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1 Introduction and Objective

The art gallery problem is a classic problem in the domain of computational geometry. It
originates from the real-world problem of finding the minimum number of guards (or surveillance
cameras) required to have an art gallery (represented by a polygon) under complete observation.
Discovering good algorithms for solving these problems leads to several practical applications,
particularly in the areas of surveillance and robot-motion planning. Unfortunately however,
most standard variations of the art gallery problem have been established to be NP-hard,
implying that exact solutions for them cannot be computed efficiently. Therefore, for multiple
variants of the art gallery problem, my research focuses on designing efficient algorithms that
output only an approximate solution, but provide a relative performance guarantee. In other
words, the design of these algorithms ensures that the value of the computed solution lies within
some (preferably constant) factor of the optimal value. This factor is typically referred to as the
approximation ratio. While trying to improve the best known approximation ratios till date, we
also make parallel efforts to try and establish inapproximability bounds on these problems. An
inapproximability bound basically provides us with the best possible approximation ratio that
we can realistically hope to achieve, by establishing the fact that no efficient algorithm for that
problem can exist which has a better approximation ratio, unless P=NP. It is fairly obvious from
the discussion above that designing approximation algorithms and proving inapproximability
bounds are two endeavours that complement each other quite well. Thus, we also seek to
pursue both these research directions in parallel, and apply them in the context of the art
gallery problem and its variants.

2 Literature Survey

2.1 The art gallery problem

The art gallery problem enquires about the least number of guards that are sufficient to ensure
that an art gallery (represented by a polygon P ) is fully guarded, assuming that a guard’s
field of view covers 360◦ as well as an unbounded distance. This problem was first posed by
Victor Klee at a conference in 1973, and over course of time, it has turned into one of the most
well-studied problems in computational geometry.

A polygon P is defined to be a closed region in the plane bounded by a finite set of line segments,
called edges of P , such that, between any two points of P , there exists a path which does not
intersect any edge of P . If the boundary of a polygon P consists of two or more cycles, then
P is called a polygon with holes (see Figure 1). Otherwise, P is called a simple polygon or a
polygon without holes (see Figure 2).

An art gallery can be viewed as an n-sided polygon P (with or without holes) and guards as
points inside P . Any point z ∈ P is said to be visible from a guard g if the line segment zg does
not intersect the exterior of P (see Figure 1 and Figure 2). In general, guards may be placed
anywhere inside P . If the guards are allowed to be placed only on vertices of P , they are called
vertex guards. If there is no such restriction, guards are called point guards. Point and vertex
guards together are also referred to as stationary guards. If guards are allowed to patrol along a
line segment inside P , they are called mobile guards. In particular, if they are allowed to patrol
only along the edges of P , they are called edge guards. [16, 27]
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Figure 1: Polygon with holes Figure 2: Polygon without holes

In 1975, Chvátal [6] showed that bn3 c stationary guards are sufficient and sometimes necessary
(see Figure 3) for guarding a simple polygon. In 1978, Fisk [14] presented a simpler and more
elegant proof of this result. For a simple orthogonal polygon, whose edges are either horizontal
or vertical, Kahn et al. [19] and also O’Rourke [26] showed that bn4 c stationary guards are
sufficient and sometimes necessary (see Figure 4).

Figure 3: A polygon where bn3 c station-
ary guards are necessary.

Figure 4: A polygon where bn4 c stationary
guards are necessary.

2.2 Related hardness and approximation results

The decision version of the art gallery problem is to determine, given a polygon P and a number
k as input, whether the polygon P can be guarded with k or fewer guards. The problem was first
proved to be NP-complete for polygons with holes by O’Rourke and Supowit [28]. For guarding
simple polygons, it was proved to be NP-complete for vertex guards by Lee and Lin [24], and
their proof was generalized to work for point guards by Aggarwal [1]. The problem is NP-hard
even for simple orthogonal polygons as shown by Katz and Roisman [20] and Schuchardt and
Hecker [29]. Each one of these hardness results hold irrespective of whether we are dealing with
vertex guards, edge guards, or point guards.

In 1987, Ghosh [15, 17] provided a deterministic O(log n)-approximation algorithm for the case
of vertex and edge guards by discretizing the input polygon P and treating it as an instance of
the Set Cover problem. In fact, applying methods for the Set Cover problem developed after
Ghosh’s algorithm, the approximation ratio of this algorithm becomes O(logOPT ) for vertex
guarding simple polygons and O(log h logOPT ) for vertex guarding a polygon with h holes,
where OPT denotes the size of the smallest guard set for P . Deshpande et al. [8] obtained
an approximation factor of O(logOPT ) for point guards or perimeter guards by developing a
sophisticated discretization method that runs in pseudopolynomial time. Efrat and Har-Peled
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[10] provided a randomized algorithm with the same approximation ratio that runs in fully poly-
nomial expected time. For guarding simple polygons using vertex and perimeter guards, King
and Kirkpatrick [21] designed a deterministic O(log logOPT )-approximation algorithm in 2011.

In 1998, Eidenbenz, Stamm and Widmayer [11, 12] proved that the problem is APX-complete,
implying that an approximation ratio better than a fixed constant cannot be achieved unless
NP = P. They also proved that if the input polygon is allowed to contain holes, then there
cannot exist a polynomial time algorithm for the problem with an approximation ratio better
than ((1− ε)/12) lnn for any ε > 0, unless NP ⊆ TIME(nO(log logn)). Extending their method,
Bhattacharya, Ghosh and Roy [3] recently proved that, even for the special subclass of polygons
with holes that are weakly visible from an edge, there cannot exist a polynomial time algorithm
for the problem with an approximation ratio better than ((1− ε)/12) lnn for any ε > 0, unless
NP = P. These inapproximability results establish that the approximation ratio of O(log n)
obtained by Ghosh in 1987 is in fact the best possible for the case of polygons with holes. But
for simple polygons, the existence of a constant factor approximation algorithm for vertex and
edge guards is still possible, as was conjectured by Ghosh [15, 18] in 1987.

Ghosh’s conjecture has been proved to be true for two special subclasses of simple polygons,
viz. monotone polygons and polygons weakly visible from an edge. In 2012, Krohn and Nilsson
[22] presented an approximation algorithm that computes in polynomial time a guard set for
a monotone polygon P , such that the size of the guard set is at most 30 × OPT . In 2015,
Bhattacharya, Ghosh and Roy [3] presented a 6-approximation algorithm that runs in O(n2)
time for polygons that are weakly visible from an edge.

3 Details of Work Done Till Date

The research work pursued so far has led to the following outcomes till date:

• We obtained a 6-approximation algorithm, which has running time O(n2), for vertex
guarding polygons that are weakly visible from an edge and contain no holes. This result
can be viewed as a step forward towards solving Ghosh’s conjecture, since it settles the
conjecture for a special class of polygons.

• We proved that the above approximation ratio can be improved to 3 for the special class
of polygons without holes that are orthogonal as well as weakly visible from an edge.

• Through a reduction from the Set Cover problem, we proved that, for the special class
of polygons containing holes that are weakly visible from an edge, there cannot exist a
polynomial time algorithm for the vertex guard problem with an approximation ratio
better than ((1− ε)/12) lnn for any ε > 0, unless NP = P.

• We proved that the point guard problem for weak visibility polygons is NP-hard by show-
ing a reduction from the decision version of the minimum line cover problem.

Throughout the rest of this section, we discuss each of these results in some detail.

3.1 Preliminary definitions

Let P be a simple polygon. Assume that the vertices of P are labelled v1, v2, . . . , vn in clockwise
order. Let bdc(p, q) (or bdcc(p, q)) denote the clockwise (respectively, counterclockwise) bound-
ary of P from a vertex p to another vertex q. Note that, by definition, bdc(p, q) = bdcc(q, p).
Also, we denote the entire boundary of P by bd(P ). So, bd(P ) = bdc(p, p) = bdcc(p, p) for any
chosen vertex p belonging to P .
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The visibility polygon of P from a point z, denoted as VP(z), is defined to be the set of all
points of P that are visible from z. In other words, VP(z) = {q ∈ P : q is visible from z}.
Observe that the boundary of VP(z) consists of polygonal edges and non-polygonal edges. We
refer to the non-polygonal edges as constructed edges. Note that one point of a constructed edge
is a vertex (say, vi) of P , while the other point (say, ui) lies on bd(P ). Moreover, the points z,
vi and ui are collinear (see Figure 5).

v1

v2

v3

v4
v5

v6

v8

u6

P (v6u6)

v9

v10

v11
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v7

v13

v14

v15

v16v17

u7

v19

v18

u18

u9

u13

u15

P (v9u9)

P (v13u13)

P (v15u15)

V P (v2)

V P (v16v17)

P (v7u7) ∩ P (v18u18)

Figure 5: Figure showing visibility polygon VP(v2) and weak visibility polygon VP(v16v17),
along with several pockets created by constructed edges belonging to both.

Let bc be an internal chord or an edge of P . A point q of P is said to be weakly visible from bc
if there exists a point z ∈ bc such that q is visible from z. The set of all such points of P is said
to be the weak visibility polygon of P from bc, and denoted as VP(bc). If VP(vivi+1) = P for a
polygonal edge vivi+1, then P is called a weakly visible polygon. Like VP(z), the boundary of
VP(bc) also consists of polygonal edges and constructed edges viui (see Figure 5). If v1 does
not belong to bdc(viui), then viui is called a left constructed edge. Otherwise, viui is called a
right constructed edge.

s

z

y

x

ps(y)

ps(x)

ps(z)

Figure 6: Euclidean shortest path tree rooted at s. The parents of vertices x, y and z in SPT (s)
are marked as ps(x), ps(y) and ps(z) respectively.

4



The shortest path tree of P rooted at a vertex s of P , denoted by SPT (s), is the union of
Euclidean shortest paths from s to all the vertices of P (see Figure 6. This union of paths is a
planar tree, rooted at r, which has n nodes, namely the vertices of P . For every vertex x of P ,
let pu(x) and pv(x) denote the parent of x in SPT (u) and SPT (v) respectively. In the same
way, for every interior point y of P , let pu(y) and pv(y) denote the vertex of P next to y in the
Euclidean shortest path to y from u and v respectively.

3.2 A 6-Approximation Algorithm for Placing Vertex Guards in Weakly
Visible Polygons

Let P be a simple polygon which is weakly visible from its edge uv. Suppose a guard is placed
on every non-leaf vertex of SPT (u) and SPT (v). It is obvious that these guards see all points
of P . However, the number of guards required may be very large compared to the size of an
optimal guarding set. In order to reduce the number of guards, placing guards on every non-
leaf vertex should be avoided. Let A be a subset of vertices of P . Let SA denote the set which
consists of the parents pu(z) and pv(z) of every vertex z ∈ A. Then, A should be chosen such
that all vertices of P are visible from guards placed at vertices of SA. We present a method for
choosing A and SA as follows:-

Algorithm 3.1 An O(n2)-algorithm for computing a guard set SA for all vertices of P

1: Compute SPT (u) and SPT (v)
2: Initialize all the vertices of P as unmarked
3: Initialize A← ∅, SA ← ∅ and z ← u
4: while z 6= v do
5: z ← the vertex next to z clockwise on bdc(u, v)
6: if z is unmarked then
7: A← A ∪ {z} and SA ← SA ∪ {pu(z), pv(z)}
8: Place guards on pu(z) and pv(z)
9: Mark all vertices of P visible from pu(z) or pv(z)

10: end if
11: end while
12: return the guard set SA

Henceforth, let Sopt denote an optimal set of vertex guards.

Lemma 1. Any guard g ∈ Sopt that sees vertex z of P must lie on bdc(pu(z), pv(z)).

Lemma 2. Let z be a vertex of P such that all vertices of bdc(pu(z), pv(z)) are visible from
pu(z) or pv(z). For every vertex x lying on bdc(pu(z), pv(z)), if x sees a vertex q of P , then q
must also be visible from pu(z) or pv(z).

Lemma 3. If every vertex z ∈ A is such that every vertex of bdc(pu(z), pv(z)) is visible from
pu(z) or pv(z), then |A| ≤ |Sopt|.

Theorem 4. If every vertex z ∈ A is such that all vertices of bdc(pu(z), pv(z)) are visible from
pu(z) or pv(z), then |SA| ≤ 2|Sopt|.

Proof. We have |SA| = 2|A|. By Lemma 3, |A| ≤ |Sopt|. So, |SA| = 2|A| ≤ 2|Sopt|.

However, the above bound does not hold if there exists z ∈ A such that some vertices of
bdc(pu(z), pv(z)) are not visible from pu(z) or pv(z). Consider Figure 7. For each i ∈ {1, 2, . . . , k−
1}, zi+1 is not visible from pu(zi) or pv(zi), which forces Algorithm 3.1 to place guards at pu(zi+1)
and pv(zi+1). Therefore, Algorithm 3.1 includes z1, z2, z3, . . . , zk in A and ends up placing a
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total of 2k guards at vertices u, pv1, pu2, pv2, . . . , puk, pvk. However, all vertices of P are visible
from just two guards placed at u and g. Hence, |SA| = 2k whereas |Sopt| = 2. Since the con-
struction in Figure 7 can be extended for any arbitrary integer k, |SA| can be arbitrarily large
compared to |Sopt|. So we will now present a new algorithm which gives us a 4-approximation.

z1

z2
z3

zk

g

u v

pu2 pu3

pvk

pv3
pv2

pv1

puk

Figure 7: Instance where guard set SA computed by Algorithm 3.1 is arbitrarily large compared
to Sopt.

In the new algorithm, described in pseudocode as Algorithm 3.2, bdc(u, v) is scanned to identify
a set of unmarked vertices, denoted as B, such that all vertices of P are visible from guards in
SB = {pu(z)|z ∈ B} ∪ {pv(z)|z ∈ B}. However, unlike the previous algorithm (see Algorithm
3.1), the new algorithm does not blindly include in B every next unmarked vertex that it
encounters during the scan. During the scan, if z denotes the current unmarked vertex under
consideration, then it may either choose to include z in B or skip ahead to the next unmarked
vertex along the scan depending on certain properties of z. At the end of each iteration of
the outer while-loop (running from line 4 to line 23) maintains the invariant that, for every
unmarked vertex y of bdc(u, z) (excluding z), pu(y) and pv(y) see all unmarked vertices of
bdc(pu(y), y). Let z′ denote the next unmarked vertex of bdc(z, pv(z)) in clockwise order from z
such that z′ is not visible from either pu(z) or pv(z). Note that, depending on the current vertex
z, z′ may or may not exist. However, one of the following four mutually exclusive scenarios
must be true.

(A) Every vertex of bdc(z, pv(z)) is already marked due to guards currently included in SB.
(B) Every unmarked vertex of bdc(z, pv(z)) is visible from pu(z) or pv(z).
(C ) Not every unmarked vertex of bdc(pu(z′), z′) is visible from pu(z′) or pv(z′).
(D) Every unmarked vertex of bdc(pu(z′), z′) is visible from pu(z′) or pv(z′).

If z satisfies property (A) or (B), then z is included in B and the first unmarked vertex of
bdc(pv(z), v) in clockwise order from pv(z) becomes the new z (see lines 6 to 9). If z satisfies
property (C), then z is included in B and z′ becomes the new z. If z satisfies property (D), then
z′ becomes the new z (see lines 11 to 15). Whenever z is included in B, pu(z) and pv(z) are
included in SB and all unmarked vertices that become visible from pu(z) or pv(z) are marked.
After doing so, if there remain unmarked vertices on bdcc(z, u), then bdcc(z, u) is scanned from
z in counterclockwise order and more guards are included in SB according to the following
strategy (see lines 18 to 23).
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(i) y ← z
(ii) Scan bdcc(pu(y), u) from y in counterclockwise till an unmarked vertex x is located.

(iii) y ← x
(iv) Add y to B. Add pu(y) and pv(y) to SB.
(v) Mark every vertex visible from pu(y) or pv(y).

(vi) Repeat steps (ii)-(v) until all vertices of bdc(u, z, u) are marked.

Initially, z is chosen to be u itself (see line 3). Then, for each z under consideration along the
clockwise scan of bdc(u, v), the appropriate action is performed corresponding to the property
of z. Then, z is updated and the process is repeated till v is reached. The set of vertices SB is
returned by the algorithm (see line 26) as a guard set.

Algorithm 3.2 An O(n2)-algorithm for computing a guard set S for all vertices of P

1: Compute SPT (u) and SPT (v)
2: Initialize all the vertices of P as unmarked
3: Initialize B ← ∅, SB ← ∅ and z ← u
4: while there exists an unmarked vertex in P do
5: z ← the first unmarked vertex on bdc(u, v) from z
6: if every unmarked vertex of bdc(z, pv(z)) is visible from pu(z) or pv(z) then
7: B ← B ∪ {z} & SB ← SB ∪ {pu(z), pv(z)}
8: Mark all vertices visible from pu(z) or pv(z)
9: z ← pv(z)

10: else
11: z′ ← the first unmarked vertex on bdc(z, v)
12: while every unmarked vertex of bdc(pu(z′), z′) is visible from pu(z′) or pv(z′)

do
13: z ← z′

14: z′ ← the first unmarked vertex on bdc(z
′, v)

15: end while
16: B ← B ∪ {z} & SB ← SB ∪ {pu(z), pv(z)}
17: Mark all vertices visible from pu(z) or pv(z)
18: y ← z
19: while ∃ an unmarked vertex on bdc(u, z) do
20: y ← first unmarked vertex on bdcc(pu(y), u)
21: B ← B ∪ {y} & SB ← SB ∪ {pu(y), pv(y)}
22: Mark all vertices visible from pu(y) or pv(y)
23: end while
24: end if
25: end while
26: return the guard set SB

By a rigorous analysis of Algorithm 3.2, the following lemma can be shown to be true.

Lemma 5. |B| ≤ 2|Sopt|.

Theorem 6. |SB| ≤ 4|Sopt|.

Proof. We have |SB| = 2|B|. Also, by Lemma 5, |B| ≤ 2|Sopt|. So, |SB| = 2|B| ≤ 4|Sopt|.

While the guard set SB is guaranteed to see all vertices of P , it may not always be true that all
interior points of P are also visible from guards in SB. Consider the scenario shown in Figure
8. While scanning bdc(u, v), Algorithm 3.2 places guards at pu(z) and pv(z) as all vertices
of bdc(pu(z), pv(z)) become visible from pu(z) or pv(z). Observe that in fact all vertices of P
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become visible from these two guards. But, V P (pu(z)) has several left pockets and V P (pv(z))
has several right pockets which intersect pairwise to create multiple invisible cells. In order to
guard these invisible cells, a set S′ of additional guards need to be placed.

Theorem 7. There exists an algorithm with running time O(n2) that returns a guard set S′

for guarding all interior points of P invisible from guards in SB such that |S′| ≤ 2|Sopt|.

pv(z)

a1
a2

a3d1

d2
d3

pu(z)
u v

z

c1

c2
c3c′1

c′2
c′3

Figure 8: Multiple invisible cells exist within the polygon that are not visible from the guards
placed at pu(z) and pv(z).

Theorem 8. There exists an algorithm with running time O(n2) that returns a guard set S for
guarding all interior points of P such that |S| ≤ 6|Sopt|.

3.3 A 3-Approximation Algorithm for Placing Vertex Guards in Orthogonal
Weak Visibility Polygons

The class of orthogonal polygons weakly visible from an edge has been previously studied by
Carlsson, Nilsson and Ntafos [5] under the name of Manhattan skyline or histogram polygons,
and they showed that there exists a linear time greedy algorithm to optimally guard these poly-
gons with point guards. Let us also consider a polygon P belonging to this class, i.e. P is an
orthogonal polygon weakly visible from an edge uv. In this section, we present an algorithm
for vertex guarding P with an approximation factor of 3, which is a clear improvement over the
factor 6 which we obtained for the more general class of weak visibility polygons.

First, we present an algorithm for computing a guard set SA covering only the vertices of P ,
described below in pseudocode as Algorithm 3.3.

Algorithm 3.3 An O(n2)-algorithm for computing a guard set SA for all vertices of P

1: Compute SPT (u) and SPT (v)
2: Initialize all the vertices of P as unmarked
3: Initialize A← ∅ and SA ← ∅
4: while there exist unmarked vertices in P do
5: z ← u
6: while z 6= v do
7: z ← the vertex next to z in clockwise order on bdc(u, v)
8: if z is unmarked and bdc(pu(z), pv(z)) are visible from pu(z) or pv(z) then
9: A← A ∪ {z} and SA ← SA ∪ {pu(z), pv(z)}

10: Place guards on pu(z) and pv(z)
11: Mark all vertices of P that become visible from pu(z) or pv(z)
12: end if
13: end while
14: end while
15: return the guard set SA
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Lemma 9. Let Sopt be an optimal guard set. Then, |SA| ≤ 2|Sopt|.
All interior points of P are not guaranteed to be visible from guards in the set SA computed
by Algorithm 3.3. Consider the polygon shown in Figure ??. While scanning bdc(u, v), our
algorithm places guards at pu(z) and pv(z) as all vertices of bdc(pu(z), pv(z)) become visible
from pu(z) or pv(z). Observe that in fact all vertices of P become visible from these two guards.
However, the triangular region P \ (V P (pu(z)) ∪ V P (pv(z))), bounded by the segments x1x2,
x2x3 and x3x1, is not visible from pu(z) or pv(z). Also, one of the sides x1x2 of the triangle
x1x2x3 is a part of a polygonal edge. In fact, for any such region invisible from guards in
SA, one of the sides must always be a part of a polygonal edge. As mentioned previously in
Section 3.2, any such region invisible from guards in S is referred to as an invisible cell, and the
polygonal edge which contributes as a side to the invisible cell is referred to as its corresponding
partially invisible edge. Also, we define lid points and lid vertices as before. Next, we present
an algorithm for computing an additional set of guards S′A whose placement ensures that all
interior points of P are also guarded.

Algorithm 3.4 An O(n2)-algorithm for computing a guard set SA∪S′A for guarding P entirely

1: Compute SPT (u) and SPT (v)
2: Compute the set of guards SA using Algorithm 3.3.
3: Initialize C ← ∅, S′A ← ∅ and z ← u
4: while there exists an edge in P that is partially visible from guards in SA ∪ S′A do
5: z′ ← the vertex next to z in clockwise order on on bdc(u, v)
6: if if the edge zz′ is partially visible from guards in S ∪ S′A then
7: ci ← the lid point of the left pocket on zz′

8: C ← C ∪ {ci} and S′A ← S′A ∪ {pu(ci)}
9: end if

10: z ← z′

11: end while
12: return the guard set SA ∪ S′A

Theorem 10. The running time of Algorithm 3.4 is O(n2).

Lemma 11. |C| = |S′A| ≤ |Sopt|.
Theorem 12. |SA ∪ S′A| ≤ 3|Sopt|.
Proof. By Lemma 9 and Lemma 11, |SA ∪ S′A| ≤ |SA|+ |S′A| ≤ 2|Sopt|+ |Sopt| ≤ 3|Sopt|.

Therefore, Algorithm 3.4 is a 3-approximation algorithm for solving the problem of guarding
orthogonal polygons that are weakly visible from an edge with minimum number of vertex
guards.

3.4 An Inapproximability Result

As mentioned in Section 2.2 already, Eidenbenz, Stamm and Widmayer [11, 12] proved that,
for polygons with holes, there cannot exist a polynomial time algorithm for the art gallery
problem with an approximation ratio better than ((1 − ε)/12) lnn for any ε > 0, unless NP ⊆
TIME(nO(log logn)). Using a modification of the same technique, and taking into consideration
a very recent result by Dinur and Steurer [9] that allows us to show that approximating Set
Cover to within a factor of (1 − ε) lnn is NP-hard for every ε > 0 (thus strengthening Feige’s
quasi-NP-hardness [13]), we obtained the following theorem.

Theorem 13. For weak visibility polygons with holes, there cannot exist a polynomial time
algorithm for the Vertex Guard problem with an approximation ratio better than ((1−ε)/12) lnn
for every ε > 0, unless NP = P.
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3.5 NP-Hardness for Point Guarding Polygons Weakly Visible from an Edge

We prove that the Point Guard problem in polygons weakly visible from an edge is NP-hard
by showing a reduction from the decision version of the minimum line cover problem (MLCP),
which is defined as follows. Let L = {l1, . . . , ln} be a set of n lines in the plane. Find a set P
of points, such that for each line l ∈ L there is a point in P that lies on l, and P is as small as
possible. Let DLCP denote the corresponding decision problem, that is, given L and an integer
k > 0, decide whether there exists a line cover of size k. DLCP is known to be NP-hard [25].
Moreover, MLCP was shown to be APX-hard [4, 23].

u v
Figure 9: NP-hardness reduction from DLCP for point guarding polygons weakly visible from
an edge

The reduction (see Figure 9) has the following steps. First, an axis-parallel rectangle R is
drawn on the plane such that it contains all points of pairwise intersection of lines in L. For
each line l ∈ L, consider the closed segment l′ that lies within this rectangle. Then, for each
such segment l′, the end-point with the higher y co-ordinate is extended beyond the boundaries
of R and a very narrow spike is added to the boundary of R at this point. Note that, under
this construction, the lower horizontal edge uv of R does not have any spikes added to it. In
fact, the bounding rectangle along with the added spikes gives a polygon P which is weakly
visible from the edge uv. Let the tip of each spike be henceforth referred to as a distinguished
point. By making the spikes narrow enough, if it is ensured that the visibility polygons of no
three distinguished points intersect, then the weak visibility polygon P can be guarded using
k point guards if and only if the set of lines L has a cover of size k. One obvious way to
achieve this correspondence is to restrict the placement of potential point guards to only the
points of pairwise intersection of lines in L. However, observe that instead of being placed
exactly at the point of intersection of two lines li, lj ∈ L, a point guard can be placed (without
losing any visibility) at any point within the intersection region of the visibility polygons of the
distinguished points corresponding to the spikes generated by extending l′i and l′j .

Theorem 14. The Point Guard problem is NP-hard for polygons weakly visible from an edge.
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4 Roadmap for Future Work

Our current focus is on designing a constant factor approximation algorithm for vertex guard-
ing all simple polygons. If we succeed in our endeavour, then we will end up proving that the
decades-old conjecture of Ghosh is in fact true. Through the amalgamation of several new ideas
over the recent past, we have already designed a new algorithm for vertex guarding polygons,
which we strongly believe to be having a constant approximation factor. However, we are yet
to prove it conclusively, and working out the proof is our primary goal at this point.

Once we manage to obtain the proof for the approximation ratio of our algorithm, we plan
to implement it using the CGAL [30] library in C++, and then perform extensive benchmark
testing using our implementation. This should help us accumulate practical evidence regarding
how closely it approximates the minimum number of vertex guards required to guard a simple
polygon. In fact, the theoretically established bound may not be too tight, and we are hopeful
that running our implementation against known benchmarks will demonstrate that our algo-
rithm actually approximates the optimal guard sets much more closely in practice than what
is suggested by the theoretically proven approximation ratio. In order to compute the exact
optimal (or at least a lower bound on its value), so that we can then compare it with the solution
computed by our algorithm, we intend to use ideas similar to the practical iterative algorithm
by Couto et al. [7] for obtaining exact solutions to the vertex guard problem.

We also plan to investigate the problem of vertex guarding in a setting where the guards
are allowed to see points within the polygon directly as well as via a single diffuse reflection
along one of the edges, which act as mirrors [2]. Moreover, we feel it may be interesting to
explore natural variations of the problem where certain restrictions are imposed on the guard
sets themselves. For example, a guard set may be considered to be valid only when it is say
a hidden set, or perhaps a clique in the visibility graph of the polygon. In all these parallel
threads of exploration, our objective would be to come up with an approximation algorithm with
a reasonable approximation ratio, and to show the optimality of our algorithm by establishing
corresponding inapproximability bounds.
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