X marks representdon’t careconditions.

We experimented with a number of variations of incorporating penalty into our re-

ranking formulation, and found that the simple method of thresholding the tree distance

works best. This is because the tree distance acts as a normalizer for the document distance,

and thus proportionately “rewards” (or inversely, penalizes, in the vice versa case) the

document distance when the tree distance is low (if tree distance is two, only halving the

AIDD; if the tree distance is three, dividing the AIDD by three). When the tree distance

exceeds the threshold, we arrive at thedon’t carecases.
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The set of documents retrieved by a search engine by issuing the unsegmented query

will be re-ranked indescendingorder of thisRrSV . Let the ranks assigned to the document

D by the original ranker and our re-ranking strategy beRorig(D) andRnew(D) respectively.

Then, according to our strategy, for two documentsD1 andD2, if RrSVD1
> RrSVD2

, then

Rnew(D1) < Rnew(D2), i.e.D1 will be ranked higher up in the new ranked list thanD2. The

intuition here is that if a documentD1 accumulates a higher value ofRrSV than document

D2, thenD1 has a relatively higher number of occurrences of query termshaving a low tree

distance close together inside its text thanD2.

4.5.2 Rank aggregation of original and new ranks

The set of documents that we re-rank are originally retrieved from a collection in response

to an unsegmented query using well-established IR ranking principles based on term fre-

quencies and inverse document frequencies, and we wish to give due weight to the old

ranks. We aggregate or fuse these ranks in the following manner to obtain an aggregated

scoreSrank−agg for every documentD [5]:

Srank−agg(D, Rorig, Rnew, w) =

(

w ×
1

Rnew(D) + 1

)

+
1

Rorig(D) + 1
(4.4)

where the weightw (assigned to the new rank) is a heuristically tuned scaling factor rep-

resenting the relative “importance” of the new ranking. Thedocuments are finally ranked

in descendingorder ofSrank−agg to produce the final aggregated rankRfinal. Formally,

if Srank−agg(D1) > Srank−agg(D2), thenRfinal(D1) < Rfinal(D2), i.e. D1 will be ranked

higher up in the final aggregated ranked list thanD2. Settingw to zero or a very large value

nullifies the effects of the new and original ranking respectively.

There are several other approaches to rank aggregation [67,70,151] and one of several

proposed approaches could produce the best results in a given setup. However, that is not

the focus of this research and we adopt one of the relatively recent, simple and popular

techniques in this work that allows us to tune the effects of the original and rankings.

The authors of Agichtein et al. [5] adapt a simple and robust method of merging the rank
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orders. The main reason for ignoring the originalscoresand considering only theranksis

that since the feature spaces and learning algorithms are different, the scores are not directly

comparable. They experimented with a variety of merging functions on a development set

of queries. They found that a simple rank merging heuristic combination works well, and

is robust to variations in score values from original rankers. The query results are ordered

by decreasing values of the final score to produce the final ranking. One special case of this

model arises when settingw to a very large value, effectively forcing the new ranking to

be preferred over the old ranking - an intuitive and effective heuristic that they used as an

experimental baseline. Applying more sophisticated ranker combination algorithms may

result in additional improvements, and is left as future research. The approach above as-

sumes that there are no interactions between the underlyingfeatures producing the original

ranking and the new features.

4.5.3 Re-ranking baselines

We now introduce three baselines for comparing the performance of our re-ranking strategy

for nested segmentation. Flat segmentation is the first of these baselines, where we extend

our notion of using pairwise term proximity to words within flat segments only. The other

two baselines are natural variants of the re-ranking equation (Equation4.3) that require

investigation – one where only document distances are considered, and the other where the

tree distance is replaced by the simple query distance (Section 4.3.2).

Flat segmentation.This re-ranking technique is based on the notion that words within

a flat segment are expected to appear near each other in the relevant documents [216]. Let

q be a query that hasp flat segments,S1 to Sp. TheRrSV computation in this case is

restricted only to intra-segment term pairs, i.e.,

RrSVD =
∑p

k=1

∑

ti,tj∈Sk∩D,ti 6=tj

AIDD(ti, tj;D) (4.5)

Document distances only.This strategy is based on the principle that proximities be-

tween all pairs of query terms are equally important. The re-ranking score is thus simplified
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as shown below:

RrSVD =
∑

ti,tj∈q∩D,ti 6=tj

AIDD(ti, tj;D) (4.6)

Document and query distances.This method assumes that only terms close by in the

query are required to be near each other in the document, and thus takes into account the

query distanceqd. Hence, Equation4.3 is suitably modified to:

RrSVD =
∑

ti,tj∈q∩D,ti 6=tj

AIDD(ti, tj;D)

qd(ti, tj; q)
(4.7)

4.6 Datasets

In this section, we describe the datasets that we have used. We divide this section into two

parts: (a) data needed for performing nested segmentation of queries, and (b) data needed

to apply and evaluate our strategies with respect to IR.

4.6.1 For performing nested segmentation

As discussed, our nested segmentation algorithm requires aquery log as the only resource,

for computing variousn-gram scores. For our experiments, we use our two to ten-word

queries from Bing Austalia query log as discussed in Section1.2. We use the Porter Stem-

mer [178] to stem the queries before the computation of then-gram scores.

4.6.2 For re-ranking documents

In order to ensure the replicability of our results, we report our IR evaluation on publicly

available datasets only (Table4.3) and use open source retrieval systems.
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Table 4.3: Details of datasets used.

Dataset Number of Average words Average RJs Search

Name queries per query per query system

SGCL12 500 5.29 28.34 Lucene

TREC-WT 75 3.43 34.39 Indri

SGCL12. We use the dataset that we created for evaluating various flatsegmentation

algorithms (Section3.4) because it consists of slightly longer queries (five to eight words)

where segmentation is meaningful from an IR perspective. Since we also showed that

flat segmentation can potentially lead to substantial nDCG improvement on SGCL12, this

dataset is very appropriate for evaluating nested segmentation, and to show improvements

over flat segmentation. Note that the queries in the SGCL12 dataset also have flat segmen-

tation annotations from various algorithms and human experts3. As in the previous chapter,

we use the commercially popular open source Apache Lucene4 (same version3.4.0 chosen

for comparability of results) to search this collection. Queries1 − 250 were used as the

development set for tuning model parameters (k, win, δ andw) and queries251−500 were

used as the test set.

TREC-WT. TREC topics, especially those belonging to the Web Track (WT) (last held

in 2012) and the Million Query Track (MQT) (last held in2009) are the ideal proxy for

real Web search queries. All the data related to TREC-WT is public5. However, the topics

of WT are very short (average length of2.32 words for 20126) and therefore, not very

appropriate for evaluation of nested segmentation. The issue with the MQT (2009)7 is the

sparseness of RJs, which is more acute for slightly longer queries. We pulled out the500

3In this chapter, in order to prevent digression, we do not discuss human annotations for nested segmen-

tation. However, we explored the effectiveness of crowdsourcing for this task. Through carefully designed

control experiments and Inter Annotator Agreement metricsfor analysis of experimental data, we showed

that crowdsourcing may not be a suitable approach for nestedquery segmentation because the crowd seems

to have a very strong preference towards balanced binary trees.
4http://lucene.apache.org/core/, Accessed 6 April 2014.
5http://trec.nist.gov/data/webmain.html, Accessed 16 November 2014.
6http://trec.nist.gov/data/web2012.html, Accessed 6 April 2014.
7http://trec.nist.gov/data/million.query09.html, Accessed 6 April 2014.

http://lucene.apache.org/core/
http://trec.nist.gov/data/webmain.html
http://trec.nist.gov/data/web2012.html
http://trec.nist.gov/data/million.query09.html
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longest queries from the MQT (2009) having at most ten words.491 of these queries had

no associated RJ. Moreover, of all the queries that have length greater than or equal to five

words, only42 have at least one RJ.

Nevertheless, in order to conduct nested segmentation experiments on the widely used

TREC data, we accumulated queries from the2009 to 2012 WT, and retained the queries

that had three or more words8 (100 queries out of a total of200). The highest number of

words in this query set is five, even though it would have been better to have longer queries

for truly appreciating the benefits of nested segmentation.Relevance judged documents for

these queries are present in the ClueWeb09 collection9; we used the open source Indri10

to search this collection through the provided API and retrieved the top100 documents.

The queries for which there are no relevant documents in the top100 results were removed

from the dataset. We will refer to this remaining set of75 queries as the TREC-WT. These

queries, on an average, had34 RJs within the top100 results (Table4.3). RJs for all

TREC-WT queries, downloadable from the respective track websites (qrels), have been

appropriately collapsed to a 3-point scale (0, 1, 2). Queries1− 35 queries were used as the

development set for tuning model parameters and queries36− 75 queries were used as the

test set (seehttp://bit.ly/13StKUNfor the ordered query set).

4.7 Experiments and results

In this section, we first report the specifics of our experimental setup and present the de-

tailed results about our re-ranking strategy. In particular, we report the results of the fol-

lowing experiments: (a) effectiveness of nested segmentation over flat segmentation, (b)

effect of query lengths, (c) effect of re-ranking strategies, (d) effect of parameter tuning,

(e) effect of algorithmic variants, and (f) comparison withpast work.

8Nested segmentation can only benefit queries with at least three words.
9http://lemurproject.org/clueweb09/, Accessed 6 April 2014.

10http://www.lemurproject.org/indri/, Accessed 6 April 2014.

http://bit.ly/13StKUN
http://lemurproject.org/clueweb09/
http://www.lemurproject.org/indri/
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Table 4.4: Examples of nested segmentations for queries.

Flat segmentation Nested segmentation

garden city shopping centre | brisbane | qld ((garden city) (shopping centre)) (brisbane qld)

the chronicles of riddick | dark athena (the ((chronicles of) riddick)) (dark athena)

sega superstars tennis | nintendo ds game ((sega superstars) tennis) ((nintendo ds) game)

samurai warriors 2 empires | walk throughs (((samurai warriors) 2) empires) (walk throughs)

as time goes by | sheet music (as (time goes) by) (sheet music)

4.7.1 Experimental setup

We used the outputs of four flat segmentation algorithms – ourproposed algorithms, Ha-

gen et al. [84], and Li et al. [137], as input to the nested segmentation algorithm. Final

nested segmentations for these queries were obtained as output. Documents are retrieved

using the unsegmented queries, and subsequently re-rankedusing the proposed technique

(Section4.5) and the baselines (Section4.5.3). Results are compared in terms of popular

IR evaluation metrics: nDCG and MAP (Equations3.4 and3.7). nDCG was computed

for the top-k retrieved documents (represented with@k suffix, wherek is 5, 10 and20).

For computing MAP, URLs with ratings> 0 were considered as relevant. MAP values are

computed on the top-30 documents for SGCL12 and the top-40 documents for TREC-WT

(depending upon the approximate pool depth of28 and34 respectively (Table4.3)). For

each setting, the four parameters (Table4.8) were optimized using the grid search tech-

nique for maximizing nDCG@10 on the development set and the best set of values were

applied on the test set, which are reported in this section. Our proposed re-ranking method

is found to be robust to parameter variation, as shown later in the text.

4.7.2 Results and observations

To provide a qualitative feel of nested segmentation outputs on typical queries, we provide

some representative nested segmentations generated by ouralgorithm for SGCL12 queries

in Table4.4. Table4.5 presents ourmain findings– the performance of nested segmenta-

tion in comparison with unsegmented queries and flat segmentation. Since the TREC-WT

dataset was quite small compared to SGCL12, we report averagevalues over ten runs with

random train-test splits of35 and40 queries respectively, while preserving the query word
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Table 4.5: Performance comparison of flat and nested segmentations.

Dataset Algo Hagen et al. [84] Li et al. [ 137] Proposed Flat Proposed Flat+Wiki

SGCL12 Unseg Flat Nested Flat Nested Flat Nested Flat Nested

nDCG@5 0.6839 0.6815 0.6982 0.6913 0.6989 0.6977 0.6976 0.6746 0.7000†

nDCG@10 0.6997 0.7081 0.7262† 0.7144 0.7258† 0.7189 0.7274 0.7044 0.7268†

nDCG@20 0.7226 0.7327 0.7433† 0.7366 0.7437† 0.7389 0.7435 0.7321 0.7433†

MAP 0.8337 0.8406 0.8468† 0.8404 0.8469† 0.8411 0.8481† 0.8423 0.8477

TREC-WT Unseg Flat Nested Flat Nested Flat Nested Flat Nested

nDCG@5 0.1426 0.1607 0.1750† N. A.* N. A. 0.1604 0.1752† 0.1603 0.1767†

nDCG@10 0.1376 0.1710 0.1880† N. A. N. A. 0.1726 0.1882† 0.1707 0.1884†

nDCG@20 0.1534 0.1853 0.1994† N. A. N. A. 0.1865 0.2000† 0.1889 0.2010†

MAP 0.2832 0.2877 0.3298† N. A. N. A. 0.3003 0.3284† 0.3007 0.3296†

The higher value among flat and nested segmentations is marked in bold. Statistical

significance of nested segmentation (under the one-tailed pairedt-test,p < 0.05) over flat

segmentationand the unsegmented query is marked using†.

* We are unable to report the performance of Li et al. [137] on TREC-WT due to

unavailability of outputs and code, and associated difficulties in reimplementation due to

use of proprietary data.

length distribution. For each algorithm,Flat refers to the baseline re-ranking strategy (Sec-

tion 4.5.3) when applied to the query (flat) segmented by the corresponding algorithm,

andNestedrefers to the proposed re-ranking strategy (Section4.5.1) when applied to the

nested segmentation of the query (Section4.4) generated when the corresponding flat seg-

mentation was used as the start state. We observe that nestedsegmentation, when using

the proposed re-ranking scheme, significantly outperformsthe state-of-the-art flat segmen-

tation algorithms in all the cases. Importantly, improvements are observed for both the

datasets on all the metrics. This indicates that one should not consider proximity measures

for only the pairs of terms that are within a flat segment. We also note that both the flat and

nested segmentations perform better than the unsegmented query, highlighting the general

importance of query segmentation. Henceforth, because of its superior performance over

the other flat segmentation methods, we will assume the inputflat segmentation for the

nested segmentation algorithm as the output by “Proposed Flat+Wiki”, unless otherwise

mentioned in the text.
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The results in Table4.5 and3.3 are computed under different evaluation frameworks.

While document distance-based re-ranking is the underlyingphilosophy in Table4.5, the

oracle score for a quoting-based retrieval has been reported in Table3.3. This is why the

metric values are different in the two tables for the same algorithms. However, for the

unsegmented query, the results appear different only because of the computation precision

(three decimal places in Table3.3, resulting in0.701 nDCG@10 while four decimal places

in Table4.5giving 0.6997), but are essentially the same.

Effect of query length. To understand the potential of nested segmentation, it is im-

portant to see for how many queries in each length group it results in improved retrieval

performance. In Table4.6, we report the number of queries of a particular length in our

datasets (#Q), the number among theseQ that show a positive gain in nDCG@10 (#Gain

Q), the associated percentage of queries and the average gain(A. G.) on nDCG@10 com-

puted over all queries of a particular length that show performance improvement over the

original unsegmented query. We observe that for almost all length groups, nested segmenta-

tion improves a strong majority of the queries. The mean improvement is slightly more for

queries in the medium length zone (5- and 6-word queries). Wefound that longer queries

in our dataset (for example,you spin my head right round right round

andeternal sunshine of the spotless mind watch online) generally

contain song lyrics or long named entities that require exact document matches and hence

nesting is often not required, and may be detrimental in certain cases. Corresponding fig-

ures for flat segmentation (lower half of table) are observedto be lower.

In the current Web search scenario, slightly longer queriesare generally harder to solve,

with keyword matches retrieving several spurious results.To be specific, the percentage of

long queries (≥ 5 words) in our Bing Australia query log is26.65% (distinct queries only)

– a significant number when the total search volume is considered. Thus, we can no longer

undermine the impact nested segmentation can have on Web search. In total, while≃ 49%

queries are benefited by flat segmentation for SGCL12 and≃ 45% for TREC-WT, the

numbers rise to≃ 61% for SGCL12 and≃ 48% for TREC-WT in case of nested segmen-

tation. Importantly, the mean improvements (over the unsegmented queries) in nDCG@10

for benefited queries are0.1084 for SGCL12 and0.2185 for TREC-WT in case of nested

segmentation; corresponding values for flat segmentation are lower:0.0876 (SGCL12) and

0.2053 (TREC-WT).
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Table 4.6: Break-up of nDCG gains (over unsegmented query) by length.

SGCL12 (Nested segmentation) TREC-WT (Nested segmentation)

Length #Q #Gain Q #Gain Q% A. G. Length #Q #Gain Q #Gain Q% A. G.

5 387 235 60.72 +0.1103 3 52 22 42.31 +0.1695

6 91 58 63.74 +0.1006 4 14 9 64.29 +0.2842

7 14 9 64.29 +0.1401 5 9 5 55.56 +0.3156

8 8 4 50.00 +0.0414 - - - - -

SGCL12 (Flat segmentation) TREC-WT (Flat segmentation)

Length #Q #Gain Q #Gain Q% A. G. Length #Q #Gain Q #Gain Q% A. G.

5 387 193 49.87 +0.0887 3 52 21 40.38 +0.1868

6 91 42 46.15 +0.0772 4 14 9 64.29 +0.2071

7 14 6 42.86 +0.1166 5 9 4 44.44 +0.2987

8 8 3 37.50 +0.1061 - - - - -

Comparison of re-ranking strategies.Table4.7compares re-ranking strategies. Here

Doc refers to the baseline re-ranking method that uses only document distances (Sec-

tion 4.5.3), Query refers to the scheme using document and query distances,Tree refers

to the proposed re-ranking strategy using the nested segmentation tree (Section4.5.1). We

observe that scalingAIDD by the tree distance generally improves the results over the

unscaled version. This shows the importance of the tree distance in bringing out the rela-

tionship between query terms. In other words, the nested segmentation tree provides a more

principled and meaningful estimation of proximity betweenquery terms, which can be sys-

tematically exploited during re-ranking of documents for significant performance gains.

We observed that the number of queries on whichDoc, QueryandTreeperform the best

are102, 94, 107 (SGCL12,250 test queries) and30, 29.7, 30.8 (TREC-WT,40 test queries,

averaged over ten splits) respectively. The numbers do not add up to250 (SGCL12) or

40 (TREC-WT) because multiple models may produce the best output for the same query.

Thus, theTreemodel helps greater numbers of queries for both datasets.

Tunable Parameters.We now systematically study the effect of variation of the four

tunable parameters on the re-ranking performance. Table4.8 lists the tunable parameters.

Variation patterns on the development set of SGCL12 and TREC-WT are reported in Fig-
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Table 4.7: Performance of re-ranking strategies.

Dataset SGCL12 TREC-WT

Metric Doc Query Tree Doc Query Tree

nDCG@10 0.7193 0.7255 0.7268† 0.1801 0.1798 0.1884†

MAP 0.8398 0.8472 0.8477† 0.3237 0.3189 0.3296†

The highest value among theDoc, QueryandTreere-ranking strategies is marked in

boldface. Statistical significance of theTreestrategy under the one-tailed pairedt-test

(p < 0.05) over the lowest value among the three is marked using†.

Table 4.8: List of parameters used in re-ranking.

Notation Parameter

k Number of minimum distances considered

win Window size

δ Tree distance cut-off

w New rank weight

ures4.3 and4.4. For examining a particular parameter for a specific re-ranking strategy,

others are fixed at the point of global maximum.Doc andQueryrefer to the baseline re-

ranking strategies using only document, and document and query distances respectively

(Section4.5.3). Treerefers to the proposed re-ranking method based on the nestedsegmen-

tation tree (Section4.5.1). Wherever applicable, theTree re-ranking model outperforms

theDocandQuerymodels systematically. From plots (Figures4.3and4.4) (a) and(b), we

see that preferred values ofk andwin are five and four respectively for SGCL12 and one

and three for TREC-WT, and increasing them further brings semantically unrelated word

pair occurrences into theRrSV computations. Figures4.3 (c) and4.4 (c) show the effect

of varying δ – the tree distance cut-off value; very lowδ essentially means ignoring the

tree hierarchy, and thus leads to poor performance for SGCL12. For SGCL12, the result

stabilizes forδ ≥ 5, and increasingδ further almost has no effect on the results as there

are very few word pairs that will have a tree distance greaterthan five or six for a typical
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Figure 4.3: Variation in parameters on SGCL12.

query. Thus, having this parameter in the system setup is optional; but if one chooses to

useδ for finer control on the results, one must be careful as to not set it to a very low value.

However, we note thatδ = 3 is ideal for TREC-WT, and greaterδ is applicable only for

≃ 30% of the queries, which are of length greater than three words.Finally, setting the

new rank weightw to two is found to be the best for SGCL12. Settingw to zero logically

translates to ignoring the new ranking, and would result in the performance of the original

query, which is always poorer than when re-ranking is applied (Unsegin Table4.5). Using

a large value forw (≃ 1, 000) implies ignoring the old ranking. This is found to produce

the best results for TREC-WT, emphasizing the importance of ourre-ranker. Thus, one

should decide on the weights to assign to the original rankerand that derived by the nested

representation of the query after an empirical analysis on atuning set.
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Figure 4.4: Variation in parameters on TREC-WT.

4.7.3 Systematic investigation of variations in algorithm

Our overall algorithm entails the systematic exploration of certain variations. First, instead

of a greedy approach, one can opt for an optimized strategy tosplit a flat segment. In

this approach, every possible way of breaking a flat segment is considered, such that the

constituent sub-segments are 1-, 2- or 3-grams only, and thepartitioning that leads to the

best combined score is selected11. These partitions are assumed to be the atomic units of

the base flat segment. If a flat segmentation is purely based onan optimal combination of

individual segment scores, then each segment, by itself, isan optimal way of combining

11Addition is the combination operator for the scores owing tothe logarithmic space in which they are

defined [84].
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Figure 4.5: Performance examination of algorithm variations on both datasets.

its constituent words. In such a case, the optimized strategy of splitting would not have

any effect on a flat segment. On the other hand, if a flat segmentis deduced through

matching against a list of named entities or a domain-specific multiword lexicon, getting

smaller strings based on the scores is likely. Note that it isquite possible that the greedy

and optimized approaches produce the same final output.

Second, one can use our co-occurrence based word association score (Equation3.3) for

scoring bigrams forjoining smaller segments instead of PMI. This gives rise to two choices

in the joining phase. Third, the definition of PMI can be appropriately extended to score

n-grams whenn > 2 [185], and can thus be used during thesplittingprocess instead of our

score. This gives to two choices during the splitting phase.Fourth,joining segments may

be purely on the basis of bigram scores and DCP (preference to determiners, conjunctions

and prepositions during joining, Section4.4.2) need not be considered during the merging

process. This leads to two more choices during the joining phase. We shall systematically

represent and refer to these nested segmentation strategies asSUV JXY , whereU is G or

O for greedy and optimized approaches for splitting flat segments respectively,V andX
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areC or P respectively for our co-occurrence based score and PMI scores for splitting

and joining respectively.Y is D if DCP is considered during joining, else null. Thus,

SGCJP refers to the case where greedy splitting is done using our scores, and joining is

done using PMI scores without considering DCP. If DCP is considered, the corresponding

representation will beSGCJPD. In this manner, we have2× 2× 2× 2 = 16 combinations

in all for nested segmentation (greedy or optimized splitting, splitting or joining with PMI

or our scores and optional preference to DCP) for each input flat segmentation. Choice of

these different nesting strategies is examined here.

The best performance of these variants are computed by appropriately tuning model pa-

rameters on the development set, and reported in Figure4.5. We observe that the proposed

nesting strategySGHJPD outperforms all the other nested segmentation strategies for both

SGCL12 and TREC-WT (there are three other strategies with comparable performance for

TREC-WT). In general, it is observed that during splitting, greedy approaches work better.

This is due to the fact that the greedy approaches are almost always able to split a multiword

segment further leading to deep nested syntax that is more informative. On the other hand,

while joining, giving preference to DCP turns out to be a better choice. Interestingly, PMI

scores are more useful for joining segments and our scores are better at splitting segments.

This also falls in line with the assumptions underlying the usage of these scoring methods;

the concept of PMI is more meaningful for examining relativestrengths of pairs of words

only, and thus has been more frequently used for marking segment breaks (and hence non-

breaks) by observing PMI scores of adjacent word pairs [84,114]. In contrast, our score is

aimed at grading how well a group of words gel together as an expression. However, we

observe that differences between strategies are not statistically significant, which highlights

the flexibility of the algorithm outline.

4.7.4 Comparison with past work

For comparing our algorithm with past work, we reimplement the nested segmentation

strategy of Huang et al. [99] (Section4.2.2), which is based on SPMI (Segment Point-

wise Mutual Information). A query (and its segments thereafter) is iteratively split into

two halves based on an SPMI threshold until the minimum SPMI reaches a termination
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threshold. We emphasize again that Huang et al. do not provide any methodology for using

nesting for IR. While evaluating their algorithm, Huang et al.observed that the anchor text

language model, obtained using the Microsoft Webn-gram Services12, performed better

than title, body and query models. Hence, we choose the anchor text language in our ex-

periments as well, for fairness and comparability. The tunable parameter in their algorithm

is the SPMI termination thresholdα, which is required for stopping further nesting. As sug-

gested in their paper,α needs to be tuned by optimizing one of the three matching metrics

(Exact match, Cover, Violation) against manual annotations. Since the authors do not spec-

ify the best of these metrics, we choose to maximizeExact match. For this purpose, we ask

three human annotatorsA, B andC to discover and annotate important phrasal segments

from the queries of SGCL12 and TREC-WT [99]. The annotators were Computer Science

undergraduate and graduate students between22 − 28 years of age, each issuing around

20− 30 Web queries per day. Using this policy, we observed a slightly poorer performance

of their algorithm with respect to our proposed strategy. Subsequently, for fairness, we also

tunedα to maximize the nDCG@10 value on the development set. Results are presented

in Table4.9. Values obtained for the three annotators were quite close to each other, and

hence only their average is reported. Tuningα using manual annotations and nDCG@10

is indicated byAnnoandIR respectively.

Table 4.9: Comparison with Huang et al. [99].

Dataset SGCL12 TREC-WT

Metric Proposed Huang et al. Huang et al. Proposed Huang et al. Huang et al.

Algo (Anno) (IR) Algo (Anno) (IR)

nDCG@10 0.7284 0.7224 0.7240 0.1884 0.1845 0.1918

MAP 0.8481 0.8456 0.8461 0.3296 0.3263 0.3368

The highest values in rows (for each dataset) are marked inbold.

Our algorithm is slightly superior to Huang et al. on both nDCG@10 and MAP on

SGCL12. We recollect that the SPMI threshold for Huang et al. was chosen so as to

maximize nDCG@10, and hence the lower IR performance is not due to the choice of an

unsuitable threshold. We observed that while the average tree height is2.96 for our method,

12http://bit.ly/bFKSxz, Accessed 6 April 2014.

http://bit.ly/bFKSxz
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the same is about2.23 for Huang et al. (for SGCL12). Note that due to the strict binary

partitioning at each step for Huang et al., one would normally expect a greater average tree

height for this method. Thus, it is the inability of Huang et al. to produce a suitably deep

tree for most queries (inability to discover fine-grained concepts) that is responsible for

its somewhat lower performance on the metrics. Huang et al.,however, perform better on

TREC-WT on both the metrics. More importantly, both nesting strategies faring favorably

(none of the differences are statistically significant) bodes well for the usefulness of nested

segmentation for IR in general. The tree height distributions for the two algorithms are

given in Table4.10for both datasets (IR optimization forα in Huang et al.).

Table 4.10:Height distributions for nested segmentation tree.

Dataset Algorithm 1 2 3 4 5

SGCL12 Proposed 0 99 327 71 3

Huang et al. 59 292 124 23 2

TREC-WT Proposed 15 46 13 1 0

Huang et al. 37 30 7 1 0

Values denote the numbers of queries for each algorithm thatattain a tree height equal to

the column headers.

Summary of results. We now summarize our main findings: (a) Nested segmentation

significantly outperforms state-of-the-art flat segmentation baselines when using segment

syntax to re-rank documents based on term proximity; (b) nested segmentation improves

performance for a majority of the queries, for both datasets; (c) distances in the nested

segmentation tree are more effective at re-ranking than using only document and query

distances; (d) exhaustive experimentation with parametervariation shows systematic con-

sistency of tree distance-based re-ranking over other models; (e) exploration of fifteen al-

gorithmic variations of our method for generating nested segmentations shows that the

proposed technique produces the best results; (f) comparison of our results with previ-

ous work [99] shows that the proposed method is better on annotation-based thresholding,

while achieving comparable performance on IR-based thresholding.
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4.8 Related research

In essence, the nested segmentation tree specifies a complete term dependence syntax, and

suggests that term pairs having a low tree distance should bein close proximity in the

document. Our research, thus, lies along the confluence of ideas from proximity, depen-

dence models for IR, and query segmentation. In this section,we present a brief review of

proximity and dependence models, which though are not directly related to our work, can

potentially benefit nested segmentation-based retrieval strategies. Work on segmentation

has been reviewed in Section4.2.

Term Proximity Models. The notion that document relevance is directly improved by

query terms appearing close to each other has its roots in theNEAR operator in the Boolean

retrieval framework [117] by which a user can specify that two query terms should occur

near each other in the document. It has fueled a plethora of research on term proximity

over the years, and primarily involves incorporating proximity heuristics into a traditional

retrieval model to show a performance improvement. Tao and Zhai [217] systematically

explored the proximity measures that had been proposed tilldate, and found that the mini-

mum document distance betweenanytwo terms of a query is best correlated with relevance.

They also make the important conclusion that any naı̈ve combination of the existing ranking

function with a proximity measure is unlikely to be fruitful. Cummins and O’Riordan [56]

further propose more heuristics and show that ideally the minimum distance betweenall

pairs of terms should be examined. They also propose that anyparticular measure is of-

ten unlikely to give the best overall results, and that the optimal combination needs to be

learnt from the data. The proximity concept has also been generalized to term sequences

rather than pairs only [20,88,208], which has brought with it new challenges like assigning

relative weights to such sequences [20]. In fact, flat segmentation strategies roughly fall

under this philosophy, with the underlying assumption thatproximities (or more strictly,

adjacencies) are important only within flat segments. We have shown in our experiments

that such a model is easily outperformed, and the tree-basedmodel suggests which of the

long range dependencies are crucial to query semantics.

Term Dependence Models.Traditional retrieval models like BM25 assume indepen-

dence between query terms, even though the idea that certaindependencies are important
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for efficient retrieval is hardly new, including ideas basedon tree syntax [235]. Gao et

al. [74] propose a language model-based framework for predicting term dependencies by

assuming that a query is generated from a document in two stages; first the linkages are

formed and then the terms that satisfy the linkage constraints. Metzler and Croft [148]

propose that term dependencies in a query can be classified into a sequential dependence

model (SDM), where adjacent terms are related, and a full dependence model (FDM) where

all the terms are inter-dependent. Their results show that significant improvements in IR

are possible by formally modeling dependencies and the FDM outperforms the SDM on

most corpora. Concepts of term dependence [148] have also been found useful in query

segmentation by Bendersky et al. [28] and relatively newer retrieval models [171]. The

nested segmentation tree based retrieval is much less computationally intensive than Gao

et al. [74] and more informed than Metzler and Croft [148]. The tree not only encodes the

term dependencies, but also provides an effective way of weighting long range dependen-

cies in search queries.

4.9 Conclusions

The primary contribution of this chapter lies in proposing astrategy to use nested seg-

mentation of Web search queries for improving IR performance. We have shown that the

tree syntactic structure inherent in the hierarchical segmentation can be used for effective

re-ranking of result pages (≃ 7% nDCG@10 improvement over unsegmented query for

SGCL12 and≃ 40% for TREC-WT). Importantly, sincen-gram scores can be computed

offline, our algorithms have minimal runtime overhead. The only resource used for per-

forming nested segmentation is a query log, which is always available to search engines.

Thus, we believe that they can be practically useful for large-scale Web search systems.

While the concept of flat query segmentation has been around for more than a decade,

there is very little work that show a significant IR benefit of directly applying the process.

Therefore, it has been a long standing debate whether query segmentation is at all useful

in practice for IR. Our results clearly demonstrate that hierarchical segmentation can bring

in substantial IR gains for slightly long queries. In addition to the unsegmented query, we

have used state-of-the-art flat segmentation algorithms Liet al. [137] and Hagen et al. [84],
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and the nested segmentation algorithm by Huang et al. [99], as competitive baselines. We

are currently exploring this line of research further by reimplementing the term proximity

model by Vuurens and de Vries [224] and comparing our approach with them. The research

by Vuurens and de Vries [224] is the state-of-the-art term proximity model and produces

comparable performance with the best dependence model as well. In the two chapters on

query segmentation, we saw how we can effectively identify syntactic units from search

queries. In the next chapter, we will try to understand rolesthat these units play in queries,

and how we can automatically infer such roles in an unsupervised setup.



Chapter 5

Role Induction of Syntactic Units:

Content and Intent

5.1 Introduction

We have seen in the previous chapters how queries are composed of syntactic units or seg-

ments. Extending this idea of query syntax further, we propose that words or multiword

syntactic units in queries basically perform two roles –content wordsrepresent the central

topics of queries, whileintent words, are articulated by users to refine their information

needs concerning the content words. The class of content units include, but are not re-

stricted to named entities (likebrad pitt, titanic andaurora borealis) – any-

thing that is capable of being the topic of a query would be thecontent unit in the context

of that query. For example,blood pressure, marriage laws andmagnum opus

are legitimate examples of content words or units. Intent words or intent units, on the other

hand, present vital clues to the search engine regarding thespecific information sought by

the user about the content units. For instance, intent unitslike home page, pics and

meaning, all specify unique information requests about the contentunits. The queries

brad pitt website, brad pitt news andbrad pitt videos all represent

very different user intents. It is not hard to see that while content units need to be matched

inside document text for relevance, it is possible to leverage the knowledge of intent units

113
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to improve user satisfaction in better ways. For example, words likepics, videos and

map can all trigger relevant content formats to directly appearon the result page. Words

like near andcheap may be used to sort result objects in the desired order. Theseideas

motivate us to focus on the discovery and understanding of query intent units.

Appropriately understanding the distinction between the two classes of words and con-

cretizing these notions of intent and content required rigorous manual analysis of large

volumes of query logs on our part. During this process, we observed that intent units share

corpus distributional properties similar to function words of NL. NLs generally contain

two categories of words –contentand function [201]. In English, nouns, verbs, adjec-

tives and most adverbs constitute the class of content words. On the other hand, pro-

nouns, determiners, prepositions, conjunctions, interjections and other particles are classi-

fied as function words. While content words express meaning orsemantic content, func-

tion words express important grammatical relationships between various words within a

sentence, and themselves have little lexical meaning. The distinction between content and

function words, thus, plays an important role in characterizing the syntactic properties of

sentences [48,71,101]. Distributional postulates that are valid for function word detection,

like the co-occurrence patterns of function words being more diverse and unbiased than

content words, seemed to be valid for query intent units as well. Following these leads,

we first segment queries by our flat segmentation algorithm, and compute the relevant dis-

tributional properties, namely, co-occurrence counts andentropies, for the obtained query

units1. We found that the units which exhibit high values of these indicators indeed sat-

isfy our notions about the class of intent units. Subsequently, we systematically evaluated

our findings against human annotations and clickthrough data (which represent functional

evidence of user intent) and substantiate our hypotheses.

In hindsight, we understand that while NL function words have little describable mean-

ing (like in, of andwhat) and only serve to specify relationships among content words,

well-defined semantic interpretations can be attributed tomost intent words (likemap,

pics andvideos). Intent words, even though effectively lacking purpose without the

presence of a content word(s) in the same query, carry weightof their own within the

query. Thus, content and intent units play slightly different roles in the query from the

1Computation of co-occurrence statistics is not easily interpretable with the output of nested segmenta-

tion, and hence we use flat segmentation outputs in this work.
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roles of content and function words in NL sentences.

The objective of this chapter is to identify and characterize content and intent words

in Web search queries, and it is organized as follows. In Section 5.2, we begin with a

verification of the efficacy of corpus-based distributionalstatistics towards function word

identification and through rigorous experimentation over five languages, discover thatco-

occurrence counts and entropiesare the most robust indicators of function words in NL.

Having convinced ourselves of the power of co-occurrence statistics in detecting function

words across diverse languages, we apply similar techniques to discover intent units in Web

search queries (Section5.3). This is followed by a simple algorithm to label content and

intent units in the context of individual queries and subsequent evaluations using human

annotations and clickthrough data (Section5.4). Observing that co-occurrence statistics

locate quite a diverse set of intent units, we attempt to provide a taxonomy of such units

based on their relationships with content words (Section5.5). Finally, we present conclud-

ing remarks (Section5.7).

5.2 Distributional properties of NL function words

Function words play a crucial role in many NLP applications.They are used as features for

unsupervised POS induction and also provide vital clues forgrammar checking and ma-

chine translation. In this section, we first re-examine thispopular hypothesis that the most

frequent words in a language are the function words. Byfunction words or unitswe refer

to all the closed-class lexical items in a language, e.g., pronouns, determiners, prepositions,

conjunctions, interjections and other particles (as opposed to open-class items, e.g., nouns,

verbs, adjectives and most adverbs). We note that the statistics presented here are applica-

ble for both single-word (in, about) as well as multiword (how to, because of)

function units from corpora, though the latter demands chunking of the NL text. We per-

form all the NL experiments on unsegmented (or unchunked) sentences and hence report

the results for detection of single word function units. Nevertheless, Web search queries,

on which we mainly focus, have been suitably segmented by ouralgorithm.



116 Chapter 5 Role Induction of Syntactic Units: Content and Intent

Language Corpus source S N V Function word list source F

English Leipzig Corporaa 1M 19.8M 342157 Sequence Publishingb 229

French -do- 1M 19.9M 388221 Built by extracting pronouns, 289

determiners, prepositions, conjunctions

and interjections from POS-tagged

corpora available at WaCKyc

Italian -do- 1M 20M 434680 -do- 257

Hindi -do- 0.3M 5.5M 127428 Manually constructed by linguists 481

and augmented as above with

POS-tagged corpora available at LDCd

Bangla Crawl ofAnandabazar Patrikae 0.05M 16.2M 411878 -do- 510

ahttp://corpora.informatik.uni-leipzig.de/download.html, Accessed 18 May 2014.
bhttp://www.sequencepublishing.com/academic.html#function-words, Accessed 18 May 2014.
chttp://wacky.sslmit.unibo.it/doku.php?id=download, Accessed 18 May 2014.
dhttp://www.ldc.upenn.edu(Catalog #LDC2010T24 and #LDC2010T16 for Hindi and Bangla), Ac-

cessed 18 May 2014.
ehttp://www.anandabazar.com/, Accessed 18 May 2014.

Table 5.1: Details of NL corpora.

5.2.1 Datasets

For the NL experiments, we shall look at five languages from diverse families: English,

French, Italian, Hindi and Bangla. English is aGermaniclanguage, French and Italian are

Romaniclanguages, and Hindi and Bangla belong to theIndo-Aryanfamily. Therefore,

any function word characterization strategy that works across these languages is expected

to work for a large variety of languages.

The details of the corpora used for these five languages are summarized in Table5.1.

S, N andV respectively denote thenumbersof sentences, words and unique words present

in the corpus, andF denotes the number of function words present in the gold standard

list used. The sentences were uniformly sampled from largerdatasets.M in the value

columns denotes million.S, N , V andF denote thenumbersof all sentences, all words,

unique words (vocabulary size) and function words, respectively. We have made the lists

of function words publicly available2. We note that the Indian languages have almost twice

as many function words as compared to the European ones. Thisis due to morphological

2http://cse.iitkgp.ac.in/∼rishiraj/Functionwordsof 5 languages.zip, Accessed 16 November 2014.

http://corpora.informatik.uni-leipzig.de/download.html
http://www.sequencepublishing.com/academic.html#function-words
http://wacky.sslmit.unibo.it/doku.php?id=download
http://www.ldc.upenn.edu
http://www.anandabazar.com/
http://cse.iitkgp.ac.in/~rishiraj/Function_words_of_5_languages.zip
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richness and the existence of large numbers of modal and vector verbs.

5.2.2 Metric

In a distributional property-based function word detection approach, the output is a ranked

list of words sorted in descending order of the corresponding indicator value. Here we

adopt a popular metric,Average Precision(AP) [17,197], used in IR for the evaluation of

ranked lists. More specifically, letw1, w2, . . . , wn be a ranked list of words sorted according

to some corpus statistic, say, frequency. Thus, ifi < j, then frequency ofwi is greater than

the frequency ofwj. Precision at rank k, denoted by P@k, is defined as

P@k =
1

k

k
∑

i=1

f(wi) (5.1)

where,f(wi) is 1 if wi is a function word, and is0 otherwise. This function can be com-

puted based on the gold standard lists of function words. Subsequently,average precision

at rank n, denoted by AP@n, is defined as

AP@n =
1

n

n
∑

k=1

P@k (5.2)

AP@n is a better metric than P@k because P@k is insensitive to the rank at which

function words occur in the list. In our tables, we report AP@n averaged overN corpus

sub-samples, which is given by1
N

∑N
r=1(AP@n)r where(AP@n)r is the AP@n for the

rth sub-sample.

5.2.3 Frequency as a function word indicator

Frequency (Fr) is often used as an indicator for detecting function words, but the following

factors affect its robustness.
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Figure 5.1: AP@500 with frequency as the function word indicator for English.

Corpus size. If the corpus size is not large, many function words will not occur a

sufficient number of times. For example, even thoughthe andin will be very frequent

in most English corpora,meanwhile andoff may not be so. As a result, if frequency

is used as a function word detector with small datasets, we will have a problem of low

recall [17]. In our experiments, we measure corpus size,N , as the total number of words

present in the corpus.

Corpus diversity. If our language corpus is restricted, or sampled only from specific

domains, words specific to those domains will have high frequencies and will get detected

as function words. For example, the wordgovernment will be much more frequent in

political news corpora thanalthough. The number of unique words in a corpus, or the

vocabulary size,V , is a good indicator of its diversity. For restricted domaincorpora,V

grows much more slowly withN than in an open domain corpus.

Experiments and results

For our frequency-based experiments, we create200 sub-samples from the original cor-

pora. We choose10 different values ofN , and for eachN choose20 different samples

such that we get a differentV each time. For each sub-sampled corpora, we compute fre-

quency of each word and sort words in decreasing order of frequency. Then we compute

AP@200, AP@500 and AP@1000 with respect to the gold standardlists of function words

(Table5.1). A representative set of results is shown in Figure5.1, for variousV andN, with
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Indicator Symbol Definition

Frequency Fr Frequency of a word in the corpus

Left co-occurrence count LCC Number of distinct words appearing to the immediate left of a word

Left co-occurrence entropy LCE Entropy of the left co-occurrence distribution

Total co-occurrence count TCC Number of distinct words appearing to the immediate left and right of a word

Total co-occurrence entropy TCE Entropy of the total co-occurrence distribution

Right co-occurrence count RCC Number of distinct words appearing to the immediate right of a word

Right co-occurrence entropy RCE Entropy of the right co-occurrence distribution

Table 5.2: Definitions of the different function word indicators.

linear regression lines. We see this same trend for all the languages, as well as for AP@200

and AP@1000. For a fixedN , AP increases withV , which means that the performance

of the frequency-based strategy works better when the corpus has high diversity. We also

observe that, in general, the performance gets better asN increases. However, for a fixed

V , increasingN effectively means increasing the number of sentences without increasing

the diversity of the corpus. Regression lines in Figure5.1 suggest that for the sameV , a

higherN would lead to a lowerAP .

5.2.4 Co-occurrence statistics as function word indicators

After having a feel of the issues faced when using frequency as a function word indicator,

we introduce other properties of function words that may help in a more robust detection.

We observe the following interesting characteristics about the syntactic distributions of

function and content words in NL, which can be summarized by the following two postu-

lates.

Postulate I. Function words, in general, tend to co-occur with a larger number of dis-

tinct words than content words. What can occur to the immediate left or right of a content

word is much more restricted than that in the case of functionwords. We hypothesize that

even if a content word, e.g.,government, has high frequency owing to the nature of the

domain, there will be only a relatively few words that can co-occur immediately after or

before it. Thus, the co-occurrence count may be a more robustindicator of function words.

Postulate II. The co-occurrence patterns of function words are less likely to show bias
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towards specific words than those for content words. For example,and will occur beside

several other words likeschool, elephant andpipe with more or less an equally

distributed co-occurrence count with each of these words. In contrast, the co-occurrence

distribution ofschool will be skewed, with more bias towardsto, high andbus than

over, through andcoast, with the list of words occurring besideschool also being

much smaller than that forand.

In order to test Postulate I, we measure the number of distinct words that occur to the

immediate left, right and either side of each unique word in the sub-sampled corpora. We

shall refer to these statistics asleft, right andtotal co-occurrence counts(LCC, RCC and

TCC) respectively. To test Postulate II, we compute theentropy[203] of the co-occurrence

distributions of the words occurring to theleft, right and either side of a wordw:

Entropy(w) = −
∑

ti ∈ context(w)

pti|w log2(pti|w) (5.3)

where,context(w) is the set of all words co-occurring withw either to the left, the right

or either side, andp(ti|w) is the probability of observing wordti in that specific context

window in the sentence, defined as below:

p(ti|w) =
p(tiw)

p(w)
=

No. of timesti occurred withw
No. of timesw occurred in a sentence

(5.4)

Context. In this chapter, the left, right and totalcontextsof a wordw respectively

denote the immediately preceding (one) word, immediately succeeding (one) word and

both the immediately preceding and the immediately succeeding words forw respectively,

in sentences of the corpus. The definition of context (i.e., whether it includes the preceding

or the succeeding one or two or three words) will change the absolute values of our results,

but all the trends in the results are expected to remain the same.

This probability in Equation5.3can be computed simply by counting the frequency of

the appropriate bigrams normalized by the frequency ofw. We shall refer to these statistics

as left, right and total Co-occurrence Entropy(LCE, RCE and TCE respectively). We

would expect LCC, RCC or TCC of function words to be higher than thatof content words
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Language Metric Typology Fr LCC LCE TCC TCE RCC RCE

AP@200 0.663 0.702∗ 0.729∗ 0.684∗ 0.679∗ 0.637 0.527

English AP@500 Pre- 0.453 0.477∗ 0.493∗ 0.468∗ 0.464∗ 0.439 0.365

AP@1000 0.314 0.328∗ 0.336∗ 0.324∗ 0.319 0.305 0.259

AP@200 0.594 0.642∗ 0.648∗ 0.615∗ 0.611∗ 0.553 0.501

French AP@500 Pre- 0.390 0.430∗ 0.438∗ 0.405∗ 0.398 0.357 0.313

AP@1000 0.264 0.290∗ 0.296∗ 0.273 0.269 0.242 0.212

AP@200 0.611 0.639∗ 0.645∗ 0.636∗ 0.620 0.606 0.601

Italian AP@500 Pre- 0.422 0.433∗ 0.423 0.438∗ 0.423 0.411 0.395

AP@1000 0.299 0.295 0.290 0.299 0.291 0.282 0.268

AP@200 0.682 0.614 0.510 0.698∗ 0.694∗ 0.716∗ 0.713∗

Hindi AP@500 Post- 0.497 0.458 0.394 0.511∗ 0.505 0.523∗ 0.521∗

AP@1000 0.368 0.345 0.306 0.379∗ 0.371 0.383∗ 0.380∗

AP@200 0.648 0.684∗ 0.691∗ 0.730∗ 0.763∗ 0.741∗ 0.757∗

Bangla AP@500 Post- 0.522 0.543∗ 0.537∗ 0.579∗ 0.599∗ 0.589∗ 0.603∗

AP@1000 0.415 0.428∗ 0.422 0.454∗ 0.470∗ 0.463∗ 0.475∗

The highest value in a row is marked inboldface. Statistically significant improvement over frequency is

marked by *. The pairedt-test was performed and the null hypothesis was rejected ifp-value< 0.05.

Table 5.3: AP for frequency and co-occurrence statistics.

due toPostulate I; similarly, due toPostulate IIwe can expect the LCE, RCE or TCE to

be higher for function words than for content words. The definitions of these indicators are

summarized in Table5.2.

Experiments and results

We now sort the list of all words in descending order of each ofthe seven indicators. We

then compute metrics AP@200, AP@500 and AP@1000 for these seven lists. To bring

out the performance difference of each of the six co-occurrence features with respect to

frequency, we plot (in Figure5.2) the following performance measure againstN :

Value plotted =
Metric for indicator − Metric for Fr

Metric for Fr
(5.5)
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Figure 5.2: Performance of co-occurrence statistics with respect to frequency.

The x-axis can now be thought of as representing the performance of frequency. In

Figure5.2 (a), for a particularN , the data points were averaged over all (N , V ) pairs (we

had20 (N , V ) pairs for eachN ). For Figure5.2 (b), we keptN fixed at500000. The

general trends were the same for AP@500 and AP@1000. The observations (bothN and

V variation) for French and Italian were similar to that of English, while those for Hindi

and Bangla were similar to each other. Table5.3reports AP values for all statistics for the

five languages. From Table5.3, where the values are averaged over200 (N , V ) pairs for

each language, we see that for all the languages, AP for some of the co-occurrence statistics

are higher than AP obtained using frequency.

Regular improvements over frequency.From the plots and Table5.3, it is evident that

some of the co-occurrence statistics consistently beat frequency as indicators. In fact, as

evident from Figure5.2, use of co-occurrence statistics results in systematic improvement

over frequency with variations inN andV , and hence, are very robust indicators. Among

the co-occurrence statistics, entropy is generally observed to be more powerful than simple

counts. This justifies that Postulate II is indeed a strictercharacteristic of function units.

The best indicator depends upon language typology.A very interesting fact that

came out of these experiments is that the left co-occurrencestatistics (LCE and LCC) gen-

erally outperform the right for English, French and Italian, whereas the reverse is true for

Hindi and Bangla (RCE and RCC are the best). This is due to the fact that English, French

and Italian are prepositional languages whereas Hindi and Bangla are postpositional. In
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a prepositional language, function words generally precede content words. Therefore, the

lexical categories (and hence the exact numbers of lexical items) that can succeed a func-

tion word is restricted. For instance, only nouns or articles can follow words likein andof

in English. On the other hand, there is no restriction on the class of words that can precede

a function word. Hence function words in a prepositional language can be expected to have

significantly higher left co-occurrence counts (and hence higher entropies). Similarly, the

opposite is valid for postpositional languages. Thus, co-occurrence statistics have potential

in predicting theadposition typologyof a new language.

As an aside, we note that categorizing a language by its adposition typology helps in ad-

dressing several challenges in linguistics and NLP. Understanding the adposition typologies

for less-studied languages by manual analysis of large textcorpora can be quite expensive,

yet automatic discovery of the same has received very littleattention till date. Using our

principle, we performed some experiments and showed that languages can be classified

as prepositional or postpositional based on the rank correlations derived from entropies of

word co-occurrence distributions. We experimented with23 languages from ten diverse

families,19 of which were correctly classified by our technique.

Total co-occurrence: A safe choice.It is not always possible to know the typology

of a language in advance. Thus, it may not be cleara priori whether to depend on left or

right co-occurrence statistics. The nice point here is thatthe total co-occurrence statistics

(TCE and TCC) are almost always better than frequency (Table5.3). This makes them safe

indicators to rely on when not much is known about the language syntax.

5.2.5 Inverse document frequency

A stop wordis a term that is popular in IR which is used to denote a word that does not have

sufficient discriminative power. Such a stop word cannot be used by the retrieval system

to distinguish between relevant and non-relevant documents. Even though the concepts of

stop words in IR and funciton words in NL understanding are fundamentally different in

function, it nevertheless turns out that there is a significant level of overlap among these

sets. See, for example, one of the lists of English stop words, used in the popular SMART

IR system [194], athttp://bit.ly/8vBrVF(Accessed 18 May 2014.). We note that the overlap

http://bit.ly/8vBrVF
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is caused by general domain stop words.

Thus, it is worthwhile to explore techniques used in stop word detection to our problem.

The concept of Inverse Document Frequency (IDF) is traditionally used to mark stop words

in IR systems. The IDF of a wordw is defined as

IDF(w) = log10
1 + |d|

|dw|
(5.6)

where|d| is the number of documents in the document collectiond, and |dw| is the

number of documents containingw. In the SMART system [194], some combination of

term frequency (TF) (Fr(w)) and IDF, known as TF-IDF, is measured for every word-

document pair(w, d). One of the popular ways of defining TF-IDF is shown below:

TF−IDF(w, d) =







0 if Fr(w, d) = 0

TF(w, d)× IDF(w) otherwise
(5.7)

whereTF(w, d) is the normalized term frequency ofw in documentd and is defined as

TF(w, d) = 1 + log10(1 + log10(Fr(w, d)) (5.8)

where Fr(w, d) is the raw frequency ofw in d. The higher number of documents that a

word is present in, the lower is its IDF. Stop words, by virtueof their relative abundance,

have low IDF and hence low TF-IDF values. For measuring the effectiveness of TF-IDF of

a word as a corpus-level indicator, we generalize it from being a document-specific value

by computing the mean TF-IDF for every document containing that word.

EuroParl Corpus. The existence of multiple documents is necessary for computing

IDF-related measures, i.e. the NL corpus should be segmented into discrete documents.

The Leipzig Parallel Corpora used for the previous experiments contain all the sentences

in a single large document, which deems it unfit for evaluating the performance of IDF.

Fortunately, in version five (and earlier) of another widelyused NL corpus, the EuroParl3

3http://www.statmt.org/europarl/, Accessed 18 May 2014.

http://www.statmt.org/europarl/
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Indicator English French Italian

IDF 0.435 0.360 0.400

TF-IDF 0.035 0.020 0.030

Fr 0.571 0.564 0.547

LCC 0.678 0.667 0.633

LCE 0.722 0.649 0.648

TCC 0.648 0.623 0.601

TCE 0.673 0.609 0.593

RCC 0.592 0.524 0.540

RCE 0.492 0.454 0.508

The two minimum values in a column are marked inboldface.

Table 5.4: Comparison of IDF with other indicators for AP@200.

dataset [121], the corpus is fragmented into thousands of documents (approximately5000

documents for each langauge). However, the EuroParl corpus, being Parliament proceed-

ings of European countries, does not contain datasets for Hindi and Bangla. Hence, we

report findings on English, French and Italian only.

Experiments and results.For a fair evaluation, we need to recompute AP values for

all indicators for the EuroParl dataset and contrast them with IDF and TF-IDF. Note that

while ranked lists for frequency and co-occurrence statistics were obtained by sorting words

in descending order of these indicators, a reverse sorting (ascending order) is necessary

for IDF and TF-IDF (stop words have low IDF). We summarize ourresults in Table5.4

(AP@200). Trends observed for AP@500 and AP@1000 are exactly the same.

From Table5.4, we see that TF-IDF performs the worst, followed by IDF. But even

for IDF, the difference in performance with the next better indicator is always substantial.

Thus, we infer that these measures are clearly unsuitable for function word detection. On

manually analyzing the ranked lists for understanding the poor performance of IR mea-

sures, the reason was clearly understood. IDF and TF-IDF pull out stop words that do not

offer discriminating evidence for ranking documents in response to a query. A majority of

these words at the top positions turn out to be content words like resume, declare,
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andadjourns (except the few most frequent function words). Note that thecorpus is

from a restricted domain (Parliament proceedings), and thedomain-specific stop words

negatively impact the performance of IDF-based measures. We recollect that the same rea-

son is one of main drawbacks of using frequency as an indicator (Section5.2.3). The best

performance again comes from co-occurrence statistics (mostly entropy), highlighting their

robustness even in restricted domain datasets.

Through the experiments on the EuroParl corpus, we have shown that IDF and TF-

IDF are not good function word indicators in restricted domain corpora, which is often

the case with many NLP applications. However, IDF and TF-IDFare expected to perform

better in a more general setting, for example, when all Web documents form the document

collection. Nevertheless, our indicators based on co-occurrence counts and entropies are

observed to perform well across all scenarios. Hence, they can be used for function word

detection from Web corpora as well. Also, we note again that while low TF-IDF has been

shown to be an effective stopword detector, the concepts of function words and stopwords

are fundamentally different.

5.3 Intent units of Web search queries

In this section, we apply our robust function word identification strategies to query logs and

observe the resultant partitioning of words. We find that thetop ranking words according to

co-occurrence statistics align well with our notion of intent units (Section5.1). For all our

experiments on queries, we use our query log sampled from BingAustralia (Section1.2).

5.3.1 Operational definitions

We study and classifysegments(units) for Web search queries. In our study, we used our

flat query segmentation algorithm (Section3.2), which uses query logs and Wikipedia ti-

tles as the input resources, to identify query segments. Forfacilitating representation and

understanding for certain annotations, segment boundaries are marked by parentheses in

this chapter, like(public schools) (new york), instead of the usual pipes(|).
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Ranks 1-10 Ranks 11-20 Ranks 21-30 Ranks 51-60 Ranks 91-100

in with for sale home time

the lyrics is de your

and by what is pictures of book

for from best music show

of 2010 vs uk la

free online video jobs myspace

to new 2009 black baby

on at my song james

how to 2008 pictures news cheap

a download school about does

Table 5.5: Sample units at top ranks when sorted in descending order by TCE.

We apply the segmentation algorithm on all the queries and compile a list of unique units

(about1.3M in number) that occur in our query log. For each unit, we measure its fre-

quency, the three co-occurrence counts and the corresponding entropies.

To give a feel of the units that are pulled up, we present some examples in Table5.5

when sorted in descending order of TCE. Only26 out of the top100 units for queries are

function words of English. We understand that it can be hard to make a definite distinction

between content and intent units solely on a qualitative basis. So before we can have

any further quantitative evaluation of our indicators, we must have in placeoperational

definitionsof content and intent units in queries that can help concretize the notion of

a word being content or intent with respect to a query. An empirical validation of the

proposed operational definitions is presented in Section5.4.3.

Content units in Web search queries.They carry the core information requirement

within a Web search query. Just like the role of content unitsin NL sentences, removing

these units makes the query lose its central idea. For this reason, content units need to be

matchedwithin the documents for effective retrieval. For example,titanic, age of

empires andford cars are all content units.



128 Chapter 5 Role Induction of Syntactic Units: Content and Intent

Intent units in Web search queries.They specify user intent in Web search queries.

Theyneed not matchexactly at the document side, and the search engine can have intelli-

gent techniques for using such units to increase the relevance of result pages. For example,

music, online, andfor sale are some commonly encountered intent units. Analo-

gous to NL, removal of these units removes vital details about query semantics. We note

that function units in NL (likeand, of andin) can play similar roles in queries, and hence

fall under this category.

These definitions of content and intent words, and the condition of matching in docu-

ment text, are extremely vital to principles in semantic search. We emphasize that the defi-

nitions of content and intent are always necessarily operational – content segments need to

be matched in the document text during the retrieval process, while the search engine can

have intelligent techniques to process intent segments to improve relevance of result pages.

Thus, what has to be treated as content today can become an intent segment after a few

years if the (semantic) search system develops a more improved way to handle that seg-

ment than searching for it in the document text. This is whereit differs from other similar

frameworks, which are static and more like the entity-attribute model [160].

For example, in a query likelondon wedding or london population, we

would treatwedding (or population) to be a content word and not an intent word

(london would be a content too), because in the current search scenario, there is almost

no way to infer the “intent”wedding orpopulation from a page without matching the

term within the document text.Population could become an intent word the day when

annotations or other features of a Semantic Web enable the engine to infer the answer (i.e.

the population of a city or country) even without the presence of the word on the retrieved

page. Butpopulation is, and would always remain, an attribute of a country or a city

(which is the entity). Current search engines provide directanswers to queries likelondon

population today but those are summaries generated from a document poolcreated by

traditional matching. In contrast, for queries likelondon weather, london place

andlondon life (generally all Web queries are in lowercase),london would be con-

tent (as it is the topic of the information need) andweather, place orlife would be

intent as there exist ways today (search engines may use themor not) to infer information

relevant to these contexts without direct matching. Say, for example, knowledge graphs

enable the search engine to know that temperature, rainfall, and humidity are aspects of
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weather (as can be employment, poverty and cleanliness aspects of city life) and can be

scraped off pages to provide consolidated information on weather and life. Intent words

like place or location can be used to understand the preferred content type, like bringing

up relevant maps. In summary, the collection of all intent words or units is adynamic set

completely defined for a particular span of time by the state-of-the-art (semantic) search

technologies available during that span of time.

5.3.2 Experimental results

We note that it is not possible to build an exhaustive list of such intent units for queries.

So in order to have a suitable gold standard set created by humans for future validation of

results, we first need a representative sample unit set. These can be manually classified as

intent units (or content units). To avoid bias towards any particular indicator, we took the

union of the top1000 units when sorted by each indicator. We asked three human annotators

A, B andC to mark these1215 query segments as “intent” or “content” with the above

operational definitions as guidelines. All of our annotators were graduate students in the

age group of25− 35 years and were well-acquainted with Web search, each issuing about

20 − 30 queries per day. Out of the1215 segments,A,B andC marked607, 646 and548

units as intent respectively. Now we assume the units markedas “intent” by each annotator

separately as the gold standard. Then, similar to the methodfollowed in NL, we sort the list

of all units in descending order of each of the seven indicators and compute the AP@200,

AP@500 and AP@1000 for these ranked lists. Results are presented in Table5.6.

Superiority of total co-occurrence.Just like NL, co-occurrence statistics consistently

beat the performance of frequency. When the ranked list is small (200 units), the right

(A andC) or left (B) co-occurrence statistics gives the best accuracy. On the other hand,

for longer lists (500 and1000 units), the total co-occurrence count (A) and entropy (B)

always perform the best. In general, total co-occurrence statistics are generally the best or

the second-best, with improvements over frequency in all cases. These trends are observed

across all the annotators, thus underlining the adequacy ofthe operational definitions. We

observed thatC was more strict in labeling units as intent (markedly lower AP values

thanA andB). This can be understood from the following example units that are marked
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Annotator Metric Fr LCC LCE TCC TCE RCC RCE

AP@200 0.622 0.654 0.639 0.696 0.653 0.701 0.668

A AP@500 0.462 0.495 0.498 0.548 0.519 0.513 0.479

AP@1000 0.335 0.348 0.331 0.421 0.400 0.343 0.305

AP@200 0.719 0.812 0.854 0.850 0.852 0.793 0.777

B AP@500 0.528 0.617 0.631 0.665 0.674 0.590 0.567

AP@1000 0.381 0.416 0.408 0.488 0.491 0.388 0.363

AP@200 0.434 0.458 0.488 0.490 0.494 0.542 0.535

C AP@500 0.338 0.361 0.359 0.401 0.385 0.392 0.381

AP@1000 0.252 0.261 0.253 0.322 0.308 0.260 0.243

The two highest values in a row are marked inboldface.

Table 5.6: AP of each of the indicators for intent unit detection in Web queries.

as intent byA andB but not byC – driver, kids, tutorial, program and

custom. All of these do carry user intent in queries, but not in a direct fashion like the

more general units likemovies, define andgames (labeled as intent by all three).

Intent units which tend to occur at the beginning of the queryhave low LCC and LCE

(e.g.how to, what does anddefine). Similarly, there are examples likemp3, for

sale andblog, which typically occur only at the end in queries, displaying the op-

posite behavior. Such extreme cases are rare in NL, because words that begin or end a

sentence also frequently occur at other positions. Thus, left or right co-occurrence alone

are insufficient for extracting intent units in queries, highlighting the importance of total

co-occurrence statistics.

Rank adjustments by co-occurrence statistics.In Table5.7, we compare the ranks

of a few units with respect to the seven different statistics. Content units likewedding

can have very high frequency owing to the popularity of the event or concept; however,

co-occurrence statistics help push such candidates lower down the list (from Rank138 in

frequency to out of the top-200 by all other indicators). Next, we see that intent units

like blog anddefine, which rank around500 by frequency move much higher up the
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Unit Fr LCC LCE TCC TCE RCC RCE

for sale 16 24 30 27 58 119 2, 216

pictures 48 39 35 56 45 93 53

mp3 109 75 93 115 221 487 1, 712

blog 490 164 87 294 127 1, 323 945

biography 824 278 110 561 171 5567 4, 009

how to 4 80 77 8 32 2 11

wedding 138 363 377 295 438 240 447

make a 188 3, 953 209, 164 213 923 66 40

what does 316 2, 275 1, 517 174 734 56 294

define 503 1, 727 1, 098 199 51 70 22

Table 5.7: Ranks assigned to query intent units by the seven different statistics.

ranked list when appropriate co-occurrence statistics areused. Hence, average precision

is generally observed to increase for co-occurrence-basedfeatures. We note that the rank

of make a by LCE is209, 164. This is becausemake a is preceded by only a handful

of segments likehow to or way to. Thus, it has a very restricted left co-occurrence

distribution and hence a very low LCE. This pushes its rank by LCE so far down. Other

indicators are seen to have balancing effects on words with such skewed distributions.

A note on segmentation errors.First names likejames co-occur with several differ-

ent family names and acquire a high rank (Table5.5). We would not have observed them

this high up in the lists had the segmentation algorithm always been able to group together

entire names. For example, popular figures likejames bondandjames cookdo get grouped

together, and as units they do not have such high co-occurrence statistics.

A note on IDF for queries. The concept of IDF (Section5.2.5) cannot be explored

in the context of intent word detection in Web queries (Section 5.3) because even though

each query can be considered as a sentence, the concept of a (coherent)documentis not

well-defined. The only notion that comes close is grouping the queries from a single user

sessionas a document. However, session segmentation of a query stream is an active area
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of research [6,113] and is beyond the scope of this work.

5.4 Labeling intent units in query context

A segment can act as content or intent in a query depending upon the context. For ex-

ample, while the segmentvideo behaves as an intent unit in most queries, like,(us

open) (video) (specifying that the desired content type is a video), it is the content

unit in the query(definition of) (video). Thus, a labeling scheme is practically

useful only if it can label segments as content or intent within a query, and not just in a

context-agnostic standalone fashion. In this work, for simplicity, we restrict ourselves to

labeling two-segment queries; extension to multi-segmentqueries is an important future

work. Interestingly, two-segment queries (derived from the output of our flat segmentation

algorithm) form a significant proportion of our Bing log (≃ 44%).

As a first step, we define anintent-ness scoreIS(u) for every unitu that appears in the

query log. Since all our indicators hold clues towards theintent-nessof a unit, this score is

calculated as a simple log-linear combination of the indicators as

IS(u) = log2(Fr(u)) + log2(LCC(u)) + LCE(u)

+ log2(TCC(u)) + TCE(u) + log2(RCC(u)) + RCE(u) (5.9)

Logarithms of Fr, LCC, TCC and RCC are taken to make them comparablein value to

the entropies (c.f. Equation5.3), which are already in logarithmic space. Since intent units

are expected to obtain higher individual feature values than content units, the former is also

expected to achieve higher intent-ness scores. However, weunderstand that there could

be more appropriate methods of feature combination [59] like learning weights with linear

regression models, but such methods require supervision (while all the techniques used in

this research are unsupervised) and will require detailed experimentation.

Algorithm. The segment with the lower IS in a query is marked as content (\c). The

intuition behind this is that a query must have at least one content unit, and the IS of a con-
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tent unit is expected to be lower than that of an intent unit. If the score of the other unit in

the query exceeds that of a user-defined thresholdδ, it is marked as intent (\i). Otherwise,

the second unit is also labeled as content. Since the absolute number of intent units in the

query log is expected to be low in comparison to the number of content units, simply label-

ing the unit with the higher IS as intent, without a threshold, would result in too many false

positives. We note that if the intent-ness score (IS) of a segment is below the thresholdδ, it

will always be labeled as content. Obtaining an intent-nessscore below the threshold essen-

tially means that there is insufficient evidence in the querylog for labeling this unit as intent.

Thus, our tagging algorithm labels two-segment queries aseither content segment-intent

segment (equivalently intent segment-content segment),or as content segment-content seg-

ment. We denote the first set of queries ascontent-intent queries(for example,(brad

pitt)\c (home page)\i, (pictures of)\i (digestive system)\c and

(how to)\i (paraglide)\c) and the second set of queries to becontent-content

queries((brad pitt)\c (jennifer aniston)\c, (digestive system)\c

(carbohydrates)\c and(paraglide)\c (safety equipment)\c).

5.4.1 Evaluating in-query labeling using human annotations

Experiment. Our test data comprised of2600 unique two-segment queries (segmented by

our flat segmentation algorithm), randomly sampled from allthe two-segment queries in

our entire Bing log. These queries were not used for training.We asked our three annotators

A,B andC, who had previously annotated individual segments (Section 5.3.2), to annotate

1000 queries each by marking the segments as content or intent units, as they deem fit, in

accordance with the operational definitions. If the segmentation was incorrect, they were

supposed to provide the correct segmentation and then mark the content and intent units.

Queries that had more or less than two segments after annotation were not considered for

further steps. In order to measure inter-annotator agreement (IAA), we had ensured that

there are200 queries common for all the annotatorsA, B andC ((1000−200)×3+200 =

2600) queries. Some general sample annotations, not restrictedto this dataset of two-

segment queries, are shown in Table5.8.

For content unit labeling in queries, in general, our methodcan be improved by using
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Human Labeled Query Machine Labeled Query

(roger federer)\c (pics)\i (roger federer)\c (pics)\i

(cranes)\c (for sale)\i (cranes)\c (for sale)\i

(star trek)\c (wikipedia)\i (star trek)\c (wikipedia)\i

(britney)\c (biography)\i (britney)\c (biography)\c

(ethan hawke)\c (movies)\i (ethan) (hawke) (movies)†∗

(adobe flash)\c (download)\i (adobe flash)\c (download)\i

(free)\i (video converters)\c (free video)\i (converters)\c†

(hotels)\c (near)\i (airport)\c (hotels) (near) (airport)∗

† Error in segmentation algorithm.
∗ Machine unable to label more than two-segment queries.

Table 5.8: General examples of segmented and labeled queries.

rules and resources for identifying named entities (NE) like names of people, organiza-

tions and places using NE lists such as Yago, DBpedia and Freebase. However, that would

make our method partly supervised or informed. Hence, we didnot try those out. But for

practical applications, it would be imperative to fine-tunethe algorithm using such rules.

Usually lists will work only for the relatively well-known entities, and if our segmenta-

tion algorithm can correctly group (rare or popular) entities, our content-intent tagger will

also make the correct decision most of the time as such entities will have restricted co-

occurrence distributions and will be correctly marked as content, even if it does not appear

on the popular NE lists.

Results and observations

Percentage Inter-annotator Agreement (IAA) on the labels,i.e., percentages of units on

which annotators agree on the content-intent labels, are83.99, 77.06 and77.32 for A−B,

B − C, andC − A respectively. All annotators marked about70% of the units as content

and the rest30% as intent. The corresponding values for Cohen’s Kappa (κ) [53], a stricter

metric for IAA that considers the effect of chance agreements, are0.62, 0.45 and0.46. A

κ close to0.5 indicates statistically significant IAA between annotators.
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Figure 5.3: Evaluation of labeling units against human markup.

For simplicity, from now on we use only the2400 queries for which we have exactly one

annotation, for our analysis. Out of these2400 queries,1356 queries (56.5%) were labeled

as content-intent and1044 queries (43.5%) were labeled as content-content by our anno-

tators. We first compute our labeling accuracy by penalizingcases where our algorithm

predicts an opposite set of labels for content-intent queries. Results show that our algo-

rithm achieves a labeling accuracy of78.79% (82.28% for A, 78.67% for B, and75.43%

for C) (δ = 13, as determined through experiments presented later). Thisis particularly

high considering that the IAA is also roughly80%. This means that we predict the op-

posite set of labels only about20% of the times; to be specific, for271 queries (out of

1356 queries). The mistakes typically occur in those cases wherethe content unit is very

popular and achieves a significantly high intentness score,while the intent unit is rela-

tively uncommon. For example, in the query(finland) (bed and breakfast),

finland is marked as intent by the annotator andbed and breakfast as content,

while our algorithm labels wrongly as the reverse. According to our framework,bed and

breakfast is the main topic of the query and hence acts as content, whereas the location

finland represents user intent (seesourcespecifiers, Section5.5).

Effect of Threshold. We evaluated the labeling algorithm against the test set at differ-

ent values ofδ. For this purpose, we computed the precision, recall and F-Score [197] for

intent and content units, as defined below.
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Precision(Intent units)=
#(Units correctly labeled as intent)

#(Units labeled as intent)
(5.10)

Recall(Intent units)=
#(Units correctly labeled as intent)

#(Units labeled as intent by annotators)
(5.11)

F-Score(Intent units)=
2× Precision(Intent units)× Recall(Intent units)

Precision(Intent units)+ Recall(Intent units)
(5.12)

The precision, recall and F-score for content units are defined similarly. We note that

these metrics are computed by looking at the aggregate pool of content-intent and content-

content queries, i.e. all the2400 queries. Figures5.3 (a) and (b) show the curves obtained

when these metrics are plotted by varyingδ for intent and content unit detection, respec-

tively. The optimumδ turns out to be about13 (value used in the previous experiments

for computing labeling accuracies). Our content labeling has a much higher precision than

intent labeling, but this is correlated to the fact that the natural proportion of content units

in a query log is expected to be much higher than that for intent units. As one would expect,

there is a trade-off between precision and recall.

5.4.2 Evaluating in-query labeling using clickthrough data

Till now, we have postulated and identified the distributional characteristics of the lexical

categories of the query language, i.e. content units and intent units. As in NL, lexical cate-

gories in queries must also have their specificfunctions. In fact, our notions of content and

intent units are based on their functions, which isa content unit denotes the core informa-

tion need of the userandan intent unit further modifies the information need in one ofmany

possible ways(Section5.3.1). We asked the question if we can mathematically model and

compute the functional characteristics of these units and provide further evidence for their

existence. One possible way to study the functions of the units is to analyze click data. A

click is representative of the function or the role of the unit in a query because it leads to

the purpose of issuing the query, i.e. land on a (possibly) relevant page.

Human judgments can often be very expensive to obtain on a Webscale. Fortunately,

clickthrough logs can also help us in large-scale automaticevaluation of our content-intent
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labeling algorithm. The basic idea is as follows: Consider two content unitsc1 and c2

(saytom cruise andanjelina jolie) and two intent unitsi1 andi2 (saymovies

andhome page). The queriesc1, c1 i1 and c1 i2 (or c2, c2 i1, andc2 i2) are closely

related because the core information need, which isc1 (or c2), is the same for all of them.

Therefore, we can expect to see a good amount of overlap amongthe URLs clicked for each

of them. On the other hand, the queriesi1 (if it makes sense),c1 i1 andc2 i1 (or i2, c1 i2 and

c2 i2) are very different in their information needs. Hence, we can expect very little, if not

zero, overlap among the URLs clicked for them. Thus, one way todefine theinformation

contentof a unitu is to collect all queries containingu and compute the overlap between

clicked URLs for these queries. A low overlap would imply thatu is usually an intent unit,

and a high overlap indicates thatu is generally a content unit. This concept is illustrated

through an example in Figure5.4. The exact procedure of using clickthrough logs to arrive

at a labeling of a two-segment query is explained next.

Modeling click overlap

A precise quantification of the amount of overlap between twosets of URLs is non-trivial

because exact string match to compare URLs is unreliable. Forinstance, the pair of URLs

www.puzzle.comand www.puzzle.com/demo/help.htmlare very closely related, but do

not match exactly at string level. On the other hand, partialstring-level matches can also

be misleading. For example, URLsen.wikipedia.org/wiki/foxanden.wikipedia.org/wiki/

guitar have no logical overlap. Therefore, we first show how to identify the overlaps be-

tween pairs of URLs (with respect to a particular query, as in Figure 5.4), and then use

these overlap values to compute the overlap between twosetsof URLs. Let a URLU

be created by the concatenation of a number of stringssUi
. Drawing upon intuition, we

propose that the overlap between a pair of URLsX ≡ sX1
/sX2

/sX3
/ . . . /sXk

/ . . . /sXn1

andY ≡ sY1
/sY2

/sY3
/ . . . /sYk

/ . . . /sYn2
depends on the following factors: the length

(as measured by the number of strings delimited by slashes) of the prefix up to which the

URLs match exactly (k), the number of times the URLs have been clicked for the query

under consideration (click countscX andcY), the lengths of the URLsn1 andn2 (as mea-

sured by the number of strings delimited by slashes), and a quantity we term as the Inverse

URL frequency (IUF). This last factor is helpful in identifying very general domain pre-

www.puzzle.com
www.puzzle.com/demo/help.html
en.wikipedia.org/wiki/fox
en.wikipedia.org/wiki/guitar
en.wikipedia.org/wiki/guitar


138 Chapter 5 Role Induction of Syntactic Units: Content and Intent

Figure 5.4: Illustrating difference in click overlaps.

fixes such asen.wikipedia.orgwhich should contribute minimally to the overlap score (c.f.

the concept of IDF in Section5.2.5). We define the IUF of a URL prefixs as follows (c.f.

Equation5.6for justification):

IUF(s) = log10
1 + |U |

|Us|
(5.13)

where|U | is the number of distinct URLs in our log and|Us| is the number of distinct

URLs with prefixs. The overlapo betweenX andY is directly proportional to the IUF of

the first string of the common prefix (sX1
or sY1

), the number ofcommonclicks obtained

by both the URLs (min(cX , cY)), and the length of the common prefix (k). On the other

hand, it is inversely proportional to the sum ofn1 andn2, i.e. the sum of the lengths of the

two URLs (in terms of constituent strings). For the last factor, we use the mean length of

en.wikipedia.org
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Figure 5.5: Evaluation of labeling units against click data.

the two URLs as the combining factor, i.e.n1+n2

2
. We thus define the overlapo betweenX

andY as a simple combination of the factors as (assuming the constant of proportionality

to be one):

o(X ,Y) = IUF(sX1
)×min(cX , cY)× k ×

1
n1+n2

2

= IUF(sX1
)×min(cX , cY)×

2k

n1 + n2

(5.14)

The contributing factors could be combined in a better way todefine the resultant over-

lap. However, it is not the focus of this research and we record it as future work. To

compute the click overlap of a set of URLsS, we compute the mean of the pairwise over-

laps of all URLs inS. For each content or intent unitu, a value ofo can thus be derived.

The final labeling is done as follows:

“For a given two-segment queryq, the unit with the lower overlapo(u) is treated as an

intent unit, and the one with the highero(u) as content.”
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Results and observations

The identification of the different behaviors of click overlaps for content and intent units

opens up the possibility of not being tied to manual annotations for evaluation. We checked

the percentage IAA of labeling done using click overlap formulation (unit with lower over-

lap is intent, the other is content) with the manual annotators and found it to be73.09%,

71.65% and68.23% for A, B andC respectively, which are similar to our earlier IAA

values (Section5.4.1). We then checked the precision, recall and F-Score (Equations5.10

through5.12) for our labeling algorithm with the output produced by click data modeling.

The definition of recall, however, is appropriately modifiedto

Recall(Intent units)=
#(Units correctly labeled as intent)

#(Units labeled as intent by click data)
(5.15)

A similar change is made for content recall. Figures5.5 (a) and (b) show the corre-

sponding plots obtained by varying thresholdδ, for intent and content units respectively.

These results are markedly similar to the results produced by evaluating against human

annotated data (Figure5.3), which justifies our choice of using clickthrough data as an

alternative evaluation strategy.

5.4.3 Verification of the operational definitions

While every relevant document for a query must contain the content units, this is not neces-

sarily true for intent units. For example, in the query(jaguar x8) (for sale), the

user expects every relevant document to contain the contentunit jaguar x8, but this is

not true of the intent unitfor sale. This was the basis on which our operational defini-

tions for content and intent units were formulated. We verified the validity of this notion on

our IR corpus (Section3.4). Since this dataset contains queries accompanied by relevant

documents, it is appropriate for verifying our operationaldefinitions.

We used the segmented versions of the queries as output by ourflat segmentation al-

gorithm, and subsequently labeled the383 two-segment queries with content and intent

tags using our algorithm. We now wish to observe the presence, and the distribution, of
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content and intent segments in relevant documents associated with each query. Since ex-

act string matching for segments in documents can often be misleading (the segmenthp

aio printers can be present in the document ashp printer aio), we formulated

the following three-point (0− 2) scoring criteria forapproximatesegment matches in doc-

uments. Exact and exact stemmed matches (each word of the segment stemmed by the

Porter Stemmer [177]) would be rated asSM 2(Segment Match Grade 2).SM 1is awarded

if the stemmed segment was present in amodifiedform in the document. We define seg-

mentmodificationas a 1-insertion, a 1-substitution, a 1-deletion or a 1-transposition (1-

indicating atone positiononly) of the stemmed form. The above operations, as applied to

a multiword expressionM = < a b c d >, are explained next. We note that there are

some overlaps among these sets, but since all are assigned the same score (SM 1), it does

not make a difference. We do not deal withn-modifications in this work, wheren > 1.

• 1-insertions. All new segments formed by inserting one new word in an intermediate

position of the original segment. 1-insertions forM = {〈a x b c d〉, 〈a b x c d〉, 〈a b

c x d〉}, wherex is any word.

• 1-substitutions. All new segments formed by substituting one word in the original

segment by a new word. 1-substitutions forM = {〈x b c d〉, 〈a x c d〉, 〈a b x d〉, 〈a b

c x〉}, wherex is any word.

• 1-deletions. All new segments formed by deleting one word from the original seg-

ment. 1-deletions forM = {〈b c d〉, 〈a c d〉, 〈a b c〉}.

• 1-transpositions. All new segments formed by swapping the positions of one pair of

adjacent words in the original segment. 1-transpositions forM = {〈b a c d〉, 〈a c b

d〉, 〈a b d c〉}.

The segment is searched in the document text of each documentin the query pool (aver-

age pool depth for this dataset is about30) and the subsequent match (or non-match) is rated

asSM 0, SM 1or SM 2. Each document in our document pool is associated with an RJ of0

(non-relevant),1 (partially relevant) or2 (relevant). Since each segment searched is tagged

as content or intent, we can now build the following3 x 3 matrices for degree-of-match

versus degree-of-relevance, accumulated for all segmentsof a particular type (Tables5.9

and5.10).
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Content SM 0 SM 1 SM 2

RJ 0 19.113 2.647 7.285

RJ 1 21.566 3.844 13.491

RJ 2 15.328 3.022 13.704

Table 5.9: Segment match versus document relevance for content units.

Intent SM 0 SM 1 SM 2

RJ 0 20.458 0.360 4.530

RJ 1 30.747 0.390 6.959

RJ 2 27.127 0.630 8.799

Table 5.10:Segment match versus document relevance for intent units.

The absolute counts of the specific cases in the matrix cells were normalized by the

sum of the values in the entire table, and converted into percentages. The first rows of the

tables are greyed out because matches in non-relevant documents are not of interest to us.

The second and the third rows imply that the document was at least partially relevant to

the query. If we consider exact and partial matches (SM 1or SM 2) for these two rows,

we see that the corresponding total percentage for content units (≃ 34%) is almost double

of that for intent units (≃ 17%). Moreover, we note how the absence of segments affects

document relevance. For content segments, in only≃ 37% cases was the document at least

partially relevant (RJ 1or RJ 2) when the segment was absent in the document, while the

corresponding number for intent segments is as high as≃ 58%. Both of these observations

indicate that while matching a content segment in a documentis crucial to improving IR

performance, an intent segmentneed notalways match (exactly or partially) for the docu-

ment to be relevant – thus validating our operational definitions. It is important to note that

the way current Web documents and commercial search enginesare designed (emphasising

presence or match of keywords), it is very difficult to obtainsubstantial evidence for pages

that do not contain the intent units and yet are relevant to the query. However, it is intuitive

that such pages exist on the Web, and one of the main objectives of semantic search is to
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discover these pages.

5.4.4 Use of content and intent labeling in IR

Labeling segments as content or intent is only half of the work required for our ideas to be

useful in a practical scenario. The second half is the functional aspect, i.e. to be somehow

able to use these labels during the IR process for better ranking or result presentation. We

note that there can be several ways of doing this, and search engines are possibly doing

some of these today. For example, specifyingvideo or pics or map with content units

almost certainly puts video or image or map content at the top, instead of the usual “ten

blue links”.

We devise a simple and generic application for our labeling strategy, in line with our

operational definitions of content and intent. Our intuition lies in the definitions them-

selves: while content segments need to be matched exactly within documents, intent units

need not match exactly in the document text for relevance. Current search engines sup-

port use of the double quotes operator (“. . .”) to force exact phrase match in the document.

Exact match refers to perfect ordering of segment words in the document, without word

insertions, deletions, transpositions, substitutions orother linguistically informed flexible

matching criteria (like synonyms). However, it is known that users rarely use quotes in their

queries to use this feature (only about8% of queries in our Bing log), while a much larger

fraction of queries (about71% as reported in Guo et al. 2009 [81]) do have named enti-

ties or multiword expressions (roger federer, summa cum laude) within them. It

could also be detrimental to put quotes indiscriminately around all segments. In our opin-

ion, for example, it would be harmful to ensure exact match for intent segments likehow

to or difference between, because a page can contain the procedure for something

or comparison between items (say, as a table) without havingthese exact words. Thus, de-

veloping an automatic selective quoting strategy based on content and intent markup could

be a good way of putting our work to use. To summarize, we statethat content units must

be quoted while intent units should not be enclosed within double quotes during the search

process. Note that quoting for ensuring exact word orderingis meaningful only for mul-

tiword segments, as quoting single word units only differentiates between stemmed and
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Anno Perc. queries improved Avg. for quoting strategy Avg. gain over original

nDCG S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

X 34.150 34.960 24.390 47.970 0.771 0.807 0.542 0.882† 0.196 0.176 0.227† 0.212

Y 39.840 39.020 22.760 50.410 0.709 0.755 0.552 0.818† 0.101 0.105 0.202† 0.154

Z 34.960 39.020 18.700 50.410 0.723 0.797 0.531 0.858† 0.145 0.157 0.213† 0.185

Avg. 34.960 40.650 21.140 52.030 0.772 0.830 0.575 0.890† 0.151 0.132 0.195† 0.161

X 42.280 38.210 14.630 47.150 0.567 0.589 0.230 0.625† 0.176 0.182 0.170 0.184

Y 31.710 30.890 14.630 40.650 0.343 0.370 0.145 0.392† 0.102 0.098 0.126 0.109

Z 38.210 46.340 15.450 56.100 0.478 0.528 0.217 0.568† 0.126 0.116 0.142† 0.128

Avg. 32.520 34.150 8.940 39.020 0.359 0.380 0.112 0.397† 0.126 0.105 0.090 0.108

S1: Both content and intent units in quotes;S2: Content unit quoted, intent unit unquoted;S3: Content unit

quoted, intent unit deleted;S4: Maximum of S2 and S3. The highest value within each set of columns is

marked inboldface. Statistical significance (two-tailed pairedt-test,p < 0.05) of the highest value within a

set of columns over the next best is shown using a†. This is applicable only for the middle and the right sets

of columns.

Table 5.11: IR evaluation (nDCG@10) of content-intent labeling using the Bing API.

unstemmed word forms (likebrown andbrowning). In our previous work (Chapter3),

we had shown with an oracle-based approach that quoting helps improve IR performance,

but a deterministic quoting strategy is yet to be discovered. We believe that content-intent

labeling is the first step towards such a strategy.

We note here that none of the four state-of-the-art researches that tag queries with

content-intent like labels [135,231,233,236] provide an IR-based evaluation for their ap-

proaches. Moreover, schemes that do use some sort of query tagging to improve retrieval,

do not report results on a single dataset so as to be comparable among each other. Thus,

we select Microsoft Bing Web Search, a commercial search engine, as our state-of-the-art

baseline, accessible through its API4. This provides a very challenging baseline, and if we

are able to show IR improvement on a reasonable proportion ofqueries over the Bing API,

our method can be said to have substantial practical significance.

We run experiments with our IR evaluation dataset (Section3.4) that contains500

queries (5 to 8 words), a corpus of13959 documents, and about30 relevance judgments

4http://datamarket.azure.com/dataset/bing/search, Accessed 18 May 2014.

http://datamarket.azure.com/dataset/bing/search
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per query (0− 2 scale; three annotators). Most queries (383 out of500) consist of two seg-

ments only (according to our segmentation algorithm), which are labeled for content and

intent segments by our method.123 out of these383 queries have one intent segment and

one content segment (remaining260 are content-content), which forms our final evaluation

set. For each of these123 content-intent queries, we generate the following query variants:

(a) both content and intent segments are in quotes (c-q i-q), (b) content segment is in

quotes and intent segment is unquoted (c-q i-u), and (c) content segment is in quotes

and the intent segment is deleted (c-q i-d). Among these,c-q i-u andc-q i-d can

be said to be “our” proposed methods asc-q i-q can be generated without the tagging

step by simply quoting both segments. We subsequently use the Microsoft Bing Search

API to search our document collection. Essentially, we use the Bing search API to retrieve

the top-10 URLs from the Web for our query versions (three quoting variants and the orig-

inal query) and then search our corpus for these URLs and theircorresponding relevance

judgments. Since the original corpus was also constructed using the Bing API, all the docu-

ments and most of the corresponding relevance judgments were found in the dataset. Next,

we compute nDCG (Equation3.4) and MAP (Equation3.7) for each query, and report av-

eraged values in Table5.11. nDCG is computed after observing the first ten results only, as

happens in a typical Web search scenario, and hence we reportnDCG@10. For computing

MAP, relevance judgment ratings of2 were treated as “relevant” while ratings of0 and1

were considered as “non-relevant”. The results are computed for each of the three annota-

tors (namedX, Y andZ) and their mean rating, all of which are available in our dataset.

We compute the following three statistics for each quoting variant (represented by the three

sets of columns in Table5.11): (a) percentage of queries on which the variant improves

over the original query, (b) mean metric value (nDCG@10 or MAP) for the variant, and (c)

the mean metric gain over the original query for improved queries. In addition to the three

variants, we compute these values for the columnMax(c-q i-u, c-q i-d) that rep-

resents the better of the two variantsc-q i-u andc-q i-d in terms of the metric value

(nDCG@10 or MAP). If this strategy gives the best results among the rest, we can say that

content-intent labeling has thepotential for producing substantial improvement over the

original query, even with a very strong baseline.

We make the following important observations from Table5.11: (a) c-q i-u and

c-q i-d together can improve nDCG for more than50% queries (64 out of 123 queries
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for mean rating) has the best performance, (b)c-q i-d, andc-q i-u andc-q i-d

together result in higher metric gain (both metrics) over the original query thanc-q i-q,

and (c)c-q i-u generally has the highest IR performance among the three variants. For

case (b), we note that takingMax(c-q i-u, c-q i-d) increases the number of im-

proved queries, and hence the mean ofMax(c-q i-u, c-q i-d) can fall below the

mean forc-q i-d. For both metrics, for a large majority of the cases (17 out of 24

cases),Max(c-q i-u, c-q i-d) version achieves the best results, and the gains are

often statistically significant (applicable for the secondand the third sets of columns,8 out

of 16 cases). These results show that tagging segments as contentor intent can be lever-

aged for good IR performance. It is heartening to see that ourdeterministicc-q i-u

variant generally achieves the second best performance forthe left and the middle sets of

columns of percentage queries improved and mean metric values (i.e., the best among the

first three columns of deterministic variants in each set) (13 out of16 cases). This is a direct

validation of the success of our operational definition thatintent segments need not match

exactly within text of relevant documents. We also see evidence that intent segments are

not always “deletable” and while they need not match exactlyin document text, or can even

be absent, they can be used by the search engine in other different ways. This is apparent

from the result that even though thec-q i-d variant on its own generally performs the

poorest among the three variants (16 out of 16 cases), yet for the queries that it improves

upon (21 − 24% on nDCG,9 − 15% on MAP), the gain is quite substantial. This is seen

from the performance of this variant in the third set of columns, where it is usually the best

among the four variants (6 out of8 cases).

5.5 A taxonomy of intent units in Web search queries

Roles of units. In order to better understand the roles of intent units in queries, we went

through the list of intent units and several hundreds of queries in which they occur. Our

study reveals that intent units in Web search queries can be broadly thought of as perform-

ing one of two tasks, namely,restrict or rank. Therestrict task is concerned with filtering

the pool of relevant documents from which the final results are presented. Therank task

determines the order in which the final results are displayed. These broad categories can be
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Figure 5.6: A Venn diagram for the intent unit taxonomy.

further subdivided into classes as shown in Figure5.6 and Tables5.12, 5.13and5.14. In

some cases, the distinction between restrict and rank tasksbegins to blur, and consequently,

the table also presents examples for therestrict + rank category.

The Restrict Class.In therestrictcategory,context specifiersact as disambiguators for

the rest of the query (book, movie). Similarly, operation specifiersare generic action

units that specify some action to be performed on or with the content unit(s) (download,

install). They act like an operator with one or more content units as arguments, thus

often behaving like unary, binary or multi-nary relations.The intent units in theother

aspectssub-category mainly specify aspects of particular classesof content (like medicines

(side effects) and songs (lyrics)), in which the user is interested.

The Rank Class.In therank category,sort order specifiersindicate that results can be

ranked by a parameter of the content unit(s). For example,near or cheap specifies that

results can be ranked in order of some distance or price respectively. Time specifiersare

used when users have a preference aboutwhenthe pages were published (thelatest news

or recent updates about events or products). Most adjectives fall in the rank category,

e.g.,free, public andprintable. These intent units specify the user’s preference as

to which of the retrieved pages must be ranked higher in the final results’ list.

The Intersection Class.The intent units in the intersection of these classes can help

in both restrict and rank tasks. For example,source specifiersindicate from where the

user wants result pages to be retrieved. Real source specifiers are geographical locations

(mostly names of countries likegermany or australia). Similarly, virtual source
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Context Operation Other aspects

book how to side effects

movie what is benefits

game where are reviews

tv show download biography

ps2 compare obituary

soap difference between history

windows buy applications

scientist upload recipe

footballer install lyrics

actor who is cheats

Table 5.12:Examples of intent units for therestrict class.

specifiers indicate online sources (likewikipedia or ebay). Format specifiersindicate

explicit output formats for the results. They may be direct (file extensions likepdf or

mp3) or indirect (photos of andvideos of). We propose that these units belong to

the restrict + rank category because while they try torestrict pages to the desired source

or type, they also help in therankingof the other results (lower than desired pages). If the

desired pages are not available, then the other pages are ranked higher. In either case, the

user (generally) still onlypreferspages of the desired type, and will often look at alternative

sources or types if the earlier content was not satisfactory. For example, consider a common

source specifier unit such aswikipedia. The user may be only interested in Wikipedia

articles (restrict task). Alternatively, the user may justprefer a Wikipedia article, but is

willing to consider results from other sources as well (ranktask).

Discussion.We observe that intent words play very important and diverseroles in Web

search queries. Sometimes this distinction of intent from content can become ambigu-

ous. For example, take the query(facebook) (wikipedia), where the user could

be looking for the Facebook (content) entry in Wikipedia (intent), or the Wikipedia (con-

tent) page on Facebook (intent). Therefore, detection of intent units and understanding

their role is very important for IR. A particularly useful scenario for applying our meth-
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Sort order Time Other preferences

near latest online

cheap recent free

fast 2012 downloadable

large new public

close to current exclusive

high-res last 24 hours private

shortest today black

budget now best

popular last month printable

best-selling this week widescreen

Table 5.13:Examples of intent units for therank class.

ods isenterprise search, i.e., searching the entire collection of documents belonging to a

particular enterprise (mostly) by its employees. The collection of user intents (and conse-

quently the set of intent units and its distribution) is expected to vary from one enterprise

to another. Since additional information such as clickthrough data may not be available (or

may be very sparse), often query logs are the only resources for intent analysis in enterprise

search. Classification of intent units according to our taxonomy can help in identifying the

most important needs within the enterprise. Moreover, our taxonomy can also be used for

intent diversification, triggering advertisements in sponsored search, and generating query

suggestions. Since the relevance of this taxonomy is mostlyapplication-centric, anevalua-

tion of the taxonomy is best conducted through appropriate end-to-end applications by the

administrators of the deploying systems.

5.6 Related work

We emphasize that our notion of intent units does not contradict but supports or subsumes

much of the related efforts in this area, which use Web documents, query logs and knowl-
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Source Format

wikipedia pdf

youtube mp3

espncricinfo slides

ebay videos

bestbuy pictures

facebook photos

linkedin images

australia ppt

india map

us torrent

Table 5.14:Examples of intent units for themixedclass.

edge bases. One such line of research is on the automatic acquisition of attributesof classes

or instances[9, 160, 161]. Our method captures several attributes, likeside effects

(of medicines),biography (of important people) andrecipes (of dishes). However,

our technique also detects intent units likecompare andhow to, which do not fit in

with the current framework ofclass-instance-attribute. Similarities can be observed in the

nomenclature of Li [135], where the author states that noun phrase queries are composed

of intent heads(like cast) andintent modifiers(like alice in wonderland). Intent

heads are closely related to attributes and our intent units. Our framework is not limited to

noun phrase queries, and can explain other queries like(how to)\i (meditate)\c.

A framework and taxonomy usingentitiesand intent phraseshave been proposed for un-

derstanding name entity queries in Yin and Shah [231] – but our framework is more generic

in the sense that it is not restricted to name entity queries only. The motivation of our work

is also fundamentally different from the previous studies.Our notion of intent units largely

agrees with the termintent words[231,233], proposed for specific domains likeactors,

musicians, cities andnational parks. Similar is the case withmodifiers[236],

which are proposed to carry user intent within queries (as opposed to the querykernel).

Again, our framework applies for all domains of queries and our unsupervised method

using co-occurrence statistics can be considered as a low-cost information extraction tech-
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nique to detect all categories of such attributes, intent words, intent phrases, intent heads

and modifiers.

5.6.1 Intent units as explicit facet indicators

We believe that query intent units mined through our technique are actuallywords or seg-

ments that the user has included in the query to explicitly indicate his or her intent, and

there is often a one-to-one correspondence between query facets [76] and our intent units.

Query facets can be ascribed to the entire query, and includeaspects like genre and scope.

It is important to note that a segment when behaving as an intent unit can indicate multi-

ple facets at the same time. For example, the unitmp3 can tell us both that the query is

from the topic of musicand that the user has theobjectiveof finding a resource. Simi-

larly, presence ofimdbindicates the facets{topic: movies} and{authority sensitivity: yes}

(the latter implying that the query requires an answer from an authoritative source). We

believe that intent units can be very useful features for query intent classification, and can

deepen our understanding of user intent. Thus, classification of our intent units into various

facet classes and using them as features for intent classification are promising directions for

future research.

5.7 Conclusions

In this chapter, we have proposed that syntactic units in queries broadly perform two roles

– content and intent. While content units define the topics of queries, intents units act as

indicators of user intent. We have shown that co-occurrencedistributions of units in query

logs can be leveraged for differentiating between content and intent units. Our techniques

are inspired by their effectiveness in NL text where they canautomatically discover func-

tion words. We have also shown that automatic labeling of segment roles within queries is

possible with reasonable accuracies using simple algorithms based on corpus distributional

properties. Results obtained by our generic and lightweightmethod have been validated

by independent evaluations with human annotations and clickthrough data. We have also
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shown results where content and intent labeling can be leveraged for improving retrieval

performance. A comprehensive classification scheme for mined intent units has been pre-

sented, providing readers with a qualitative analysis of the nature of such units. We have

proposed that intent units broadly serve two important functions in IR – torestrictandrank

final result pages. Content and intent units can thus be conceptualized as the broad syn-

tactic categories of the query language. In the next and finalcontributory chapter, we will

show how we can objectively quantify this syntactic complexity of Web search queries.



Chapter 6

Understanding Syntactic Complexity of

Web Search Queries

6.1 Introduction

Searching information on the World Wide Web by issuing queries to commercial search

engines is one of the most common activities engaged in by almost every Web user. The

Web has grown extensively over the past two decades, and search engines have kept pace

by incorporating progressively smarter algorithms to keepall the information at our finger-

tips. This co-evolution of the Web and search engines have driven users to formulate more

complex and longer queries [170, 209]. Search queries represent a unique mode of inter-

action between humans and artificial systems, and they differ observably in syntax from

that of the parent natural language (NL). This has led researchers to argue that probably

queries are acquiring linguistic properties of their own [60,80,107,209]. Arguing from the

perspective of thefunctionof queries, i.e., communication, and the factors that influence

their self-organization, it can be fairly convincingly established that queries are indeed an

evolvinglinguistic system. Nevertheless, there is no systematic and comprehensive study of

the syntactic properties of Web queries that can convincingly bring out the fact that queries

are indeed a “language”. The challenge, of course, is to identify the unique syntactic fea-

tures of an NL that make it different from any random or artificially generated sequence

153
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of symbols. Fortunately, there are three distinct lines of research that can help address this

fundamental question.

One of the oldest statistical characterizations of NL comesfrom n-gram models that

can be used for both generation of utterances or sentences toa certain degree of accuracy,

and also for quantifying the predictability (and hence the complexity) of a system of sym-

bols [41]. Such a line of research in the past has been extensively used for analyzing ancient

languages like the Indus-script hypothesis [182], studying languages with diverse typolog-

ical properties [75], and also for understanding non-linguistic systems such as music [62]

and the genetic code [143]. Over time,n-gram models have been appropriately generalized

or restricted using more sophisticated linguistic features capturing various syntactic and se-

mantic properties (see [24] for a review). Collectively, these models are studied underthe

broad topic ofStatistical Language Modelingand extensively used in applications like Au-

tomatic Speech Recognition [247], Machine Translation [122], spelling correction [64] and

Information Retrieval (IR) [176].

A second approach to characterize a linguistic interactions is to study it from the per-

spective of thenative speakers’ intuition, which says, to quote Noam Chomsky [49]: “The

sentences generated will have to be acceptable to the nativespeaker”. Though the concept

of native speakeris debatable and eludes a clear definition [164], in the context of queries

it assumes an altogether new dimension.

A third and more recent line of investigation into linguistic systems is throughComplex

Network Modelingof languages, where a language is modeled as a network ofentitiesand

their relations (see [51] for a review). These studies were inspired by similar modeling

techniques employed by physicists and biologists, which lead to interesting insights into

the systems being modeled. Such studies using network modeling have also revealed some

interesting properties of languages [61,69].

These three lines of investigation are, in fact, complementary, and therefore can be very

well used for evaluating each other and getting a more comprehensive picture of a linguistic

system. Hence, in this work, we explore the syntactic properties of queries through these

three different lenses and cross-validate our findings to come up with interesting conclu-

sions. More specifically, we (1) buildn-gram models and alson-term models [211, 230]
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from our query log and analyze perplexity (or the predictability) of the models and compare

them with that of Standard English, (2) build word co-occurrence networks, the most pop-

ular and well-studied network modeling approach for NLs, for the real log and compare the

topological properties of the network with those built fromartificial logs generated using

then-gram models, and finally, (3) ask ordinary Internet users torate the acceptability or

“real”-ness of the queries generated by the various models.Our study reveals that although

queries seem to be more predictable (or less complex) than NL, n-gram models still fall

short of generating a rich set of artificial queries. A typical user is able to tell apart a real

query from an artificially generated one, even though a trigram-based generative model

seems to overfit the data and is capable of confusing the user.The word order in queries

seem to be the most important clue helping a user to differentiate between the real and ar-

tificially generated queries. Hence, the structure of current Web search queries indicates a

linguistic system that has at least a rudimentary word ordering constraint, and several other

syntactic and semantic constraints that lie beyond the scope ofn-gram andn-term models.

We do not know of any previous systematic study on these aspects of Web search

queries, even though features like auto-complete and querysuggestions are indirect evi-

dence that predictability of query terms is indeed exploited by Web search engines. On

the other hand, this study can not only help in more systematic and principled techniques

in relevant applications, but can also have profound impacton the way we viewquery

understandingtoday.

The organization of the rest of this chapter is as follows. First, we describe the gen-

erative language models for queries used in this work in Section 6.2. In Section6.3, we

discuss our complex network modeling technique and use the framework to compare the

various generative models. Next, in Section6.4, we present our experimental framework

and results for crowdsourcing to measure human intuition ofquery syntax. We discuss the

implications of our results in Section6.5. We comment on the application of our ideas to

synthetic query log generation and evaluation in Section6.6and make concluding remarks

in Section6.7.
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6.2 Statistical language modeling for queries

Then-gram language model (LM), which assumes that the probability of thenth word

in a sentence depends only on the previous(n − 1) words [41], has been one of the most

popularly used generative language models for NL with many applications [66,100,122].

Therefore, as the first steps, we evaluate query models basedon n-grams (and their vari-

ants). Ann-gram, in our context, is any continuous sequence ofn wordswi from a query.

Mathematically, ann-gram LM over sequences of words is defined by a Markov chain of

order(n− 1) [141], and the probability of ak-word query is given by:

P (w1w2 . . . wk) =
∏

i=1...k

P (wi|wi−1 . . . wi−n+1) (6.1)

The required probabilities can be initialized through training on the real query log from

the relativecounts

P (wi|wi−1 . . . wi−n+1) =
count(wi . . . wi−n+1)

count(wi−1 . . . wi−n+1)
(6.2)

An n-term [211, 230] is an unordered setof n words, all of which occur in a query,

but not necessarily next to each other. Since queries have been considered to be bags-of-

words in several contexts [176,195,198,207], a systematic exploration ofn-terms becomes

necessary. Since queries are short (mean length was close tofour words for distinct queries

in our log), it is not practical to look beyond trigrams (order-3 n-gram model).

6.2.1 Query generation process

We now explain our process of generating artificial queries usingn-grams orn-terms. We

explore seven generative models for queries, viz.1-gram,2-gram,3-gram,2-term,3-term,

2-term-GR and3-term-GR, where GR refers to “Greedy Reordering” (where then-grams

are reordered in a greedy manner in descending order of theirgeneration probabilities).

Example queries generated by each of these models are shown in Table6.1. Words in query
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Table 6.1: Queries generated by different models.

Model Example queries

a dhcp ephemeral detailing

1-gram map rc2 western pacific kennedy

anzac center catering civ integrate you guide

create user account on roads

2-gram access 2003 not working with info

party poker table tennis player

shaolin kung fu panda

3-gram a brief history of witchcraft

a thousand miles sheet music for websliders

acer 5310 for flash player

2-term adobe acrobat free download windows

housing thailand what is cost of housing

adelaide entertainment explained seating plan

3-term anti software virus windows vista

adobe photoshop 7 for mac

flash player for acer 5310

2-term-GR adobe acrobat free download windows

what is cost of housing thailand

adelaide entertainment seating plan explained

3-term-GR anti virus software windows vista

adobe photoshop 7 for mac

logs were stemmed using the Porter Stemmer [177] prior to the query generation process.

In the examples shown in Table6.1, word stems have been replaced by random unstemmed

versions of the word for readability.1-gram queries typically do not make much sense; they

are just some random words thrown in to create a query, albeitmaintaining the real word

probability distribution. The notion of local coherence immediately becomes clear as one

moves to2-grams. The crossovers from one bigram to the next seem smooth, but as a whole

the queries are generally not meaningful. Clearly, the chances of a query being meaningful

in its entirety diminishes with increasing query length. The same thing can be observed

for trigrams; but since several queries only have three, four or five words (can be generated

with only one, two or three trigrams, respectively), such queries are often realistic. For2-

terms and3-terms, we have similar observations but it is also apparentthat the sequencing

of the words is not very natural. Another point to note is thatsuch models often contain

word repetitions. Both these aspects are fall-outs of the relaxation of the strict ordering

constraint. This naturally motivated us to check equivalents ofn-term models when query



158 Chapter 6 Understanding Syntactic Complexity of Web Search Queries

words were deduplicated and some simple reordering strategy was applied. Queries of GR

models appearing better than their unordered counterpartsreflect this intuition.

Query generation process.We denote the query length (in words) asL, a random

variable that can take integral values between two and ten.Query length distributionrefers

to the probability distribution ofL, which is empirically estimated from the log. All the

generation models described here are made to follow this distribution. The process for

generating artificial queries usingn-grams is as follows (the process is exactly analogous

for n-terms): first a valuel of L is sampled from the query length distribution. Then, an

n-gram is first chosen stochastically in proportion to its probability. An extra word is added

to the query trying to extend the previous string of(n− 1) words. This new word is chosen

probabilistically from all then-grams which have their first(n − 1) words as the string

concerned. This process is continued till the desired querylength, i.e.,l, is reached. When a

query generation process is unable to add a new word to a partially generated query using an

n-gram model, then itbacks offto an(n− 1)-gram generative model to generate the word.

Let us understand the process with one of the example queriesfor 3-grams,a thousand

miles sheet music for websliders. First, we randomly sample a query length

seven from the real log query length distribution, which implies that the generated query

will have seven words. Next, the 3-grama thousand miles is stochastically sampled

from the list of all real trigrams based on its occurrence probability. We now try to extend

the query by looking at all 3-grams that start with the 2-gramthousand miles. Using

similar stochastic sampling as above, we obtain the trigramthousand miles sheet.

Next, a search for 3-grams begininng withmiles sheet fails, and hence weback off to

the 2-gram model and sample for 2-grams starting withsheet, which producessheet

music. We resume our search for trigrams using the rightmost 2-gram and add the words

for andwebsliders in consecutive iterations. No backing off was required in the

last two steps. Since we have now reached the desired query length of seven, the query

generation process stops.

Greedy reordering (GR). We observe that queries generated by 2-term and 3-term

LMs often contain a set of coherent and meaningful words, buttheir order is not what a

human user would normally type. Also, often there are repetitions of the same word in a

query. Both of these are outcomes of the way the models are defined. Thus, to refine these

models, we deduplicate the query words and perform agreedy reorderingof the words of
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2-term and 3-term models in a query. We call these new models 2-term-GR and 3-term-

GR respectively. Reordering is done as follows. After deduplication of the words of the

query, we find the localn-gram (n = 2 for 2-term andn = 3 for 3-term queries) consisting

of n words from the query that has the highestn-gram probability. We then extend this

new partial query by iteratively choosing a word from the remaining words in the original

query, which has the highest localn-gram probability when appended to the last(n − 1)

words of the new partial query. If we are unable to extend a partial query because no such

localn-grams exist, we back off to(n − 1)-order models until the query can be extended.

Instead of a greedy approach, we could have aimed for a globally optimized reordering of

the query or a Viterbi search. We leave such reordering strategies as future work.

6.2.2 Measuring model perplexity

Perplexity is one of the most common metrics used for evaluating n-gram systems [19].

It can be intuitively thought of as theweighted averagenumber of choices that a random

variable can take. Thus, perplexity of ann-gram model tells us that if, on an average, a

string of (n − 1) words of the language are known, how many words are likely to occur

in the next position. In other words, it tries to model how “perplexed” a user would be in

guessing thenth word after seeing a string ofn− 1 words. A higher perplexity value for a

language model thus implies less certainty in the user’s mind about its predictability. The

perplexity of a probability distributionp(x) of a random variableX is defined as2H(X),

whereH(X) is the entropy ofX and is given byH(X) =
∑

x∈X
p(x)log2p(x).

The entropy of a particular(n − 1)-gram is the entropy of the probability distribution

over all words that can appear in thenth position given that the first(n−1) words are fixed.

This entropy, raised to the power of two, gives the corresponding perplexity.

6.2.3 Experimental results

Table6.2reports the perplexity of the different models for NL and Websearch queries (the

GR models are reorderings of the correspondingn-gram andn-term models and hence do
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Table 6.2: Perplexity and counts ofn-grams andn-terms.

Model NL Queries NL Queries

(Perplexity) (Perplexity) (Counts) (Counts)

1-gram 1, 406.593 6, 417.283 0.3M 0.2M

2-gram 193.722 104.337 3.5M 1M

3-gram 17.663 5.430 9.7M 1.1M

2-term 893.851 384.945 48.1M 4.2M

3-term N.A.* 23.360 N.A.* 24.8M

* Dictionary runs out of memory even with64 GB of RAM.

not have separate entries in the table). For NL, the corpus used contained1M randomly

sampled sentences from newswire data1 in 2010. Newswire text was chosen because, in

general, they contain cleaner NL sentences than random Web data. For comparability of

NL values with queries, we kept the dataset size similar for the latter by randomly sampling

1M queries from our dataset. To preserve the natural frequencydistribution, duplicates

were not removed from either dataset. The NL text was case-folded and only alphanumeric

characters (and whitespace) were retained. The words in both corpora were stemmed using

the Porter Stemmer2 [177]. Perplexity values for Standard English reported in Brown et

al. [42] are obtained from corresponding cross-entropy values andhence are not directly

comparable to those in Table6.2.

6.2.4 Interpretation

It is quite interesting to note that while the perplexity of the unigram model for queries is

much higher than that of NLs, the perplexity of bigrams and trigrams show just the opposite

trend. The explanation for this surprising trend is as follows. We observed in our data that

the rate of encountering a new word queries is much higher (about one per20 words) than

NL (about one per58 words). Hence, the unigram distribution of queries is more diverse

1http://corpora.uni-leipzig.de/download.html, Accessed 18 May 2014.
2http://tartarus.org/martin/PorterStemmer/, Accessed 18 May 2014.

http://corpora.uni-leipzig.de/download.html
http://tartarus.org/martin/PorterStemmer/
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than NL. In fact, queries have a much larger specialized or peripheral vocabulary and very

small core vocabulary as compared to NLs. This unique feature makes the perplexity of the

unigram model very high for queries.

On the other hand, queries are also repeated and their repetition frequency is known

to follow a power-law distribution [170]. In NL, sentences are rarely repeated exactly,

except for phrases likeThank you andGood morning. In our dataset, the number

of duplicates (repeated at least once) in NL and queries werefound to be447 and164185

respectively. Furthermore, the mean sentence length for NLand queries were found to be

18.159 and3.980 respectively. These two factors play a crucial role in bringing down the

bigram and trigram perplexities for queries. One interesting conclusion of these findings

on perplexity is that for a random sentence or query, a nativespeaker (or search engine user

in case of queries) will be able to predict a random word present in an NL sentence much

more certainly than for a query. On the other hand, if one or more words are shown, it is

much easier to predict the rest of the words in a query than in asentence. This is precisely

why an autocomplete feature can work much better for search engines than a word editor.

An alternative perspective is as follows: Queries generated using bigrams or trigrams will

look much more realistic than sentences generated using thesame models.

The perplexities ofn-terms are greater than their correspondingn-grams due to the

manifold increase in the number of possibilities in the former (Table6.2). The number of

3-grams is comparable to the number of the 2-grams for queriesbecause of the presence of

a significant number of2-word queries, that do not contribute to3-gram counts.

6.3 Complex network modeling for queries

Network analysis provides an elegant mathematical framework to study various complex

systems [8,36,153,213]. The success of such network-based techniques in the last couple

of decades is primarily due to the fact that a network can capture aggregate properties

of a system, while considering both local and long range (global) interactions present in a

system. Of special interest to us here is the application of network models to linguistics and

corpus studies [51,147]. The most popular and well-studied representation of a language
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corpus is the Word Co-occurrence Network (WCN) [33,50,61,69], which we have apply

here to study the statistical properties of query logs. In the recent past, such WCNs have

also been used for term weighting in IR [34].

6.3.1 Network definition and construction

A WCN for any given text corpus is defined as a networkN : 〈N,E〉, whereN is the set

of nodes each labeled by a unique word andE is the set of edges. Two nodes{i, j} ∈ N

are connected by an edge(i, j) ∈ E if and only if i andj “co-occur” in a sentence [33,69].

Co-occurrence can be defined variously; in this chapter, we define local and global models

of co-occurrence as follows.

Local co-occurrence. According to this model of WCN, immediate word neighbor-

hood is considered important and an edge is added between twowords if they occur within

a distance of two (i.e. separated by zero or one word) in a query.

Global co-occurrence. In this model, an edge is added between two words if they

occur within the same query, irrespective of their positions. Thus, a global co-occurrence

network will have more edges than a local co-occurrence network.

For both local and global networks, the edges resulting fromrandom collocations are

pruned using “restriction” [69] as follows. Leti and j be two distinct words from the

corpus. Letpi, pj andpij be the probabilities of occurrence ofi, j and the 2-gram〈i j〉 (or

2-term{i, j}), respectively, in the data. Then, in a restricted network,an edge exists if and

only if pij > pipj. All networks considered in this study are undirected and unweighted.

Figure6.1 illustrates the concept of WCN by showing the network generated from the toy

query log below. Edges pruned due to restriction are shown using dashed lines.

samsung focus gprs config

dell laptop extreme gaming config

extreme gaming dell laptop config

buy samsung focus at&t

gprs config at&t samsung focus
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samsung focus gprs config at&t

Figure 6.1: Illustration of a WCN for queries.

As per convention [69], all network statistics discussed are computed on the largest

connected component (LCC) of the graph. Words in query logs arestemmed before WCNs

are built. For LCCs of WCNs generated for1M query samples from our query logs,|N | ≃

180, 000 (both for local and global models), while|E| ≃ 1.5M (local) and|E| ≃ 2.0M

(global). Thus, these are very sparse networks with averageedge density (i.e., probability

of having an edge between a random pair of nodes= |E|/
(

|N |
2

)

) of the order of10−4.

6.3.2 Topological properties of WCNs

We now explain the topological properties of word co-occurrence networks that we use

for characterizing real and generated query logs, namely, degree distribution, clustering

coefficient, average shortest path length, and network motifs.

Degree distribution

The degree of a node in a network is the number of nodes that it is connected to. The

degree distribution (DD) of a network is the probability distribution pk of a node having a

degreek. A cumulative degree distribution (CDD)Pk (probability of a node having degree

≥ k) is more robust to noisy data points and is preferred for visualization. A representative

CDD for a query WCN built from1M randomly sampled queries is shown in Figure6.2
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Figure 6.2: Sample CDD for a real query log.

(local model; global model is almost exactly similar) and isfound to resemble a two-

regime power law. This is also found for NLs [69] and indicates the presence of akernel-

peripherystructure. Akernelis a small subgraph of the network where all nodes have very

high degrees. The nodes in theperipheryhave relatively lower degrees than the nodes in

the kernel. The majority of the nodes in a query WCN are observedto form very small

peripheral clusters which are all connected to the kernel.

Clustering coefficient

Let a noder in the network havek neighbors. Then,
(

k
2

)

edges are possible among its

neighbors. The clustering coefficient (CC) ofr, CCr, is the fraction of these edges that

actually exist in the network [226]. TheCCN of the entire networkN is defined as the

average ofCCr over all r ∈ N . A high CC indicates that the network consists of one

or more dense subgraphs or clusters. The average CCs for the real WCNs (built from

1M random queries) are0.429 (local) and0.521 (global). The CC for the global network is

slightly higher because of the higher edge density. These values are quite high as compared

to the CC of an E-R random graph [68,69], which is of the order of its edge density (10−4).

CC for similar networks for NL has been reported to be0.437 [69], and thus show lower

density for NL WCNs than those for queries.
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Average shortest path length

The shortest path length between a pair of nodes is the minimum number of edges that one

must traverse to reach one node from the other. The average shortest path length (ASPL) is

defined as the mean of the shortest path lengths between all pairs of nodes in the network

that can be reached in a finite number of steps from each other.The ASPL for the WCN

built from a1M real query sample is3.519 (local) and3.004 (global). The ASPL for the

global network is slightly lower because of the higher edge density. These values are quite

small for a network with close to180, 000 nodes, and near to the expected ASPL for an E-R

random graph of similar size and density (4.253 (local) and3.830 (global)). ASPL for an E-

R random graph is given byln|N |/ln(k̄), wherek̄ is the average degree of the graph, given

by (2 × |E|)/|N | [226]. It has been argued that the low ASPL for similarly constructed

NL WCNs (2.67) is an outcome of an optimization of language structure necessary for fast

recognition and retrieval of words [69]. As an aside, we also note that a network with high

CC, low ASPL and low edge density (all with respect to random graphs) is known as a

small world [153]. Hence, like social networks and WCN for NLs, WCNs for queries is

also a small world.

Network motifs

Network motifs are small subnetworks that are found to occurin significantly higher num-

bers in real networks than in random networks [23,115,116,149,200,227]. For example,

cliques with four nodes have an occurrence probability of10−11 in a real WCN, while its

expected probability in an E-R random graph [68] with the same number of nodes and edge

density, is only10−20. A Ψn-motif is defined as a subgraph ofn distinct nodes in the net-

work unique to structural isomorphism. Counting motifs for large graphs is computation-

ally expensive, because beyondΨ4, motifs typically have a very large number of possible

isomorphisms. In this study, we only consider connectedΨ3 andΨ4 motifs. Figure6.3

enumerates all theconnectedΨ3 andΨ4 motifs. The motifs in this chapter are named fol-

lowing the convention introduced by Biemann et al. [33]. Recently, motif detection has

attracted attention as a useful technique to uncover structural design principles of networks

in various domains like biochemistry, neurobiology, ecology, and engineering [149,227].
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Figure 6.3: ConnectedΨ3 andΨ4 motifs with LNMCs from the real log.

Here, we use the algorithm FANMOD [227] to detectΨ3 andΨ4 motifs. Since motif

counts are dependent on the size of a network, they must be suitably normalized by their

corresponding expected counts for an E-R random graph modelwith the same number of

nodes and edge density [227]. Since the ratios of the probabilities can be very skewed, we

take the natural logarithm of these quantities, which we shall refer to as theLog Normalized

Motif Countor LNMC. Thus,

LNMC(Ψn

i
) = loge

Actual count ofΨn

i

Expected count ofΨn

i
in E-R graph

(6.3)

where,Ψn
i is theith n-sized motif. For example, following Figure6.3,Ψ3

2 andΨ4
3 would

be the3-clique and the4-loop-out respectively. Figure6.3 (third row) reports the LNMC

values forΨ3 andΨ4 motifs for the real WCN (local co-occurrence model). This vector of

eight elements for motifs is referred to as themotif signatureof the network [33]. These ra-

tios indicate that the probabilities of occurrence of all the connected motifs in a real WCN is

several orders of magnitude higher than that in an E-R randomgraph. Figure6.3(last row)

also contains real examples of each type of motif from the network. Motifs in WCNs cap-

ture semantic relatedness between the words, and certainΨ4 motifs like boxesandchains

are representative of semantic concepts like synonymy and polysemy, respectively [33].

6.3.3 Stability of WCNs

The network statistics described above are useful and robust indicators of the structural

properties of WCN if and only if the statistics are immune to minor perturbations or random

noise in the query log from which they have been constructed.The trends in the statistics
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Table 6.3: Network statistics for various network sizes.

Log size |N |l |N |g |E|l |E|g CCl CCg ASPLl ASPLg

W 177, 900 177, 975 1, 526, 043 2, 089, 729 0.429 0.521 3.519 3.320

W/10 46, 528 46, 523 299, 496 412, 218 0.463 0.555 3.536 3.328

W/20 30, 398 30, 399 169, 670 233, 932 0.474 0.566 3.567 3.355

W/50 17, 160 17, 162 77, 052 106, 306 0.493 0.588 3.644 3.410

W/100 10, 991 10, 990 41, 270 56, 992 0.512 0.611 3.741 3.481

should also remain reasonably fixed when the size of the log isvaried. Hence, to analyze

the stability of the WCN statistics, we varied the network sizeby controlling the number of

queries from which the network is created. LetW (= 1M here) be the number of sample

queries from the entire log (which has≃ 10M queries) used to build a large WCN. We

construct smaller query logs consisting ofW/10, W/20, W/50, andW/100 queries by

random subsampling of the entire log and computing the network statistics. To minimize

sampling bias, for eachW/s-sized log, the experiments were repeateds times and statistics

were averaged over theses instances (not applicable for DD). Table6.3 reports|N |, |E|,

CC and ASPL for each of these sizes. Figure6.4 shows the CDD plots for the respective

networks (one specific sample from each network size; local co-occurrence model). In

this figure, from the top left, we show degree distributions for networks constructed from

query logs of sizeW/100, W/50, W/20, W/10 andW . We do not reduce the network

size beyondW/100 becauseW/1, 000 ≃ 1, 000 queries which is too small for any reliable

network analysis.

The results (mean values overs experiments) in Table6.3 show that the statistics are

extremely robust to network size variation3. Subscriptsl and g imply local and global

WCNs respectively. Importantly, the standard deviations forthes experiments were found

to be very low in all cases, further indicating network stability. Even when the dataset size

is increased by two orders of magnitude (W/100 throughW ), the CC and ASPL change

only by≃ 15− 16% and≃ 5− 6%, respectively. We also note an interesting trend here –

both CC and ASPL increase as the network size decreases. This is slightly counterintuitive,

because a large network with small ASPL is expected to have a higher CC. However, the

trend is explained as follows. As the network grows in size due to increase in number of

3Similar stability for WCNs for NL text has been reported in Biemann et al. [33].
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Figure 6.4: Sample CDD at different network sizes.

queries, (a) new nodes join the network with edges connecting to existing nodes; and (b)

new edges form between existing nodes. Since new nodes do notimmediately have several

new connections, the first event decreases the CC and increases the ASPL. The second event

decreases the ASPL and increases the CC. However, these rates of increase and decrease

of CC and ASPL caused by the two events are not the same. In the case of Web queries,

with lots of new and rare words (arising from various proper nouns) continuously joining

the network, it is the first event that mostly dominates and isresponsible for the drop in CC

and increase in ASPL.

Examining the DD, it is evident that the network crystallizes to its final form marked

by a two-regime power law, at aboutW/10, which is100, 000 = 0.1M queries. The motif

statistics for the local network indicate similar stabilization trends and have been shown in

Table6.4. Motif results for the global network also show similar behavior and hence are

not reported here. From these results, we infer that for dependable query WCN analysis,

one must have at least0.1M queries in their sample.
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Table 6.4:Ψ3 andΨ4 Motif signatures at various network sizes (local co-occurrence).

Log size 3-chain 3-clique 4-chain 4-star 4-loop-out 4-box 4-semi-clique 4-clique

W 3.574 7.973 4.637 6.350 10.998 8.003 16.921 23.562

W/10 3.063 7.658 4.417 6.261 10.839 7.905 16.375 22.791

W/20 2.873 7.172 4.066 5.890 10.251 7.189 15.427 21.460

W/50 2.614 6.580 3.587 5.407 9.489 6.215 14.208 19.735

W/100 2.371 6.185 3.192 4.915 8.873 5.406 13.296 18.498

Table 6.5: Mean network statistics for the query LMs.

Model |N | |E| CC ASPL KLD

Real 34, 209 242, 680 0.623 3.302 0.000

1-gram 28, 748 311, 955 0.280 2.823 0.349

2-gram 33, 257 209, 947 0.619 5.011 0.077

3-gram 60, 594 292, 210 0.591 3.472 0.068

2-term 28, 978 227, 146 0.630 4.968 0.054

3-term 47, 292 249, 966 0.634 3.538 0.031

2-term-GR 28, 998 230, 868 0.628 4.894 0.050

3-term-GR 47, 140 249, 254 0.632 3.534 0.032

Proximity of local and global co-occurrence networks. An important observation

from these experiments on network stability is the relativeinvariance in the properties of

local and global co-occurrence networks for queries. Even though the number of edges in

the global network is higher in number, differences in the CC and ASPL values are very

small. Moreover, trends observed in degree and motif distributions are also quite similar.

Therefore, in subsequent sections, all results will be reported only on local WCNs.

6.3.4 Comparison of real and model-generated query WCNs

We have seen that the statistical properties of the networksare stable as long as the log con-

sists of at least0.1M queries. Therefore, for reliable results, we decided to conduct all our
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Table 6.6:Ψ3 andΨ4 Motif signatures for the query LMs.

Model 3-chain 3-clique 4-chain 4-star 4-loop-out 4-box 4-semi-clique 4-clique M-Diff M-Sum

Real 2.941 7.185 4.101 6.057 10.315 7.212 15.463 21.484 0.000 74.758

1-gram 2.579 6.428 3.706 4.868 8.987 6.627 13.710 19.072 8.781 65.977

2-gram 2.969 7.369 4.162 6.095 10.464 7.540 15.795 21.954 1.590 76.348

3-gram 2.971 8.049 4.631 6.001 11.383 8.286 17.281 24.153 8.109 82.755

2-term 2.874 7.073 3.989 5.733 9.935 7.210 15.075 21.034 1.835 72.923

3-term 2.907 7.832 4.439 5.859 11.057 7.967 16.832 23.514 6.113 80.407

2-term-GR 2.777 7.060 3.967 5.494 9.884 7.151 15.042 21.020 2.363 72.395

3-term-GR 2.890 7.828 4.431 5.822 11.048 7.954 16.825 23.520 6.132 80.318

The three lowest and the highest values in the M-Diff and M-Sum columns, respectively, are marked inboldface.

experiments on logs having1M queries. We sampled the entire real query log to construct

100 subsamples of1M queries each, each subsamplepreserving the query length distribu-

tion by words. These will serve as our real logs for all the following experiments. Similarly,

we stochastically generated100 logs, each consisting of1M queries, for each of the seven

generative models. We constructed the WCNs for these8 (real and seven model-generated

strategies)×100 = 800 logs and computed the DD, CC, ASPL and motif signatures for

each network. We observed negligible variance in the network statistics across the100

samples generated from the same model, which further demonstrates the robustness of net-

work modeling. Thus, we report only the average values for|N |, |E|, CC and ASPL in

Table6.5, and the average LNMC values for the connectedΨ3 andΨ4 motifs in Table6.6.

We note here that the values reported here for the real log do not necessarily match those

corresponding toW in the previous section because now the sampling is done preserving

the query length distribution by words; the sampling was intentionally random during the

experiments on network stability for emphasizing the idea of stability. Henceforth in this

text, we will refer to the WCNs generated from the real query logs asreal networksand the

WCNs generated from the model-based query logs asmodel-generated networks.

Since DD cannot be summarized by a single average value, we compute the Kullback-

Leibler Divergence (KLD) [124] between the DDs (after applying add-one Laplace smooth-

ing [140]) of the real networks and the DDs of the model-generated networks. These values

are also reported in Table6.5. The smaller the KLD, the closer is the DD of the network to

that of the real WCN. Figure6.5shows the CDDs for one of the subsamples each from the

real and the model-generated networks. The plots have been split into two groups of four
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models each, to somewhat mitigate the problem of almost completely overlapping curves.
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Figure 6.5: Sample CDD for query LMs.

We can observe that even the DD of the1-gram model is like a two-regime power

law (Figure6.5), which means that DD is the easiest of the network statistics to replicate.

For other generated networks, the DD is almost identical to the real network, a fact also

apparent from the KLD values in Table6.5. The1-gram model also has much lower CC

and ASPL. The CC matches for all models wheren ≥ 2, and the ASPL matches only for

the3-gram LM.
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Figure 6.6: (Colour online) Degree distributions for word and segment networks.

Segment co-occurrence networks.We wanted to explore how segment co-occurrence

networks would behave in the current setup. As a first step, wegenerate queries using the 1-

gram model but use segment probabilities instead (all the real queries were first segmented
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Log N E CC ASP KLD

Real 34, 209 242, 680 0.623 3.302 0.000

1-gramw 28, 748 311, 955 0.280 2.823 0.349

1-grams 270, 687 1, 642, 641 0.572 3.519 0.523

Table 6.7: Mean network statistics for word and segment models.

using our proposed segmentation algorithm). Also, the query length was computed based

on the number of segments, and not words. The same basic properties were computed and

the results are present in Table6.7and Figure6.6. We observe that with segment statistics

(1−grams), even an elementary model like1-gramhas matched up quite closer to real logs

than when the corresponding word statistics (1− gramw) were used (CC and ASPL). This

is because segment detection includes sophisticated co-occurrence statistics, and hence

such logs already contain several syntactic units present in real logs. It is indicative that

using segment statistics could ultimately produce better quality logs. However, the degree

distribution shows a higher deviation which needs a more thorough examination. We keep

this as a future avenue to explore.

A general observation from the motif signatures is that likeNLs [33], it is possible to

be close to real networks onΨ3 motif counts with 2- and 3-grams. To examine deeper,

we computed two aggregate statistics:M-Diff – the sum of the absolute differences of the

LNMC values of real and the generated networks, andM-Sum– the sum of the LNMC

values of all the connected motifs. Equations6.4and6.5show the computations ofM-Diff

andM-Sumfor a particular LM:

M−Diff(LM) =
4

∑

k=3

∑

i

|LNMC(Ψk
i )Real − LNMC(Ψk

i )LM | (6.4)

M−Sum(LM) =
4

∑

k=3

∑

i

LNMC(Ψk
i )LM (6.5)

It is a well-known fact that the existence of a large number ofconnected motifs in a

network is an indication of its non-randomness [227]. We argue that the larger the sum of
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LNMC values for connected motifs, the more structured the network is. However, if this

sum exceeds that of the real WCN, it implies that the network is becoming more restrictive

than what is natural.

With M-Diff values as low as1.590, 1.835, and2.363, the2-gram and2-term-based

models have almost the same motif signatures as the real network. On the other hand,

going by the abundance of connected motifs,3-gram and3-term-based models seem to be

the most restrictive (> RealM-Sum). As a supporting evidence, we note that the trigram

model has lower perplexity than the unigram or bigram model (Table6.2). We also note that

then-gram models have motif signatures closer to the real network than the corresponding

n-terms. Thus,relative word ordering in queries is important.

6.4 User intuition of real queries

One of the important aspects of any NL is the grammatical correctness and coherence of the

sentences, which is typically verified through native speakers’ judgments [89,150]. Native

speakers can also predict the next word in a sentence given the previous (n − 1) words

with a reasonable degree of accuracy [202], which makes them a good point of comparison

againstn-gram models. Therefore, statistical and network modeling-based analyses of

query syntax would not be complete without anative speakerevaluation on acceptability of

the generated queries. The challenge, however, is to redefine the concept of native speakers

in the context of queries, and to design the corresponding query-acceptability task.

If queries are considered as a language, then clearly anybody generating a query can

be considered a native speaker of the language. Thus, for ourexperiments, we deem an

average search-engine user as the native speaker of the query language. However, asking

a user whether a query is acceptable or not seems quite a meaningless task – any random

sequence of keywords could constitute a query that has been issued by a real user, because

as such there is no consensus on grammatical constraints on queries. To get around this

problem we carefully designed our experiment in the following way:

1. Users were given a triplet having one real query and two generated queries.
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2. They were asked to identify the real query in this triplet.

3. The remaining two queries were to be rated on a five-point scale.

To make the comparison meaningful, the three queries shown had some words in common.

The selection of query triplets was automated by a program; the program conditionally se-

lected triplets from thousands of query sets if the three chosen queries of a triplet had some

words in common. The philosophy behind this evaluation strategy is that if a generated

query is sufficiently realistic, the user will have to make a random choice between the gen-

erated and the real query. Moreover, the rating points awarded to the queries in the triplet

will give us information about the relative quality of the underlying generative models. We

did not consider preference judgments [44] for the models as these are useful if one is only

interested in the relative performance of the models. Here,on the other hand, we would like

to find out the absolute goodness of a model with respect to real queries. This would not

be captured through preference-based judgments. Moreover, after selecting the real query,

since the users had toscorethe two remaining queries, the ranking within a triplet can be

easily inferred.

On a related note, Li et al. [134] describe an experiment where artificial queries were

rejected if they were not acceptable to human judges. However, in their setup, new queries

were created by string transformation methods from a real query. Users only had to judge if

the generated queries had the same intent as the corresponding original ones, and therefore,

their experimental framework is not applicable to our problem.

6.4.1 Experimental setup using crowdsourcing

We use crowdsourcing through Amazon’s Mechanical Turk4 (AMT) for our user experi-

ments. Apart from being a cheap and fast method for gatheringlarge data [11, 45, 84], a

Turker (AMT task participant) is expected to be as good as an average search-engine user

because AMT experiments are done online and often require one to really conduct Web

searches. Hence, crowdsourcing is amenable to our experimental setup. We designed the

Human Intelligence Task or HIT (a unit task in AMT) as follows. The seven LMs can

4https://www.mturk.com/mturk/welcome, Accessed 18 May 2014.

https://www.mturk.com/mturk/welcome
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be combined with real queries to create
(

7
2

)

= 21 triplets. However, we do not combine

2-termwith 2-term-GRand3-termwith 3-term-GRas they represent the same query words

reordered, and we expect the2-term-GRand3-term-GRmodels to be generally rated better.

This leaves us with19 combinations of{Real query-Model i-Model j} triplets. For each

of these19 combinations, we randomly selected35 triplets such that individual queries

had some words in common – making a total of19 × 35 = 665 triplets containing1, 995

queries to be judged. Word stems were replaced by randomly selected surface forms for

user readability. To reduce annotator bias, we tightened our guidelines as far as possible,

which are specified below. Some solved examples are shown in Figure6.7.

1. Each question (1, 2, 3, 4, 5) in the datasheet contains three queries – one is issued by a real human user, and the

other two are generated by an algorithm.

2. The task is to find the query that is most likely to be issued bya human user andmark it 5 . For example,how

to play a cd on my computer.

3. The remaining queries are to be scored on a scale of0 – 4 according to the following convention.

4. Mark 4 if you think that the query is generated by an algorithm, but could almost be the real query. For example,

queries likeaustralian currency exchange limit.

5. Mark 3 if you think that the query is generated by an algorithm, and itmakes sense, but has incorrect grammar

or spelling. For example, queries likei fit to get blood transfussion.

6. Mark 2 if you think that the query is generated by an algorithm, and represents incomplete information needs or

jumbled units, but could be meaningful if completed or reordered. For example, queries likeancient rome

slaves how did.

7. Mark 1 if you think that the query is generated by an algorithm, and parts of the query are coherent, but not as a

whole. For example, queries likecreating pdf a file share tab security.

8. Mark 0 if you think that the query is generated by an algorithm, and itis totally nonsensical. For example, queries

like and anzac to jungle characters 101.

Task details are presented in Table6.8. The HIT consisted of rating all the queries

in five triplets. Moreover, a set of five annotations was requested for each HIT. Aspects

of AMT experiment setups like cost, allowed time for each HITand task descriptions are

crucial to receiving quick and reliable responses. For our research, we followed the general

guidelines presented in Alonso and Baeza-Yates [11].
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Figure 6.7: Solved examples for annotation task posted on AMT.

6.4.2 Results and observations

The triplets for which the annotation results obtained fromAMT were inconsistent in any

way (missing rating, and none or multiple5-point ratings within a triplet) were rejected.

These rejected triplets account for the differences between the first and the second columns

in Table6.9. Table6.9 reports the average rating assigned to a query within a triplet by

the five annotators, averaged over all queries from a model (reported under the “Average

Rating” column). “#Triplets” count the number of triplets that has the presence of a query

from the corresponding LM. The “Real Percentage” column lists the percentage of times

a query generated by a model was marked as “Real”. Real queries are detected correctly

a large number of times (≃ 60%). It is notable that among generated queries, those from

the3-gram model were judged as “real” the greatest number of times and have the highest

average rating of3.276. Even thoughn-term models are poorer than correspondingn-gram

models on being judged as real, their average ratings are marginally better than2-grams.

Greedy reordering (GR) is observerd to have a markedly positive effect on all the metrics.

In Table6.10, results are reported in a tournament-like fashion. Ordering of LMs in

rows and columns is such that light and dark cells create (approximately) upper and lower

traingular matrices. The values are computed from all the triplets that had queries from

both modelsi andj. Cell[i][j] contains the fraction of times modeli has won over model

j. A dark cell indicates that the row lost significantly to the column (cell value< 0.4).
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Table 6.8: AMT experiment details.

Parameter Details

Task description Identify a real query hidden among model-generated

ones. Then give grades to the remaining queries.

Task keywords Web search queries, Real and generated queries,

Rating queries

No. of triplets in 1 HIT 5

Total no. of triplets 665

Annotations per triplet 5

Alloted assignment time 20 minutes

Actual assignment time 1 minute24 seconds

Turker qualification Approval rate> 50 tasks

Turker location Any

Reward per HIT $0.05

Total completion time 7 days

A light cell indicates that the row and the column faired moreor less equally well (cell

value between0.4 and0.6). An unshaded cell indicates that the row won over the column

significantly (cell value> 0.6). In this representation, the relative performance of the

models becomes evident from the row (left to right, better toworse) or column orderings

(top to bottom, better to worse). Not considering real queries which are identified correctly

at least65% of the times against the next best model, all the models have at least one grey

cell in their rows (or columns). This indicates that even though the trigram model competes

the best against real queries, it is not the best by a very big margin. It is closely followed

by the2-term-GR model. The models in the middle zone are also quite comparable in their

performance levels.

Inter-annotator agreement (IAA). In AMT, since a single Turker need not complete

all annotations of the entire dataset, conventional ideas of IAA are not applicable. However,

the average standard deviation for ratings from five annotators for a particular query is

found to be1.032. Given that the overall rating was to be done on a6-point scale (0 − 4

and “Real” ratings), an average deviation of one point is within acceptable limits for IAA.
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Table 6.9: A summary of absolute ratings obtained through AMT.

Model #Total #Consistent Judged “Real” Average

Triplets Triplets “Real” Percentage Rating

Real 665 630 380 60.317 4.046

1-gram 210 197 19 9.645 2.406

2-gram 210 204 41 20.098 2.833

3-gram 210 210 59 28.095 3.276

2-term 175 166 30 18.072 2.880

3-term 175 160 25 15.625 2.875

2-term-GR 175 158 35 22.152 3.076

3-term-GR 175 172 38 22.093 3.163

The two highest values in the last two columns are marked inboldface.

6.4.3 Interpretation

These results provide us with the following interesting insights: (a) If any string was equally

acceptable, real queries would get a “Real” rating only33.3% of the time by random

chance. The fact that real queries get the “Real” rating about60% of the time implies

that users already have a notion of queries beingwell-formed, i.e., theacceptabilityof

queries; (b) Trigram generated queries can confuse the userabout28% of the time. In con-

trast, for NL, speakers can easily identify trigram generated sentences, which are locally

readable, but semantically incoherent [33]. This shows that trigrams capture a lot more in-

formation than bigrams and probably overfit the data; (c)2-term and3-term queries getting

lower “Real” percentage scores than2-gram and3-gram queries implies that word ordering

provides vital clues to the users. To further confirm this hypothesis, we note that for the

reordered models (GR), the mean rating jumped from2.880 to 3.076 (2-terms) and2.875

to 3.163 (3-terms) from the correspondingn-gram models; (d) Bigrams received a higher

“Real” percentage value but a lower average rating than the2-term and the3-term models

(and also the corresponding GR models). This is because bigrams generate very realistic

queries at times, especially when the query length is small,but meaningless ones on other

occasions. This is supported by the observation that the standard deviation of the ratings for
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Table 6.10:A summary of relative ratings obtained through AMT.

Model Real 3-gram 2-term-GR 2-term 3-term 3-term-GR 2-gram 1-gram

Real X 0.655 0.730 0.741 0.752 0.702 0.708 0.832

3-gram 0.345 X 0.520 0.559 0.613 0.514 0.548 0.862

2-term-GR 0.270 0.480 X X 0.560 0.606 0.688 0.455

2-term 0.260 0.441 X X 0.500 0.520 0.519 0.762

3-term 0.248 0.387 0.440 0.500 X X 0.533 0.704

3-term-GR 0.298 0.486 0.394 0.480 X X 0.444 0.846

2-gram 0.292 0.452 0.313 0.482 0.467 0.556 X 0.423

1-gram 0.169 0.138 0.546 0.238 0.296 0.154 0.577 X

bigrams is1.476, while it is lower for2-terms and3-terms (1.334 and1.302 respectively);

and, (e)2-term and3-term getting almost exactly similar average ratings further empha-

sizes the importance of word ordering.3-terms are expected to generate semantically more

coherent queries, but an obvious lack of ordering hinders their acceptability to Web users.

6.5 Discussion

We now discuss some of the inferences that we draw from the research presented so far in

this chapter.

Motif analysis is insightful. Biemann et al. [33] observe thatboxmotifs in NL (Fig-

ure6.3) often occur due tosynonymy, where the pair of diagonally opposite nodes, which

are disconnected, are typically synonyms of each other in a broad sense. This is because

synonyms will rarely co-occur in the same query, thus leading to an absence of connect-

ing edges in the WCN. We observe thatbox motifs in query logs typically occur with

two similar entities (e.g.,titanic andspiderman, both movies) forming a pair of

disconnected nodes and two attributes (e.g.,mp3 andcast) forming the other pair of dis-

connected nodes. The other common reason for box motifs is spelling mistakes or spelling

variations (likepituitary andpitutiary) at two opposite ends, and related words

like hormone andtumor forming the other two opposite ends of the box motif. We also
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observestarmotifs in query logs for a content unit (e.g.,titanic) in the centre and three

intent units (e.g.,cast, mp3 andreview) connected to it. Thus, motifs occur due to syn-

tactic and distributional constraints in the linguistic system, and hence, they are relatively

harder to capture through a generative model.

Trigrams overfit the data. User experiments show that trigram models generate quite

realistic queries and have surprisingly low perplexity. This is not surprising because the

average length of a query being only four, a large number of queries will be generated

with only one or two trigrams. This will effectively generate only queries that have been

frequently seen in the training query log.

There is scope for better generative models.Since trigram models overfit and bi-

gram models fall short of generating good individual queries, realistic queries can only be

generated using more sophisticated models that can capturethe structural constraints of

queries both at syntactic and semantic levels. Since motif analysis indicates the impor-

tance of content-intent relationships in queries, we believe that a better quantification of

the distribution of these relationships can lead to improved generative models for queries.

Relative word ordering is important. Researchers in the past have criticized the

bag-of-words model for queries [55, 174, 245]. Our analysis strengthens earlier findings

by showing the importance of word ordering constraints in queries, as the bag-of-words

model-based query generation (using then-term model) is shown to be inadequate in both

network and user experiments.

There is a cognitive model for queries.Finally, it is interesting to note that users, or as

we can say, the native speakers of the language of queries, are indeed able to differentiate

real queries from artificially generated ones. This shows that an average user has already

internalized a cognitive model for queries. Further probing of this cognitive model through

psycholinguistic experiments would be an interesting exercise that can provide interesting

insights into not only how query syntax is organized but alsohow a new language might

evolve and automatically acquire a syntax of its own.

Finally, we do not know of prior work that takes a holistic approach towards the analysis

of the syntactic complexity of Web queries from the first principles. Previous works related
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to statistical and network analysis of queries have been reported in the respective sections.

Nevertheless, there are two lines of research pertaining tothe syntactic analysis of queries.

Linguistic analysis of queries. First, linguistic analysis and annotation of queries at

the level of segmentation or chunking [82] and parts-of-speech tagging [22, 25, 26, 72]

have been important directions of research since the early2000s [107]. While these studies

reveal interesting syntactic properties and trends, such as more than70% of the query terms

are nouns [22] and NL question queries are on rise [166], they are based on the fundamental

assumption that queries issued in a certain language, say English, will borrow grammatical

artefacts of that language (i.e., nouns, verbs, noun and verb phrases, etc.). This assumption

is biased because a noun in English is called a noun because itfollows a particular syntactic

distribution; it is quite unlikely that the same word will behave as a noun in a query either

from the point of statistical distribution or its cognitiveinterpretation by the users. Thus, if

queries are to be understood linguistically, they should beanalyzed from the first principles

rather than superimposing the grammatical syntax of NLs andthereby masking their true

syntactic properties. Such linguistic analysis can still be useful for practical applications,

but they cannot tell us much about the true syntax of Web search queries.

Entities and intents. The second line of research, which we believe is more promising,

is the analysis of queries in terms of user intents. Such studies have looked into queries

from various perspectives and have come up with various concepts such as entities and

attributes [9,102,155,160,184], kernel-objects and modifiers [236] and query facets [76,

154], to factor the parts of a query and place it within a taxonomyof semantic or syntactic

patterns. While it is not possible to review all these studieshere, a closer look at the actual

network motifs of the WCN for real queries reveal interesting synergy between the concept

of intent words[138,232] (also called modifiers or attributes) andcontent words(or entities

or kernel-objects) which is worth mentioning here.

6.6 Synthetic Web search queries

Web search query logs can be used for developing a large number of important applications,

like query recommendation [16], entity extraction [102] and query segmentation (proposed
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research). There has been a good amount of research on query log analysis in the last

decade. However, almost all of academia is deprived of this extremely potent resource.

This is because commercial Web search engines (e.g., Bing, Google and Yahoo!) restrict

public access to these logs to protect the privacy of millions of users. In fact, there were

serious legal issues when AOL released massive amounts of query log data, back in20065.

In the last five years,71% of all papers published on Web search query analysis in the

top-tier IR conferences –WSDM , WWW , SIGIR, CIKM andECIR had at least one

author from the search industry. Fig.6.8 shows a break-up across years 2007 to 2011.

The papers which did not have any author from the industry either used TREC data, AOL

query logs (still available on the Internet, unofficially),the Microsoft 2006 RFP dataset, or

proposed theoretic models that did not need not a real log forevaluation. However, TREC

Web Track ad hoc task queries6 (topics) are typically around50 in number, and is not meant

for querylog analysis. Use of the AOL queries is no longer legally permitted and access to

Microsoft’s RFP dataset7 was granted only to participants of the WSDM 2009 workshop

on Web Search and Click Data (WSCD ’09) and is thus not publicly available.
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Figure 6.8: Industry authors in papers on query log analysis.

Creation of large synthetic query logs is one of the best possible ways to solve this

data scarcity problem, because synthetic logs can be publicly shared without any breach of

privacy. However, the main challenge involving synthetic query logs is not the generation,

but rather the evaluation of the quality of the generated queries. The simplest method may

be to get it checked and cleaned by human annotators. However, it is practically infeasible

5http://en.wikipedia.org/wiki/AOLsearchdataleak
6http://goo.gl/9o1sD
7http://goo.gl/5b7sQ

http://en.wikipedia.org/wiki/AOL_search_data_leak
http://goo.gl/9o1sD
http://goo.gl/5b7sQ
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to get a query log consisting of millions of queries checked manually. In fact, there is an

even more subtle and basic problem with this approach. Giventhe diverse information

needs and idiosyncrasies in query formulations of Web users, it is extremely hard for a

single or a handful of humans to say whether any given sequence of words is likely to

be a real Web query. An alternative automatic approach to evaluation of synthetic query

logs could be to look at the number of search results returnedby a query, presuming that

more “real” queries will return more search results. However, it also turns out to be a

bad indicator; bizarre queries likeworld cup football lambda calculus can

return similar or even many more search results than perfectly valid ones likesummer

internship mpi 2015 (the former has20.5M hits and the latter around13.4M hits

on Bing US, 09 November 2014).

Furthermore, beyond ensuring that individual queries are realistic, a synthetic log also

needs to faithfully replicate the aggregate properties of the real log. Real logs always

possess holistic properties which are typical of the information needs of the people of

the time and geographical region from which the queries are issued. Hence, automatic

evaluation of large synthetic query logs is an important anddifficult problem that has hardly

received any attention till date. Even though there have been related attempts at question

generation in natural language [89,150], as far as we know, there has only been one major

contribution in the area of synthetic Web queries – the research presented by Li et al. [134].

Their synthetic query lo8 (namedQRU-1) contains2, 030 queries that were generated

by applying a string transformation method on100 base queries. The base queries were

sampled from the query set used for the TREC2009 and2010 Web Tracks. As a guarantee

of goodness, they report that70% of these queries were actually found in a separate log

from Bing. Even though the quality of the generated queries were good, this is too small a

log to be useful for practical applications like attribute extraction [159].

Through the concepts presented in this chapter, we are able to make the first attempt to-

wards complete automatic evaluation of synthetic query logs using concepts fromcomplex

network theory, and independently verify our evaluation scheme through crowdsourced

manual labeling (intrinsic evaluation). In light of the present state-of-the-art in artificial

query log evaluation and generation, the contributions of this work are: (a) formulating the

8http://goo.gl/v301S

http://goo.gl/v301S
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problem of evaluation of synthetic query logs and proposinga framework for the same; (b)

application of complex network theory to modeling and understanding the structure of real

and synthetic query logs; and (c) proposing a novel crowdsourcing-based approach to man-

ual evaluation of synthetic queries. However, as discussedin our results, since the various

network statistics predict slightly different orderings of the synthetic models in terms of

their closeness to the real network, it is far from obvious which of these statistics are better

predictors of the quality and how they can be combined. Moreover, the similarity values

for the network statistics as well as the AMT and segmentation results have very different

scales, and therefore, cannot be directly compared or combined. Moreover, generating syn-

thetic queries is practical only when we have certain application(s) in mind, and different

applications may impose very different requirements and restrictions on the properties of

the synthetic logs.

We believe that there are several other such interesting questions that can be investigated

and new generative models can be developed by systematically optimizing the match of the

network statistics to that of the real WCNs. We believe that ourwork on synthetic queries

can act as an ideal foundation for a potent area of research inquery analysis.

6.7 Conclusions

In this chapter, we have tried to understand the syntactic complexity of Web search queries,

a distinct mode of interaction between man and man-made systems. We have adopted

a three-pronged approach: applying statistical language models (usingn-grams andn-

terms), asking native speakers (Web search users) and usingcomplex network modeling

(with WCNs). Our results underline the necessity of using multiple independent perspec-

tives. Having entropy or perplexity similar to or lower thanNL need not, by itself, be

indicative of an underlying language system [210]. Network analysis shows bigrams to be

within striking distance of replicating real log syntax at acorpus-level. However, when na-

tive speakers are consulted, individual queries generatedby trigrams are found to be much

more acceptable than those by bigrams. Only a combined approach is successful in bring-

ing out the complete picture ofn-gram-based statistics being inadequate, and the need for

a language model that imbibes syntactic constraints specific to Web search queries. More
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interestingly, in both network and user experiments, a common behavior emerges: the re-

sults are distinct both from scenarios that assume queries being random word sequences or

following the syntactic constraints of the parent natural language.





Chapter 7

Conclusions and Future Work

In this final chapter, we summarize the main contributions ofthe thesis (Section7.1) and

take a stock of our achievements vis-à-vis the objectives set up in the introductory chapter.

Finally, we wrap up by pointing out some of the possible future directions of research that

have been opened up by this thesis (Section7.2).

7.1 Summary of the contributions

In this thesis, we have made the following contributions: (i) we have developed and evalu-

ated an unsupervised flat query segmentation algorithm thatuses query logs and Wikipedia

titles; (ii) we have developed and evaluated an unsupervised nested query segmentation

algorithm that uses only query logs; (iii) we have developedan unsupervised technique

for labeling content and intent units in queries; and (iv) wehave a proposed a framework

for the quantification of the syntactic complexity of searchqueries. Thus we find that the

objectives that we had set out in the Introduction (Section1.6) have been largely achieved.

We recapitulate the contributions in the rest of this section.

Development and evaluation of unsupervised flat query segmentation algorithm

In this work, we have developed a query segmentation algorithm that uses only query logs,

187
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which has been subsequently enhanced with Wikipedia titles. We have proposed an IR-

based framework to evaluate our algorithm and to compare itsperformance with the state-

of-the-art. We have also presented an idea for using POS patterns in query logs for enrich-

ing query segmentation. The contributions of this study canbe summarized as follows:

1. Earlier measures of word association generally rely on some form of unigram statis-

tics, which can often be misleading. We have proposed a novelmethod for scoring word

associations based only on the queries that contain all the words of the candidate multiword

expression, and assign the significance score by comparing occurrences in thecorrectorder

vis-à-visanyorder.

2. While traditional query segmentation algorithms have used resources like Web page

content, search result snippets and clickthrough information, our algorithm relies primarily

on query logs, thus discovering syntactic structure uniqueto queries. Wikipedia titles have

been used only to detect evidence of rare named entities.

3. Past approaches to query segmentation have been evaluated against manual annota-

tions, which is based on the flawed assumption that humans “know” the “correct” segmen-

tation for a query. We have challenged this assumption on thegrounds that the end-user

of query segmentation is the search engine. In this regard, we have developed the first IR-

based evaluation framework for query segmentation that uses only the standard resources

required for any IR-system evaluation – test queries, a document pool and corresponding

human relevance judgments. The proposed algorithm has beenshown to outperform the

state-of-the-art in the IR evaluation setup.

4. We have shown promising initial results with an idea for enhancing query segmen-

tation using POS patterns. Segments vital from an IR perspective may have low statistical

evidence and hence may be missed by traditional algorithms during the lexicon building

phase. Our novel idea learns POS sequences from frequent word patterns and uses them to

pull segments with such patterns into the lexicon, even if they have low occurrence proba-

bilities in the log. Such a method has been shown to improve IRperformance. Interestingly,

it bridges the conceptual gap between the analogous processes of query segmentation and

NL chunking.
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Development and evaluation of unsupervised nested query segmentation algorithm

We have emphasized the importance of using nested or hierarchical query segmentation,

which provides a richer syntactic representation of a query. We have developed an unsu-

pervised algorithm using only query logs for inferring the nested representation of a query.

We have shown how such a representation can be vital in ranking documents in response

to slightly longer queries. The contributions of this studycan be summarized as follows:

1. We have proposed an unsupervised algorithm for nested query segmentation that

uses only query logs. Our algorithm uses simple low-ordern-gram statistics to arrive at the

complete hierarchical partitioning.

2. We have proposed the first deterministic approach to leverage nested query segmen-

tation for improving document ranking. To this end, we have shown how the distances

in the nested segmentation tree for a query can be used to normalize document distances

for matched query terms, and to subsequently improve the ranking produced by issuing an

unsegmented query to the search engine.

Proposal of framework for unsupervised role induction for query segments

In this study, we have proposed that all query segments can bebroadly classified as con-

tent or intent, where content units act as topics for querieswhile intent units are markers

of explicit user intent. Content and intent units can be effectively labeled within queries

using corpus distributional properties of each class. The contributions of this study can be

summarized as follows:

1. An unsupervised framework for labeling content and intent units in the context of

individual queries has been shown to achieve reasonable levels of precision and recall. As

with other parts of this thesis, the algorithm uses only query logs to perform the labeling.

The novelty of the simple labeling algorithm can be attributed to the use of co-occurrence

entropy, which is the entropy of the co-occurrence distribution associated with each unit.

Co-occurrence statistics are shown to be effective discriminators of content and intent units

in queries, as well as of content and function words in NL.

2. We have proposed a new formulation for modeling overlaps in clicked URL sets.
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Using this formulation, we have shown how to evaluate content-intent labeling without

relying on expensive manual annotations. The two evaluation strategies are shown to pro-

duce highly similar results, emphasizing the feasibility of using click data as an alternative

resource of labeling evaluation.

3. We have shown how content-intent labeling can be used for improving IR perfor-

mance through simple experiments based on matching query segments in documents. Pre-

vious works that try to tag units along these lines do not provide a means of applying such

labeling to improve IR. Our experiments are based on our operational definitions that con-

tent segments have to be matched exactly for documents to be relevant, and intent units

need not be present in the document text. While such experiments do show direct IR ben-

efits of our labeling, we believe that knowledge of intent units can be leveraged in much

more intelligent ways to improve result quality than simplyrelaxing the exact matching

constraint.

4. We have provided a principled taxonomy of intent units, based on the likely rela-

tionships between content and intent units. We have proposed that intent units in queries

broadly serve to restrict or rank result pages containing content units. We believe that the

proposed taxonomy can have important use cases in semantic search.

5. Finally, the concept of content and intent units, as proposed by us, are not restricted

to specific domains or categories of queries, and provides anoverarching framework for

consolidating several allied lines of research in this area.

Proposal of framework for measuring the syntactic complexity of search queries

In this study, we have proposed a holistic framework for measuring the syntactic complexity

of search queries. We have used word co-occurrence networksand human judgments col-

lected through crowdsourcing as independent evaluations of the quality of model-generated

query logs, and have shown that queries are more complex thanthe commonly assumed

bag-of-words model, but is beyond what simplen-grams can capture. The contributions of

this study can be summarized as follows:

1. While it may seem to be a common perception that queries are growing in complex-

ity, a precise quantification of this complexity had been lacking. Our framework provides
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a way to objectively measure the syntactic complexity of a query generative model, and to

meaningfully compare such complexities of real and artificial query logs.

2. Our framework is holistic in the sense that it provides both macroscopic and micro-

scopic perspectives on the quality of generated query logs.Specifically, while advanced

properties of word co-occurrence networks like motif signatures represent corpus-level ag-

gregates, judgments of average Web users on individual queries represent “native speaker”-

intuition for the query language.

3. Our cleverly designed experiment using query triplets for assessing the goodness

of a generative model as perceived by humans, bypasses the difficulty of directly asking

a user whether a generated sequence of words is a meaningful query. As our final results

show, average Web users are able to identify the real query hidden among two generated

ones about60% of the time, implying that searchers do have a cognitive model of the

acceptability of a query.

Datasets developed as part of this research

The following datasets have been developed as part of the present research and made pub-

licly available:

1. Our dataset for evaluating flat query segmentation comprises of500 Bing Australia

queries (relatively rarer queries with query frequency between five and fifteen in the orig-

inal Bing Australia log of May 2010), a list of numbered Web URLswith text content,

relevance judgment sets (qrels) for each query, query segmentations according to four al-

gorithms and three human annotators, and the best quoted query versions (as explored

through brute force). This dataset is available athttp://cse.iitkgp.ac.in/resgrp/cnerg/qa/

querysegmentation.html.

2. Our dataset for evaluating nested query segmentation includes the query sets of

SGCL12 and TREC-WT (Chapter4), and the16 nested segmentation variants for each of

these two query sets. The code and executables for generating these nested segmentations,

as well as evaluating them in our IR-based setup, are also being shared. This dataset is

available athttp://cse.iitkgp.ac.in/resgrp/cnerg/qa/nestedsegmentation.html.

http://cse.iitkgp.ac.in/resgrp/cnerg/qa/querysegmentation.html
http://cse.iitkgp.ac.in/resgrp/cnerg/qa/querysegmentation.html
http://cse.iitkgp.ac.in/resgrp/cnerg/qa/nestedsegmentation.html
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7.2 Directions of future work

In this final section, we discuss few of the many possible directions of future work that

have been opened up by this thesis.

1. In Chapter3, a hypothetical oracle has been shown to be quite useful. But we

realize that it will be a much bigger contribution to the community if we could implement

a context-aware oracle that can actually tell the search engine which quoted version of

a segmented query should be chosen at runtime. Also, the beststrategy for combining

word association scores with POS pattern counts needs further exploration. It seems that

PTB or UTS tagsets are complementary to the Bie-S tagset, and it would therefore be

useful to develop techniques that combine these two approaches and exploit the benefits of

both. It would be also interesting to study which kind of queries benefit maximally from

POS-enhanced segmentation and whether they can be automatically identified. We believe

that there is a huge potential for unsupervised POS induction in query understanding and

representation that has not yet been leveraged.

3. In Chapter4, it could be useful from an IR perspective to assign weights to term pairs

before their tree or query distance is considered. The nesting algorithm and the allied re-

ranking strategy can be improved through more sophisticated data-driven approaches and

NLP techniques. In fact, nested query segmentation can be viewed as the first step towards

query parsing, and can lead to a generalized query grammar. We believe that our findings

can make a major impact on query understanding if effort is appropriately channelized

along these avenues.

4. In Chapter5, a more principled way of combining our different features for com-

puting the intent-ness score is an important issue to be addressed. But more generally, the

research in this chapter opens up the following broad areas for future work: (a) Seamless

integration of intelligent techniques into search systemsthat allow for special treatment

of intent units to serve better pages; and (b) Development ofautomatic classifiers for as-

signing detected intent units to their respective categories. Like all aspects of semantic

search, problems of vagueness and evaluation pose stiff challenges in these directions. Our

research attempts to be a stepping stone in pinning down suchdifficulties to focused areas
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and making them addressable by concerted efforts from the community.

5. In Chapter6, the crowdsourcing experiments throw up several open questions that

can be verified with more detailed study. For example, it would be interesting to know

whether searchers can identify cases when there are multiple real queries in the triplets, or

when there are none. But more generally, through this research, we highlight the scope for

a more realistic query generation model that imbibes more information than meren-gram

probabilities. One of the ways to approach an improved modelwould be to incorporate

constraints based on content and intent units into the generative process.

7.3 Final words

Existence of both shallow and deep syntactic constraints asdetected through flat and nested

query segmentation, presence of broad syntactic categories of content and intent, and evi-

dence of syntactic complexity beyond simplen-grams – all provide support in favor of our

original hypothesis of queries evolving into a language of their own. However, we do not

claim that this research is complete by itself. Rather, it is only the first step towards a more

holistic goal – when queries, communicating information needs of millions of users, can

be established to be an independent language system from allthe three aspects – structure,

function and dynamics. Our research paves the way for answering a bigger question: are

queries evolving to resemble their parent natural languageor diverging away from it?

At the time of writing this thesis, the landscape of search isundergoing a great shift in

paradigm. The traditional presentation style of the “ten blue links” as results is increasingly

being enriched with direct answers, structured knowledge representations on entities, and

specialized integrations of non-textual content types like maps, images and videos. The

process of harnessing the wealth of relevant content on social media has just begun. While

newer and more complex information needs are being created every moment, increased

use of the query auto-completion feature potentially triesto decrease the number of distinct

queries. All these factors will influence the dynamics of Websearch queries, and will play

a big role in shaping their future.
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