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Abstract

In computational complexity theory, H̊astad’s switching lemma is a vital analytical tool

for proving lower bounds on the size of constant-depth Boolean circuits. Using the

switching lemma, H̊astad showed in 1986 that Boolean circuits of depth k, in which only

AND, OR, and NOT gates are allowed, require size exp
(

Ω
(
n

1
k−1

))
for computing the

PARITY function on n variables. In essence, the switching lemma says that, given an

arbitrary formula in disjunctive normal form, if we set some fraction of the variables

randomly, then with high probability, the restricted function can be computed by a de-

cision tree of small depth.

In 2012, Impagliazzo, Matthews and Paturi formulated an extended switching lemma

which says that, given a sequence of formulas in conjunctive and/or disjunctive normal

form on the same set of variables, if all of them are hit by the same random restric-

tion, then it is exponentially unlikely that there is a large subset of formulas where each

formula contributes a large number of variables to their joint decision tree. In the first

chapter of this thesis, we begin by discussing H̊astad’s switching lemma, and how it is

useful in proving that PARITY does not belong to AC0. We then move on to discussing

the extended switching lemma and its proof.

In the second chapter, we critique the neuroidal model for cognition proposed by Valiant.

We start off by discussing the motivation behind Valiant’s work. We then explore the

physiology of the brain and some insights from cognitive psychology that aided Valiant’s

formulation of the neuroidal model. Next, we describe the actual model in extensive

detail and present the algorithm put forward by Valiant for implementing unsupervised

memorization within his model as a case study. Finally, we conclude by discussing the

relevance of the neuroidal model to the current attempts by researchers to build cognitive

computing systems.



Contributions

The main contributions of this thesis are as follows:

1. In section 1.4.3, we break down the proof of H̊astad’s switching lemma due to

Razborov and present it in a manner that we hope will aid comprehension, without

sacrificing mathematical rigour. We provide the big picture first, by stating the

general strategy used, and then zoom in to explicitly describe the encoding and

decoding procedures that lie at the heart of the proof.

2. In section 1.5.3, we devise an illustrative example to help the reader understand

better the encoding and decoding algorithms appearing in the proof of the extended

switching lemma introduced by Impagliazzo, Matthews and Paturi[20]. We do so

in the hope of making the original proof much more accessible to a reader not

having expertise in the field.

3. Chapter 2 is concerned with the neuroidal model proposed by Valiant in his book

“Circuits of the Mind”. In section 2.1.8, we devise a use-case to illustrate how a

simple strategy suggested by Valiant captures the cognitive ability of learning to

recognize newly encountered items. We revisit this strategy in section 2.4.6 and

provide the more formal algorithmic description given by Valiant.

4. In section 2.4.8, we collect and present the discussions by Valiant regarding the

flexibility and redundancy inherent to the neuroidal model, which provide evidence

of its considerable robustness.

5. In section 2.5, we pinpoint the characteristics of the knowledge representation

scheme used by Valiant and discuss the assumptions that he makes regarding the

topology of the underlying network in his model.

6. In section 2.6, we present the algorithmic realization of unsupervised memorization

as a case study, in the hope that it will be instructive in building intuition and

conveying the essence of similar algorithms implementing various other cognitive

tasks within the model.

7. In section 2.7, we explore the relevance of Valiant’s model to the development of

computing architectures that emulate the brain.

iii
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Chapter 1

Switching in Boolean Circuits

1.1 Introduction

In theoretical computer science, circuit complexity is a branch of computational com-

plexity theory in which Boolean functions are classified according to the size or depth

of Boolean circuits that compute them.

Circuit complexity goes as far back as 1949, when Claude Shannon proved that almost

all Boolean functions on n variables require circuits of size Θ(2n/n). Despite this fact,

complexity theorists have not been able to prove satisfactory circuit lower bounds for

specific Boolean functions. On the other hand, superpolynomial lower bounds have been

proved, although under certain restrictions, on the family of circuits used.

The first function for which superpolynomial circuit lower bounds were shown was the

PARITY function, which computes the sum of its input bits modulo 2. In 1984, Furst,

Saxe and Sipser first proved the fact that PARITY is not contained in AC0. Later

improvements by H̊astad (1986) in fact established that any family of constant-depth

circuits computing the PARITY function requires exponential size. It was in order to

establish this fact that H̊astad formulated his famous switching lemma.

Recently, in 2012, Impagliazzo, Matthews and Paturi formulated exponential time algo-

rithms with improved savings for AC0 circuit satisfiability and for counting solutions.

In addition, they also provided an improved bound on the correlation of AC0 circuits

with PARITY. As an important component of their analysis, they extended H̊astad’s

switching lemma to handle multiple k-CNFs and k-DNFs.

1
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1.2 Boolean Functions and Boolean Circuits

1.2.1 Boolean Functions and their Families

Definition 1.1. A Boolean function is a function of the form f : {0, 1}n → {0, 1}, where

n is a non-negative integer called the arity of the function.

There are 22n n-ary Boolean functions for every n. Every n-ary Boolean function can be

expressed as a propositional formula in n variables x1,x2,...,xn. Any two propositional

formulas are logically equivalent if and only if they express the same Boolean function.

Alternatively, any Boolean function can be represented as a multivariate polynomial over

the finite field F2, a binary decision diagram (BDD), a negation normal form (NNF), or

a propositional directed acyclic graph (PDAG).

Typically, in circuit complexity, we speak of not just Boolean functions, but rather

families that consist of Boolean functions for each different input length. Examples

include families like PARITYn, ORn and ANDn, where the superscript n refers to the

arity of the function.

1.2.2 Conjunctive and Disjunctive Normal Forms

Definition 1.2. A conjunctive normal form (CNF) is an AND (conjunction) of clauses,

where each clause is an OR (disjunction) of literals.

Eg. - (x1 ∨ x3 ∨ ¬x6) ∧ (x2 ∨ ¬x7) ∧ (¬x4 ∨ x5 ∨ x6)

Definition 1.3. A disjunctive normal form (DNF) is an OR (disjunction) of terms,

where each term is an AND (conjunction) of literals.

Eg. - (x1 ∧ x2 ∧ ¬x4) ∨ (x3 ∧ ∨¬x6) ∨ (¬x1 ∧ x5 ∧ x6)

A DNF (or CNF) is a syntactic object, but we also think of it as computing a function

f : {0, 1}n → {0, 1} in the obvious way. The size of a DNF (or CNF) is the number of

terms (or clauses) it has, while the width of a DNF (or CNF) is the maximum number

of literals in a term (or clause).

1.2.3 Boolean Circuits and Computation

Definition 1.4. A Boolean circuit C over a collection of Boolean functions Ψ is a

directed acyclic graph with the following properties:
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(i) There is a set of special nodes with in-degree 0, called the input nodes.

(ii) There is a special node with out-degree 0, called the output node.

(iii) Every non-input node v is labelled by a function fv ∈ Ψ.

A Boolean circuit C computes a Boolean function f as follows –

Consider any non-input node v in the circuit C, and let the directed edges (u1, v),(u2, v),

. . . ,(ur, v) form the set of all incoming edges to v. Then, the vertex v computes the

function Cv, defined recursively as:

Cv(x) = fv(Cu1(x), Cu2(x), . . . , Cur(x))

Moreover, for each input node u in C, we have Cu(x) = xi, where xi is one of the bits

in the input x to the function f .

Let z denote the output node of a circuit C. Then, C is said to compute the n-ary

Boolean function f iff:

∀x ∈ {0, 1}n : Cz(x) = f(x)

Figure 1.1 below shows a Boolean circuit computing the XOR function on two input

variables x1 and x2.

x1 x2

Figure 1.1: Boolean circuit computing x1
⊕
x2

1.2.4 Uniformity

Boolean circuits are a prime example of so-called non-uniform models of computation in

the sense that inputs of different lengths are processed by different circuits, in contrast

with uniform models such as Turing machines where the same computational device

is used for all possible input lengths. An individual computational problem is thus

associated with a particular family of Boolean circuits C1, C2, . . . , where each Cn is the

circuit handling inputs having n bits. A uniformity condition is often imposed on these

families, requiring the existence of some resource-bounded Turing machine which, on

input n, produces a description of the individual circuit Cn.
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Definition 1.5. A family of Boolean circuits {Cn : n ∈ N} is said to be polynomial-time

uniform if there exists a deterministic Turing machine M , such that:

• M runs in polynomial time

• ∀n ∈ N, M outputs a description of Cn on input 1n

Definition 1.6. A family of Boolean circuits {Cn : n ∈ N} is said to be logspace uniform

if there exists a deterministic Turing machine M , such that:

• M runs in logarithmic space

• ∀n ∈ N, M outputs a description of Cn on input 1n

1.2.5 Complexity Measures for Boolean Circuits

We define two complexity measures for Boolean circuits as follows-

Definition 1.7. The size of a circuit C, denoted by SIZE(C), is the number of non-

input nodes in C.

Definition 1.8. The depth of a circuit C, denoted by DEPTH(C), is the length of the

longest path from any input node to the output node in C.

We say that a circuit C computes an n-ary Boolean function f efficiently if SIZE(C) =

O(nk), for some constant k. We say that the circuit C exhibits a high degree of paral-

lelism if DEPTH(C) = (log n)O(1).

1.2.6 Complexity Classes for Boolean Circuits

Definition 1.9. NCi is the class of decision problems decidable by uniform boolean cir-

cuits with a polynomial number of gates having at most two inputs and depth O(logi n),

or the class of decision problems solvable in time O(logi n) on a parallel computer with

a polynomial number of processors.

Definition 1.10. The total hierarchy of NC classes is defined as:

NC =
⋃
i≥0

NCi

Clearly, we have NC1 ⊆ NC2 ⊆ · · · ⊆ NCi ⊆ · · · ⊆ NC.
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Definition 1.11. For each i, the complexity class ACi consists of the languages recog-

nized by Boolean circuits with depth O(logi n) and a polynomial number of AND and

OR gates with unlimited fan-in.

Definition 1.12. The total hierarchy of AC classes is defined as:

AC =
⋃
i≥0

ACi

The AC classes are related to the NC classes as follows:

∀i ∈ N : NCi ⊆ ACi ⊆ NCi+1

As an immediate consequence of this, we have that NC = AC. Moreover, it is known

that both inclusions are strict for i = 0.

1.2.7 Random Restrictions

Definition 1.13. For some Boolean function f over n variables x1, x2, . . . , xn, a restric-

tion (or partial assignment) α is defined to be the fixing of some of the n variables to 0

or 1, while leaving the remaining variables free. More formally, a restriction is a function

ρ : {x1, x2, . . . , xn} → {0, 1, ∗}.

Usually, we say that the free variables have been set to ‘star’(∗).The set of variables

which a restriction α leaves free is usually denoted by stars(α). We also denote by f |α
the restricted function from {0, 1}|stars(α)| → {0, 1}. We write Rs to represent the set

of all restrictions α with exactly s stars. Since the construction of any unique restriction

α ∈ Rs involves choosing the variables to be included in stars(α) and also setting each

of the other (n− s) variables to either 0 or 1, we have |Rs| =
(
n
s

)
2n−s.

Definition 1.14. A random restriction with s stars is defined to be any restriction α

chosen uniformly at random from Rs. Equivalently, a random restriction can be said to

be any restriction α ∈ Rs, where the set stars(α) is chosen uniformly at random from

the
(
n
s

)
possibilities, and the unstarred variables [n]\stars(α) are also fixed uniformly at

random from the 2n−s possibilities.

The switching lemma is primarily concerned with how applying a random restriction

simplifies a DNF f .
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1.3 Decision Trees and their Construction

1.3.1 Decision Trees as a Model of Computation

Definition 1.15. A decision tree is a rooted binary tree with each internal node labelled

with a variable and each of its leaves labelled with an element from the set {0, 1}n.

Figure 1.2: Decision tree computing f(x1, x2, x3) = (x1 ∨ ¬x2 ∧ x3)

A decision tree can be seen as a model of computation. In particular, a decision tree

which has each of its leaves labelled by a single bit can compute a Boolean function

f : {0, 1}n → {0, 1} in the following manner –

• On any input x ∈ {0, 1}n, start with the root node v.

• Query the variable representing v, say xi, to check whether it is 0 or 1.

• If it is 0, then go to its left child.

• Otherwise, if it is 1, then go to its right child.

• Repeatedly query variables in this manner until a leaf node is reached.

• Then, the label on the leaf gives us the value of f(x).

In general, a decision tree can also simultaneously compute several Boolean functions

on the same set of variables. In that case, its leaves are labelled by as many bits as the

number of functions it computes. In section 1.3.5, we will be seeing examples of such

decision trees.
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1.3.2 Complexity Measures for Decision Trees

Just as with circuits, we typically define two measures for describing the complexity of

a decision tree as follows –

Definition 1.16. The size of a decision tree D, usually denoted by SIZE(D), is defined

to be the total number of nodes (or variables) present in the tree.

Definition 1.17. The depth of a decision tree D, usually denoted by DEPTH(D), is

defined to be the length of the longest path (in terms of the number of nodes/variables

present on the path) from its root to a leaf.

Given a Boolean function f , we write DTdepth(f) to denote the least depth of a decision

tree that computes f .

Definition 1.18. A function f that requires every decision tree computing it to have

depth n is called an evasive function. Eg. - AND, OR, PARITY etc

1.3.3 Depth of Decision Trees Computing PARITYn

Definition 1.19. PARITYn is defined to be an n-ary Boolean function f : {0, 1}n →
{0, 1} such that:

∀x ∈ {0, 1}n : f(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn

PARITYn depends only on the number of 1s in the input, and is therefore a symmetric

Boolean function. Not only is PARITYn an evasive function, we can actually prove

something stronger about decision trees computing PARITYn.

Lemma 1.20. In a decision tree computing PARITYn, every path from the root to a

leaf must have length n.

Proof. Suppose, in a decision tree D computing PARITYn, there exists a path P from

the root to a leaf having length less than n. This implies that there exists a variable

xi not being queried at any point in the path P . Now, let us consider a pair of inputs

y, z ∈ {0, 1}n such that they differ only in the bit xi and all the variables appearing in

the path P are set according to the path P . Therefore, both the inputs y and z will be

evaluated along the same path P , and hence the decision tree D will output the same

value for both. However, from the definition of PARITYn, we know that PARITYn(y)

and PARITYn(z) cannot have the same value, since the number of 1s in the inputs y

and z differ by exactly 1. Thus, the decision tree D can not be correctly computing

PARITYn, which contradicts our assumption. Hence proved.
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1.3.4 Canonical Decision Trees for a DNF

Note that, once a decision tree for a function f is presented to us, one can construct a

DNF corresponding to the function by looking at all the paths that end in a leaf with

label 1, writing down each of these paths as conjunctions of literals to form clauses, and

then taking an OR of all the clauses to obtain a DNF. Since there is a unique path

between any two vertices in a tree, and in particular between the root and any leaf, the

resultant formula will be unique. A unique CNF can also be obtained in a similar way.

However, given a DNF corresponding to a function f , it may not be possible to obtain

a unique decision tree. For example, we can have two different decision trees computing

the DNF (x1∧x2)∨ (¬x1∧x2), one with x1 appearing as the root and the other with x2

appearing as the root. Hence, it becomes convenient to define a canonical representation

of decision trees computing f . The idea is to fix an ordering on the clauses as well as

an ordering on the variables, which in turn enables us to induce a fixed ordering on the

literals appearing in each clause. This forms a total order which enforces the uniqueness

of the canonical representation.

The canonical decision tree of a boolean function f : {0, 1}n → {0, 1} can be constructed

recursively as follows –

• Let c1 ∨ c2 ∨ · · · ∨ cm be the DNF representation of a function f , having width r.

• Let ci = xi1 ∧ xi2 ∧ · · · ∧ xik be the first non-trivial clause, where k ≤ r.

• Let us assume that the canonical ordering induces the ordering i1 < i2 < · · · < ik

on the literals in the clause ci.

• Construct a full binary decision tree with all nodes at level j getting the label xij ,

for 1 ≤ j ≤ k.

• Note that, exactly one assignment to xi1 , xi2 , . . . , xik would have caused ci to

evaluate to 1. In that case, simply attach a leaf with label 1 at the end of the path

corresponding to this particular assignment.

• For all other assignments ρ to xi1 , xi2 , . . . , xik , we recursively construct the joint

decision tree of the restricted function f |ρ and attach it to the end of the path

corresponding to the assignment ρ.

• Finally, if the restricted function f |ρ has become a constant, then just attach the

appropriate leaf node to the end of the path corresponding to the assignment ρ.

Since each clause can have at most r literals, and since there are m clauses, the depth

of the canonical decision tree can be at most rm.
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Figure 1.3: Construction of a canonical decision tree for a DNF

1.3.5 Canonical Decision Trees for a Sequence of CNFs or DNFs

We can also construct the canonical decision tree for a sequence of CNFs and/or DNFs

Φ = (φ1, φ2, . . . , φl) recursively as follows –

• First construct the canonical decision tree D1 for φ1.

• Along each path in D1, restrict φ2, . . . , φl by the assignment ρ that corresponds to

the path and recurse.

• Finally, label the leaves of the resulting tree with the l-tuples of leaf labels from

the original trees.
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11

1
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0, 10, 0

10

0, 1

1

1, 1

1

0, 10, 0

10

x5

0

0 0

0 0

1

11

Figure 1.4: Canonical decision tree on a sequence of CNFs
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Figure 1.4 shows the canonical decision tree for the sequence of CNFs Φ = (φ1, φ2),

where φ1 = (x1 ∨¬x2 ∨ x3)∧ (x2 ∨ x4) and φ2 = (x4 ∨ x5), with the variables queried in

order of their indices. When we construct the canonical decision tree for a CNF/DNF

φ, we group variables by the clause we are at when we query them, and say the clause

contributes the corresponding set to the path. Similarly, for any subcircuit ψ of φ, we

regard the set of nodes contributed by all the occurrences of variables in ψ as the set of

nodes contributed by ψ.

1.4 H̊astad’s switching lemma

1.4.1 Background

The fact that PARITY /∈ AC0 was first established by Furst, Saxe and Sipser[12] (and

independently by Ajtai[1] in a different guise) when they proved an exponential lower

bound on the size of depth-d circuits for PARITY. For the simple case of depth-2 circuits

for PARITY, it is quite straightforward to verify this lower bound.

Claim 1.21. If a CNF (or a DNF) computes PARITYn, then:

i) Each term in the CNF (or DNF) includes all n variables.

ii) There are at least 2n−1 terms in the CNF (or DNF).

Proof. Let C be some CNF circuit computing PARITY on n variables x1, x2, . . . , xn.

Suppose, by way of contradiction, that C has some term T which does not depend on

some variable xi. Then, when all the inputs to T are 0, the OR gate representing T

outputs 0, and so the single AND gate on the next level also outputs 0, which becomes

the output of the whole circuit. Now, if we flip the value of xi, the output of T still

remains 0, and thus the output of C does not change. But since we’ve flipped only one

variable, the PARITY has to flip. However, this leads to a clear contradiction since

we’ve assumed that C computes PARITY. Hence, we have proved that every term must

depend on all variables.

To compute PARITY, C must output 0 on 2n−1 different settings of the input variables.

However, C can output 0 only when one of the OR gates outputs 0. But then, each OR

gate, since it depends on all variables, can output 0 on exactly one unique setting of the

input variables. Hence, there has to be at least 2n−1 terms in C.

However, for circuits computing PARITY having depth 3 and above, the analytical tool

that needs to be invoked is H̊astad’s switching lemma.
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1.4.2 Statement

The switching lemma tells us that, on applying a random restriction to a CNF/DNF,

we end up with a Boolean function that depends only on few variables, i.e. it can be

computed by a decision tree of some small depth d. This allows us to write the restricted

function as a small formula in disjunctive normal form. A formula in conjunctive normal

form hit by a random restriction of the variables can therefore be ‘switched’ to a small

formula in disjunctive normal form. The formal statement of H̊astad’s switching lemma

is as follows –

Theorem 1.22 (H̊astad’s Switching Lemma). Let f be a DNF (or CNF) of width at

most w over n variables. Let α be a random restriction with s = pn stars, where p ≤ 1
5 .

Then, for each d ≥ 0 (and d ≤ s), we have:

Pr[DTdepth(f |α) > d] ≤ (10pw)d

1.4.3 Proof

The original proof of H̊astad’s switching lemma (1986)[15] involves an argument with

conditional probabilities. It uses the probabilistic method to argue that the probability

that a restriction from the family fails to have the desired properties is strictly less than

1. In the argument one considers, for example, an OR of small ANDs (DNF formula

with short terms) and considers each term in turn. The basic idea is that a term that is

falsified by a restriction does not contribute any variables to the AND of small ORs and

for each term that is not falsified it is more likely that the term is satisfied (and thus the

whole formula is fixed to a constant) than that any variable is contributed in the AND

of small ORs. One complication in H̊astad’s argument is that one must deal with the

bias induced on the probability space by the observations of terms that are falsified by

the restriction. To handle this in as simple a manner as possible, H̊astad in fact proves

the switching lemma conditioned on the event that some arbitrary function’s value is

fixed to 0. He then argues that such conditioning can only bias the outcome in his

favour. For the fully independent restrictions that H̊astad first considers this argument

is fairly easy. However, with increased complexity of the families of restrictions, such

arguments become increasingly non-trivial. Furthermore, because the argument is recur-

sive in nature, in some cases there are other conditionings that complicate things further.

Simpler and more elegant proofs have subsequently been given by Razborov (1993)[32]

and Beame (1994)[4]. The proof due to Razborov uses an unusual combinatorial strategy.

The full argument of that proof is presented here.
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Proof of Theorem 1.22. Let us say a restriction β is bad if DTdepth(f |β) > d, and let B
be the set of all bad restrictions. Then, our goal reduces to showing that:

|B|
|Rs|

≤ (10pw)d

In order to do this, we will define an encoding Enc(β) of each bad restriction β. This

encoding will consist of a restriction B1 which is basically an extension of β with exactly

d more variables fixed, plus a few extra bits of auxillary information. We will then go

on to show a ‘decoding’ procedure which recovers β from Enc(β). This implies that the

encoding maps each bad restriction β ∈ B to something unique, which means that we

have an injective mapping B ↪→ Rs−d × A, where A is a small auxillary set. Thus, we

conclude that |B| ≤ |Rs−d| × |A|. Hence, an upper bound on the size of the auxillary

set A will enable us to prove the required probability bound.

Recall that we have a DNF f of width at most w over n variables with an ordered set of

terms T1, T2, T3, . . . , along with some bad restriction β ∈ B. Since β is a bad restriction,

it does not fix any terms Ti to 1, since that would make the f |β constantly 1, which

would imply that DTdepth(f |β) = 0. However, β will probably ‘kill’ many terms, ie. fix

them to 0. This is because β has to fix just one literal to 0 in order to kill the whole

term. Also, in case β does not kill the term Ti, it leaves a non-trivial term Ti|β over the

variables set to ∗. Thus, when we apply β to f , we know that it kills most terms, fixes

no terms to 1, and restricts the terms that it keeps alive to fewer variables. Usually, we

denote by Ti1 the first term in the ordering T1, T2, T3, . . . which β does not kill. Also, we

write U1 = Ti1 |β for the restricted version of that term, which is basically a conjunction

on literals set to ∗.

We will construct a canonical decision tree for f |β, denoted by C(f |β), as follows –

• Consider the first term Ti1 in order which is not killed by β. Say it reduces to

the term U1 on d1 variables. Construct a complete depth-d1 decision tree over the

variables in U1 by querying them in order of their indices.

• Note that there will be exactly one path, which we will denote by σ1, which forces

Ti1 |β to 1. Put a leaf with label 1 at the end of this path.

• For all the other paths ρ, recursively construct the canonical decision tree C(f |βρ)
and attach it at the end of the path. If f |βρ is constant, simply attach a leaf with

that constant as the label.

Now, β being a bad restriction implies that DTdepth(f |β) > d. In particular, the depth

of the canonical decision tree C(f |β) exceeds d. Therefore, we may define π′ to be the
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lexicographically leftmost path of depth exceeding d in C(f |β), and π to be the trimmed

version of the path π′ which fixes exactly d variables. So, we have βπ ∈ Rs−d. Moreover,

the restriction βπ is such that f |βπ is not a constant function.

Next, we will define the encoding of β as follows-

• Let Ti1 be the first term in order which is not killed by β, and let U1 = Ti1 |β be

its restriction under β. Let the number of variables in U1 be d1. Now, let σ1 be

the assignment of the variables in U1 which sets U1 to 1.

• Let π1 be the part of the path π which sets these variables.

• Note that, if π1 is not all of π, then βπ1 must kill U1. In that case, let Ti2 be the

first term in order which is not killed by βπ1, and let U2 = Ti1 |βπ1 be its restriction

under βπ1. Let the number of variables in U2 be d2. Now, let σ2 be the assignment

of the variables in U2 which sets U2 to 1, and π2 be the part of the path π which

sets these variables.

• Continue in this manner until eventually πl finishes all of π. At this point, truncate

σl to set just the variables that πl sets.

• Our encoding of β will be given by:

Enc(β) = βσ1σ2 . . . σl + (some auxillary bits)

Note that the restriction B1 = βσ1σ2 . . . σl has s − (d1 + d2 + · · · + dl) = s − d
variables set to ∗. Thus, B1 ∈ Rs−d.

Figure 1.5: Encoding of a bad restriction β (taken from Beame[4])
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Finally, we will specify the auxillary information that we need to decode B1 back to

β. We already know that Ti1 is the first term in f which βσ1 sets to 1. So, the first

term in f which is fixed to 1 by B1 must also be Ti1 . Now, we can add d1 logw bits of

auxillary information to specify which variables in Ti1 are the ones which σ1 fixes, and

an additional d1 auxillary bits to specify how π1 sets these variables. Actually, since the

decoder does not know the value of d1, we need to use an additional sentinel symbol so

that it can parse the input string correctly, which means that the total number of bits

we need to use is (d1dlog(w + 1)e + d1) ≤ (d1 logw + 2d1). Thus, by adding at most

d1 logw+2d1 auxillary information bits, the decoder can determine Ti1 , σ1 and π1. Now,

once the decoder knows σ1 and π1, it can consider the restriction B2 = βπ1σ2 . . . σl. By

construction, Ti2 is the first term in f which βπ1σ2 sets to 1. So, the first term in f

which is fixed to 1 by B2 must also be Ti2 .Again, by adding at most d2 logw + 2d2

auxillary information bits, the decoder can determine Ti2 , σ2 and π2. The decoder can

keep on proceeding in this manner until it has Bl = βπ1π2 . . . πl−1σl. The only difference

now is that we might be looking for a first term which is still undetermined on applying

the restriction Bl rather than the first term which is fixed to 1. Irrespective of that,

by adding at most dl logw + 2dl auxillary information bits, the decoder can determine

σl and πl. So, at this point, the decoder has completely determined the σ1σ2 . . . σl part

of the encoded restriction Enc(β). Moreover, the decoder knows that this part fixes

exactly d variables, and so it can figure out that its done. Thus, we conclude that, by

using at most (d1 logw + 2d1) + (d2 logw + 2d2) + · · · + (dl logw + 2dl) = d logw + 2d

bits of auxillary information, a decoder can uniquely recover β from B1 = βσ1σ2 . . . σl.

In effect, we have shown the existence of an injective mapping from the set B of bad

restrictions into the set Rs−d × {0, 1}d logw+2d. This enables us to conclude that:

Pr
α∈Rs

[α is a bad restriction] ≤ |Rs−d × {0, 1}
d logw+2d|

|Rs|

=

(
n
s−d
)
2n−(s−d)(4w)d(
n
s

)
2n−s

=
s(s− 1)(s− 2) . . . (s− d+ 1)

(n− s+ d)(n− s+ d− 1) . . . (n− s+ 1)
(8w)d

≤
(

s

n− s+ d

)d
(8w)d

≤
(

p

1− p

)d
(8w)d

≤ (10pw)d since p ≤ 1
5

Hence proved.
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1.4.4 H̊astad’s switching lemma ⇒ PARITY /∈ AC0

The smallest AC class AC0 consists of constant-depth circuits having a polynomial

number of AND and OR gates with unlimited fan-in. Invoking H̊astad’s switching

lemma enables us to prove that PARITY /∈ AC0. More specifically, we get –

Theorem 1.23. If a circuit C of size S with unbounded fan-in and constant depth k is

computing PARITYn, then:

S ≥ 2
Ω

(
n

1
k−1

)

Proof of Theorem 1.23. Let C be an AC0 circuit of size S and depth k computing the

boolean function f : {0, 1}n → {0, 1}. It can be shown that C can be converted into

a leveled depth-k circuit, where the levels alternate AND and OR gates, the input

wires are the 2n literals, and each gate has fan-out 1, by increasing the size to at most

(2kS)2 ≤ O(S4). Since this increase in size changes only the constant hidden in the

Ω-notation in the original statement, we can assume without loss of generality that the

circuit is of this form. We can also assume without loss of generality that the bottom

layer of C is made up of AND gates.

Let us first hit the circuit with a random restriction α0, which sets 1/100 fraction of the

variables to ∗. Suppose we have an AND gate in the bottom layer with fan-in exceeding

w = 20 logS. A Chernoff-type bound shows that, except with probability exponentially

small in w (and hence � S), the gate gets at least 3
4w non-∗variables. Now, each such

variable can immediately kill this AND gate with a probability of 1
2 . Thus, we conclude

that, except with probability exponentially small in w (and hence � S), the gate gets

killed immediately. Finally, a union bound over all gates in the bottom layer enables us

to conclude that there is a high probability that this initial restriction α0 kills all gates

having fan-in exceeding w. Thus, without loss of generality, we can assume that every

gate at the bottom level of the circuit has fan-in at most w = 20 logS.

Under the current set of assumptions, the bottom two layers of C consist of DNFs of

width at most w = 20 logS. So, if we apply a random restriction α1 with ∗-fraction

p = 1/(20w) to the circuit C. Then, for each such DNF f , the switching lemma tells us

that:

Pr
α1

[DTdepth(f |α1) > w] ≤ (10pw)w =

(
1

2

)w
=

(
1

2

)20 logS

� 1

S

So, by a union bound over at most S such DNFs, we get:

Pr
α1

[∃f : DTdepth(f |α1) > w]� 1⇒ Pr
α1

[∀f : DTdepth(f |α1) < w]� 0
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Figure 1.6: Collapsing the bottom layers of an AC0 circuit by application of H̊astad’s
switching lemma

Thus, we see that there exists a good restriction α1 with ∗-fraction p = 1/(20w) whose

application simplifies every DNF present in the bottom two layers of the circuit C to

functions representable by a depth-w decision tree. But we know that such functions

are also representable by a CNF of width w. So, if we fix such a good restriction α1 and

plug in these CNFs to the circuit, then we can collapse layers 2 and 3 from the bottom

(as shown in Figure 1.6) to get a new circuit of depth k − 1, which has bottom level

fan-in at most w.

Now, we recursively keep applying good restrictions α2, α3, . . . , each with ∗-fraction

p = 1/(20w), and yielding circuits of depth k − 2, k − 3, . . . . After repeating this k − 2

times, we obtain a circuit of depth 2. At this point, the number of variables set to ∗ is

given by:

m = n.pk−2 =
n

(400 logS)k−2

But every restriction of the PARITY function has to be either PARITY or its negation.

Moreover, we know that, to compute PARITY on m variables, we require a DNF of size

2m−1 and also a CNF of size 2m−1. Thus, we must have:

S ≥ 2m−1 ⇒ logS ≥ Ω(m)

⇒ O(logS)k−1 ≥ n

⇒ logS ≥ Ω
(
n

1
k−1

)
⇒ S ≥ 2

Ω

(
n

1
k−1

)

Hence proved.
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1.5 Extended switching lemma

1.5.1 Background

The Circuit Satisfiability problem, deciding whether a Boolean circuit has an assignment

where it evaluates to true, is in many ways the canonical NP-complete problem. It is

not only important from a theoretical point of view, but pragmatically, since search

problems directly reduce to Circuit Satisfiability without increasing the size of the search

space. However, very few results are known either theoretically or empirically about the

difficulty of Circuit Satisfiability.

For an algorithm that decides satisfiability for circuits in a class C, we express its worst-

case running time as |C|2n(1−µ), where C is a circuit with n inputs. We say that µ is

the savings over exhaustive search and write it in terms of n and the parameters of the

class C. The larger µ is, the more non-trivial the algorithm can be considered. Some

typical questions that arise in this regard are as follows –

• When can we exploit the structural properties of a circuit class C to obtain savings

over exhaustive search?

• What are the best savings for various circuit classes?

• How is the expressive power of a circuit class C related to the amount of savings

for its satisfiability problem?

Recently, Impagliazzo, Matthews and Paturi (2012)[20] came up with an improvement

in the savings for the satisfiability algorithm for AC0 circuits of size cn and depth d.

The exact theorem they obtained was the following –

Theorem 1.24. There is a Las Vegas algorithm for deciding the satisfiability of AC0 cir-

cuits with cn gates and depth d whose expected time has savings at least 1
O(log c+d log d)d−1 .

The above algorithm immediately follows from the existence of an algorithm that enu-

merates all satisfying assignments by partitioning the space into sub-cubes where the

circuit is constant.

Theorem 1.25. There exists a Las Vegas algorithm which, on input a size cn and depth

d circuit C in n variables, produces a set of restrictions {ρi}i which partition {0, 1}n

and such that for each i C|ρi is constant. The expected time and number of restrictions

are both poly(n)|C|2n(1−µc,d), where the savings µc,d is at least 1
O(log c+d log d)d−1 .
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As another consequence of the above theorem, they also obtained the following bounds

on correlation between AC0 circuits and the PARITY function.

Theorem 1.26. The correlation of PARITY with any AC0 circuit of size cn and depth

d is at most 2−µc,dn = 2−n/O(log c+d log d)d−1
.

As a key ingredient in their analysis, they extended H̊astad’s switching lemma to handle

multiple k-CNFs and k-DNFs.

1.5.2 Statement

The extended switching lemma introduced by Impagliazzo, Matthews and Paturi[20] is

stated as follows –

Theorem 1.27 (Extended Switching Lemma). Let φ1,...,φm be a sequence of k-CNFs

and/or k-DNFs in the same n variables. For any p ≤ 1
13 , let ρ be a random restriction

which leaves pn variables unset. The probability that the decision tree for (φ1,...,φm)|ρ
has a path of length ≥ t, where each φi contributes at least one node to the path, is at

most (13pk)t.

Note that, for any non-empty subset S of {φ1,...,φm}, the probability that the decision

tree for that subset of k-CNFs or k-DNFs restricted to ρ has a path of length ≥ t where

each φi ∈ S contributes at least one node to the path is also at most (13pk)t. Moreover,

observe that every path P in the decision tree for (φ1,...,φm)|ρ is also a path in the

decision tree for some subset S of {φ1,...,φm} restricted to ρ, where each formula in S

contributes at least one node to P . Now, since the number of non-empty subsets of

{φ1,...,φm} is equal to (2m−1), using a simple union bound immediately leads us to the

following corollary –

Corollary 1.28. Let φ1,...,φm be a sequence of k-CNFs and/or k-DNFs in the same n

variables. For any p ≤ 1
13 , let ρ be a random restriction which leaves pn variables unset.

The probability that the decision tree for (φ1,...,φm)|ρ has a path of length ≥ t is at most

(2m − 1)(13pk)t.

1.5.3 An Illustrative Build-up to the Proof

The proof of the extended switching lemma is quite similar to the proof of Hastad’s

switching lemma presented earlier. The core idea is to encode a ‘bad’ restriction and a

‘bad’ path in the resulting decision tree using a different restriction which sets additional

variables and a few extra bits. The total size needed for this encoding will be much less
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than the size needed to encode the original restriction, and this ratio will give us the

required probability bound. In the rest of this section, we will try to build intuition for

the proof by illustrating how the encoding and decoding algorithms work.

x1

x2

x3x5

x7

x5

x2

x5

0 1

1, 11, 1x7

0, 00, 1

1

11

1

0

0

0

0

x7

0, 1 0, 0

10

1, 1
x5x5

1, 01, 1

10

x7

0, 00, 1

10

0, 1

1

1, 1

1

0, 00, 1

10

x7

0

0 0

0 0

1

11

φ1 = (x1 ∨ ¬x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x5 ∨ ¬x6)
φ2 = (x3 ∨ ¬x4 ∨ x6) ∧ (x5 ∨ ¬x7 ∨ x8)

ρ = (∗, ∗, ∗, 0, ∗, 1, ∗, 0)

Figure 1.7: Canonical decision tree for (φ1, φ2)|ρ

Let Φ = (φ1, φ2) be a sequence of CNFs, where:

φ1 = (x1 ∨ ¬x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x5 ∨ ¬x6)

φ2 = (x3 ∨ ¬x4 ∨ x6) ∧ (x5 ∨ ¬x7 ∨ x8)

Suppose that the restriction ρ = {x4 = 0, x6 = 1, x8 = 0} is applied to Φ. Then, Figure

1.7 shows the canonical decision tree constructed for (φ1, φ2)|ρ by querying the variables

in order of their indices. Now, let us fix the target depth to be 4, and choose the lexi-

cographically leftmost path P = {x1 = 0, x2 = 0, x5 = 0, x7 = 0} of length at least 4 in

this canonical decision tree. Note that both φ1 and φ2 contribute at least one node to P .

LetX1, X2, X3, X4 denote the variables queried along the path P and let ~p = (p1, p2, p3, p4)

denote the values that P assigns to these variables. Now, let C1, C2, C3, C4 and F1, F2, F3, F4

denote the clauses and formulae respectively which contribute X1, X2, X3, X4 to the path

P . Also, let ~index = (index1, index2, index3, index4) denote the indices ofX1, X2, X3, X4

in the corresponding clauses according to the canonical ordering on the variables, and
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let ~last = (last1, last2, last3, last4) be such that, for 1 ≤ i ≤ 4, we have:

lasti =


2 if Xi is the last variable contributed by Fi along P

1 if Xi is the last variable contributed by Ci (but not by Fi) along P

0 otherwise

Moreover, we denote by σi the restriction which sets Xi in such a manner so as not to

satisfy Ci, and sets all other variables to ∗; while we denote by πi the restriction which

sets Xi to pi, and sets all other variables to ∗.
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Figure 1.8: Path P in canonical decision tree for (φ1, φ2)|ρ

Figure 1.8 highlights the path P in the canonical decision tree for (φ1, φ2)|ρ and also

mentions the corresponding restrictions of φ1 and φ2 alongside each node in the path.

By examining Figure 1.8 closely, it becomes quite easy for us to fill in the values of Xi,

pi, Fi, Ci, indexi, lasti and σi in the table shown below –

i X p F C index last σ

1 x1 0 φ1 (x1 ∨ ¬x2 ∨ x3 ∨ x4) 1 0 x1 = 0

2 x2 0 φ1 (x1 ∨ ¬x2 ∨ x3 ∨ x4) 2 1 x2 = 1

3 x5 0 φ1 (x2 ∨ x5 ∨ ¬x6) 2 2 x5 = 0

4 x7 0 φ2 (x5 ∨ ¬x7 ∨ x8) 2 2 x7 = 1

Now, by looking at the table above, we will encode the restriction ρ to:

ρ′ = ρσ1σ2σ3σ4 = {x1 = 0, x2 = 1, x4 = 0, x5 = 0, x6 = 1, x7 = 1, x8 = 0}
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Note that the restriction ρ′ sets all the variables (and in the same way) that ρ sets; but

it also sets 4 extra variables x1, x2, x5, and x7, in the way they were set by σ1, σ2, σ3

and σ4 respectively. Therefore, given ρ′, if we can somehow manage to figure out which

are the extra variables it sets, then we can essentially recover ρ from its encoding ρ′.

An algorithmic procedure for decoding ρ from ρ′ does exist if we provide ~index =

(1, 2, 2, 3), ~last = (0, 1, 2, 2) and ~p = (0, 0, 0, 0) to the decoder as auxillary information.

The algorithm starts off by initializing last0 = 1, F0 = φ1, and ρ0 = ρ′. Then, at every

iteration, the algorithm determines the values of Fi, Ci, Xi, πi and ρi in the following

manner –

• If lasti−1 = 2, then Fi is set to φj+1, where j is the index such that the value of

Fi−1 was φj . Otherwise, if lasti−1 = 1 or lasti−1 = 0, then Fi is set to be equal to

Fi−1.

• If lasti−1 = 0, then Ci is set to be equal to Ci−1. Otherwise, if lasti−1 = 1 or

lasti−1 = 2, then Ci is set to be the first clause in Fi not satisfied by the restriction

ρi−1.

• Once Fi and Ci have been obtained, then Xi is determined by looking at the value

of indexi.

• Finally, the restriction ρi is constructed by setting the value of Xi to pi in the

restriction ρi−1.

For our current example, the values of Fi, Ci, Xi, πi and ρi obtained by the algorithm

in each iteration are presented in the following table –

i last F C index X p ρ

0 1 φ1 - - - - (0, 1, ∗, 0, 0, 1, 1, 0)

1 0 φ1 (x1 ∨ ¬x2 ∨ x3 ∨ x4) 1 x1 0 (0, 1, ∗, 0, 0, 1, 1, 0)

2 1 φ1 (x1 ∨ ¬x2 ∨ x3 ∨ x4) 2 x2 0 (0,0, ∗, 0, 0, 1, 1, 0)

3 2 φ1 (x2 ∨ x5 ∨ ¬x6) 2 x5 0 (0,0, ∗, 0,0, 1, 1, 0)

4 2 φ2 (x5 ∨ ¬x7 ∨ x8) 2 x7 0 (0,0, ∗, 0,0, 1,0, 0)

The above table clearly tells us that the variables x1, x2, x5, and x7 were set by the

path P and not by the original restriction ρ. Hence, by setting these variables to ∗, we

can easily recover the original restriction as:

ρ = {x1 = ∗, x2 = ∗, x3 = ∗, x4 = 0, x5 = ∗, x6 = 1, x7 = ∗, x8 = 0}
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In order to extend the intuitions gleaned from this section into a rigorous proof of the

extended switching lemma, we need to formalize the algorithmic decoding procedure

presented above and calculate the bound on the size of the encoding set so as to obtain

the required probability bound.

1.5.4 Formal Proof of the Extended Switching Lemma

Proof of Theorem 1.27. Let P ′ be a path in the joint decision tree for (φ1,...,φm)|ρ of

length at least t where each φi contributes at least one node to the path. Let P denote

the prefix of P ′ of length exactly t. Let X1, X2, . . . , Xt denote the variables queried along

the path P and let p1, p2, . . . , pt denote the values that P assigns to X1, X2, . . . , Xt.

Let C1, C2, . . . , Ct and F1, F2, . . . , Ft denote the clauses and formulae respectively which

contribute X1, X2, . . . , Xt. Note that some Cis and Fis may refer to the same clauses or

formulae if they contribute more than one variable to P . Now, let index1, index2, . . . , indext

denote the indices ofX1, X2, . . . , Xt respectively in the corresponding clauses C1, C2, . . . , Ct.

Also, for 1 ≤ i ≤ t, let lasti be 2 if Xi is the last variable contributed by Fi along P ; be

1 if xi is the last variable contributed by Ci (but not by Fi) along P ; and be 0 otherwise.

Let σ = σ1σ2 . . . σt, where σi is a restriction where we have:

∀y 6= Xi : σi(y) = ∗ and σi(Xi) =

{
0 if the literal Xi appears in the clause Ci

1 if the literal ¬Xi appears in the clause Ci

Note that σ is constructed to not satisfy the clauses C1, C2, . . . , Ct.

Let πi be the restriction where πi(Xi) = pi and πi(y) = ∗ for all y 6= Xi.

Note that P = π1π2 . . . πt.

Let ρi = ρπ1 . . . πiσi+1 . . . σt for 0 ≤ i ≤ t. Note that ρ0 = ρσ = ρ′ and ρt = ρP .

We map (ρ, P ) to ρ′ = ρσ ∈ Rpn−t, ~index = (index1, index2, . . . , indext) ∈ [k]t, ~last =

(last1, last2, . . . , lastt) ∈ [3]t and ~p = (p1, p2, . . . , pt) ∈ [2]t.

Observe that, when Xi+1 is queried along the path P in the decision tree for (φ1,...,φm)|ρ,
Ci+1 is actually the first clause in Fi+1 not satisfied by the restriction ρπ1 . . . πi, because

otherwise a variable in an earlier clause would have been queried instead. Since setting

more variables in a restriction cannot change a clause from satisfied to not satisfied, all

the clauses in φ upto and including Ci must be satisfied by ρi. Now, let j be the largest

index such that Cj = Ci+1, or equivalently Xj is the last variable from Ci+1 along P .
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By the construction of σi+1, . . . , σj , σi+1 . . . σj does not satisfy Ci+1. Morevoer, due

to the canonical ordering enforced while constructing the decision tree, either we have

j = t or ρπ1 . . . πiσi+1 . . . σj sets all the variables in Ci+1. In either case, no σl for

l > j can satisfy Ci+1, and so we conclude that ρi does not satisfy Ci+1. Hence, we

have proved that, when lasti = 1, then Ci+1 is the first clause in φ not satisfied by

ρi = ρπ1 . . . πiσi+1 . . . σt.

Keeping this in mind, we can now provide an algorithm for decoding (ρ, P ) from ρ′,

~index, ~last and ~p. The algorithm, which recovers ρ by figuring out the variables in ρ′

that were set by σ, is as follows –

Let us call any path in the decision tree for (φ1,...,φm)|ρ a bad path if it has length greater

than t, and each φi contributes at least one node to the path. Also, let B denote the

set of all bad restrictions in Rpn, for which at least one bad path exists in (φ1,...,φm)|ρ.
Then, the fact that we can uniquely decode (ρ, P ) from ρ′, ~index, ~last and ~p for any bad

path P actually proves the existence of an injective mapping from the set (B × P) into

(Rpn−t× [k]t× [3]t× [2]t), where P denotes the set of all bad paths under the restriction

ρ. Therefore, we can immediately conclude that:

|B| × |P| ≤ |Rpn−t × [k]t × [3]t × [2]t|

Since at least one bad path exists in (φ1,...,φm)|ρ if ρ is a bad restriction, therefore the

probability that ρ indeed belongs to the set B of bad restrictions can be bounded as
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follows –

Pr[ρ ∈ B] ≤ |Rpn−t × [k]t × [3]t × [2]t|
|Rpn|

=

(
n

pn−t
)
2n−pn+t(6k)t(
n
pn

)
2n−pn

=
(pn)!(n− pn)!

(pn− t)!(n− pn+ t)!
(12k)t

=

(
pn

n− pn+ t

)(
pn− 1

n− pn+ t− 1

)
. . .

(
pn− t+ 1

n− pn+ 1

)
(12k)t

≤
(

pn

n− pn+ t

)t
(12k)t

≤
(

12pk

1− p

)t
≤ (13pk)t since p ≤ 1

13

Hence, the proof is complete.



Chapter 2

Valiant’s Neuroidal Model

2.1 Introduction and Problem Specification

2.1.1 Motivation

Let us look at an experience which is quite common in our day-to-day lives. Suppose,

while browsing the weekly list of bestsellers in the newspaper, you come across a ti-

tle which presents a rather surprising juxtaposition of words. The first time you come

across this unusual title, the experience presumably causes some adjustments in your

brain, since the presentation of the same sequence of words at a later time usually elicits

some kind of recognition. The phrase that you learnt to recognize may have been any

combination of intelligible words, and your attention may have been drawn to it for only

a very brief period of time. Moreover, your memorization of the new book title does not

appear to interfere in any way with unrelated knowledge you had previously memorized.

Unfortunately, it is still beyond us to provide a satisfactory explanation for an expe-

rience as mundane and commonplace as this. Till date, hardly any theories exist that

can satisfactorily explain how any mechanism that even remotely resembles the brain in

structure and quantitative parameters could give rise to the variety of such basic phe-

nomenon that human brains appear to exhibit. However, by formulating this problem

in a concrete manner, it may be possible to attempt plausible specifications of both the

cognitive functions that are to be explained, as well as of some computational models

that capture the basic capabilities of the human brain. If the suggested candidates for

these cognitive functions and computational models turn out to accurately capture the

essential aspects of all the basic phenomenon displayed by the human brain, then an

algorithmic explanation will exist for how these functions are supported in the brain.

25
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2.1.2 The Computational Approach

The computational approach proposed by Leslie Valiant[41] in order to study this prob-

lem has been described very nicely, by Valiant himself, in terms of the following analogy.

Suppose that, one day, on a distant planet, we find some robots that have some very in-

teresting and complex behaviour that we wish to understand better. We could possibly

take one of the three different approaches mentioned below in order to achieve this –

(1) We study their components and architecture much as a neurobiologist studies the

brain, and construct theories of their general computational capabilities.

(2) We perform experiments on their behaviour like a psychologist might, and construct

theories of that behaviour.

(3) We attempt to figure out how one might build systems that resemble the robots in

behaviour, using components that resemble those that they are built from.

The third approach mentioned is basically the computational approach, in which one

constructs a theory that accommodates both of the above viewpoints simultaneously

and also accounts for the computational resources such as time and hardware. It is

generally more successful at yielding valuable insights, for which pursuing the first two

approaches separately may not be sufficient.

2.1.3 Problem Specification

According to Valiant[41], a computational account of the workings of the brain would

essentially consist of three parts. They are –

(1) A precise specification of the cognitive functions or tasks for which an explanation

is sought. These cognitive functions could include rote learning or memorization,

recall, supervised or unsupervised inductive learning, and any other task that is

regarded as basic to cognition.

(2) A description of the basic model of computation. Such a model would include

definitions of the individual components that correspond to neurons, as well as of

the connections through which they communicate with each other. Also, such a

model would need to incorporate a certain degree of parallelism, and hence differ

from the standard computational architecture of von Neumann, known as the stored

program model.

(3) A specification of the computational mechanisms or algorithms that enable the un-

derlying model to realize the claimed functions or tasks.
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2.1.4 Constraints on the Model

Putting together such a computational account for even the superficially simplest tasks

(such as memorization) becomes problematic as soon as we try to take into consideration

the gross quantitative parameters that the brain is known to have. Valiant realized that,

for any proposed computational model to be considered valid, it has got to respect these

quantitative parameters, and the task is further complicated by the issue of learning.

As Valiant[41] points out, the major constraints encountered are as follows:

(1) The first major constraint is speed. Individual neurons in the cortex have switching

times (time for which a generated action potential lasts) between 1-10 milliseconds.

In contrast, humans can perform significant tasks of scene recognition in 100-200

milliseconds. This implies that in a few hundred steps of relay firings at most the

brain can do tasks that are currently beyond our imagination to even specify.

(2) A second constraint is the finiteness of the number of neurons in the brain. Typically,

the number is around 1010.

(3) The sparseness of the interconnections (∼ 1014) relative to the total number of neu-

rons is another important constraint, since this limits the means by which neurons

can communicate with each other.

The issue of learning further complicates things. Valiant[41] argues that many recogni-

tions tasks, such as identifying a chair, must have a large learning component, since it is

implausible that humans have these capabilities entirely preprogrammed at birth. Thus,

the problem becomes much more challenging than simply trying to explain how such

recognition tasks can be implemented on a fixed number of slow, sparsely connected

neurons. According to him, the correct question that should be asked is: “How can

slow, sparsely connected neurons program themselves to do these tasks using knowledge

derived from interacting with the world?”

2.1.5 Sources of Complexity

Valiant[41] makes us aware of the three distinct sources of computational difficulty that

the mechanisms of the brain have to overcome. These are –

(1) Computational Complexity:

Any computational problem may have substantial intrinsic computational difficulty,
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which means that a minimum amount of resources, such as time or storage space,

will be required for the computation. The resource bounds in the brain, as currently

understood, are seriously limited. A fixed number (∼ 1010) of neurons need to

suffice for a lifetime. Significant recognition tasks can be performed in about 100-

200 milliseconds, which allows for relatively few successive steps of cortical firings,

when we consider the switching times of individual neurons, which vary between 1

to 10 milliseconds. Clearly, any functionalities attributed to the brain have to be

such that these computational resources are demonstrably sufficient.

(2) Descriptional Complexity:

Descriptional complexity is concerned with the fact that for any function, while there

may be several different programs for computing it, these programs will require some

minimum length of description. Once we fix an appropriate language for specifying a

program (perhaps a standard programming language, or perhaps a theoretical model

such as a Turing machine), and agree on how to measure program length in terms

of it, then empirical evidence suggests that, to achieve any significant functionality

appropriate for complex situations, one needs long programs. Now, when we seek to

find out exactly what the brain does, the target of the search should be of the order of

the complexity of a set of programs rather than a single equation as found in physics.

Even if the programs have some unifying underlying principles, in their totality they

will be long. Furthermore, the interactions among them during execution may be

even more difficult to describe, since timing issues in distributed and parallel systems

may be very complex in general.

The large descriptional complexity does not arise only because much new information

is acquired by the brain through learning. Valiant believes that the computational

mechanisms that underly the basic functions of memory, learning, and recall are

already of substantial complexity. The evidence from biology, he points out, is

certainly consistent with this view, since it has been estimated that fully a third of

the mammalian genome is dedicated exclusively to the functions of the brain[36].

(3) Learning:

A third source of difficulty is the inherent complexity of learning. The various

programs in our brain are either present at birth, as a result of evolution, or are

learned during life, as a result of interactions with the world. Some may even be the

result of some combination of the two. In order to have any chance of uncovering

their nature, Valiant feels it is essential that we adopt an intellectual view of how

these programs got into the brain in the first place. The phenomenon for which he

seeks a quantitative explanation is: how can a system, with limited computational

resources and exposure only to a moderate number of situations, acquire programs

that are effective and robust in dealing with new situations not previously seen?
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Valiant finds it necessary to draw our attention to these sources of complexity, since

therein lie the impediments which any computational theory of the brain will need to

confront. Thus, he argues, there is some virtue in exhibiting mechanisms that overcome

them, regardless of whether or not these mechanisms are actually the same as those used

in the brain.

2.1.6 Random Access Tasks

The tension between the substantial functionality of the brain and its restricted compu-

tational resources may be interpreted as evidence that the problem is too difficult in the

present state of knowledge and cannot be pursued fruitfully in the foreseeable future.

However, Valiant[41] chooses to interpret it in the opposite direction. He argues that,

when a problem is severely constrained, it may actually be easier to investigate merely

because the number of plausible avenues to search are so few that even the first one

found may yield valuable insights. Since the severity of the constraints is the leverage

that Valiant hopes to exploit, he seeks to maximize it by focusing on a class of tasks

to which sparsely connected, slow neurons seem to be the least suited. He calls them

random access tasks because the attribute that they all share is that the execution of

any one of them has the potential to involve any part of memory. For example, the task

of memorizing a new book title that consists of the juxtaposition of an almost arbitrary

pair of words potentially requires access to any of the words that the reader already

knows. For each such random access task, Valiant tries to give the simplest formulation

that, he believes, captures at least some fundamental computational hurdle that must

be overcome.

2.1.7 Neuroidal Tabula Rasa (NTR) and Peripheral Devices

Since Valiant decides to focus specifically on random access tasks, he finds it convenient

for the sake of conceptual simplicity to separate the device that performs them from

the devices that do not. Therefore, he hypothesizes a device called neuroidal tabula

rasa (NTR) which is capable of computing the relevant random access tasks. Moreover,

he hypothesizes the existence of some peripheral devices that are needed to mediate

between the NTR and the senses and chooses to delegate all other tasks to various

peripheral devices. In his model, Valiant considers the NTR to be free of preprogrammed

knowledge, except for a few generic algorithms needed to realize the basic random access

tasks.



Chapter 2. Valiant’s Neuroidal Model 30

2.1.8 A Simple Recipe for Recognition in the NTR

Let us look back at the problem of learning to recognize a book title, say “Lord of the

Rings”, which presents a previously unseen juxtaposition of words. Since the words

appearing in the title were memorized previously, Valiant[41] assumes the presence of

specific neuroids that represent each of these words in memory. A neuroid is basically

a linear threshold element with an associated state space that acts as an abstraction for

a biological neuron in the NTR. Moreover, the detection of each of these words by the

visual sensory organs induces the peripherals to cause a firing of the particular neuroids

representing it, where the firing of a neuroid in the NTR is an event that corresponds

to the generation of an action potential by a real neuron. Also, Valiant wishes to model

a synaptic connection between the axon of one neuron and the dendritic tree of another

by directed edges between 2 neuroids in the NTR, and he assigns a weight to each such

directed edge in order to capture the synaptic strength.

Now, in order to be able to recognize the book title “Lord of the Rings” on subsequent

presentation, the NTR first needs to select a neuroid, whose current state indicates that

it does not represent any memory item at present, that has incoming edges from at least

one neuroid representing each of the words in the title, namely “Lord”, “of”, “the”, and

“Rings”. Once such a neuroid has been selected, the NTR needs to run an algorithm

that updates its threshold to make it equal to the sum of the weights of all the incoming

edges from neuroids that represent any one of the 4 words in the title. For example, let

us suppose that the NTR selects a neuroid that has exactly one incoming edge of weight

1 from each of the set of neuroids representing one of the 4 words in the title. Then,

the algorithm will end up setting the threshold of this neuroid to 4. In addition, the

algorithm needs to update the neuroid’s state to a new one that indicates that it is no

longer available to represent any new item, and also set the weights of all the incoming

edges from neuroids not representing any of the words in the title to 0.

The above algorithm, suggested by Valiant[41], selects a particular neuroid satisfying

certain conditions and makes it represent the book title in the sense that, every subse-

quent time the title is encountered, the selected neuroid ends up firing spontaneously.

Notice that, only when all the 4 words in the title are encountered again, the sum of

the weights on the incoming edges exceeds the new threshold of the neuroid set by the

algorithm, causing it to fire spontaneously. Moreover, the firing of any neuroids not

representing one of the words in the title fail to exert any influence on the firing of this

neuroid in the future, since the weights of all the edges coming from them have been set
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to 0 by the algorithm. Another interesting point to note here is that the algorithm al-

ways chooses a neuroid which does not already represent some item in memory, and once

it is made to represent the encountered book title, its state is changed in such a manner

so as to ensure that it does not get picked for representing another newly encountered

item in the future, which is consistent with the cumulative nature of memorization.

Thus, even this simple algorithm shows some very promising characteristics and should

pique one’s interest considerably to study and comprehend Valiant’s model in its entirety.

The algorithm outlined in this section will be revisited and formulated more clearly in

section 2.4.6, once a proper formal description of the neuroidal model has been pro-

vided. Before that however, we explore the physiology of the brain (in section 2.2) and

some insights from cognitive psychology (in section 2.3), so that the reader can better

appreciate the intuitions behind Valiant’s model when we finally describe it in full detail.

2.2 The Brain and its Inner Workings

2.2.1 A History of our Understanding of the Brain

The idea that understanding the biological brain may lead to a better understanding

of ourselves is a tantalizing one indeed. It is no doubt responsible for the substantial

research efforts that have been devoted to the brain over the last century, and that con-

tinue with increasing momentum. The history of this science has been punctuated with

a series of striking discoveries and the development of some very powerful experimental

techniques. Some of the landmark events that stand out in the timeline are as follows –

• In the 1880s, Spanish neuroanatomist Santiago Ramón y Cajal proposed the so-

called ‘neuron doctrine’, which asserted that the brain consisted of cells called

neurons, discrete and physically separate from each other, that communicated

with each other via specialized junctions, or spaces, between cells.

• Subsequently, in 1897, Sir Charles Scott Sherrington suggested the term synapse

for the gaps between neurons at the points at which they came close to touching.

• In the 1920s, Adrian and Zotterman recorded electrical impulses from single nerve

fibers. This finally confirmed the view that long-range communication along nerve

fibers was electrical in nature.

• Around 1950, John Eccles first provided experimental evidence that communica-

tion between neurons at synapses was chemical in nature.
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• A detailed theory of how axons produced electrical impulses, or action potentials,

was finally offered by Hodgkin and Huxley in 1952.

Thus, by the middle of the 20th century, substantial progress had been made toward

understanding the basic nature of the constituents of the brain. Although at the more

macroscopic or systems level an equally great amount is known, relatively less is under-

stood. Associations between specific parts of the brain and their functionalities can be

made by electric recordings and by recently developed non-intrusive techniques for mea-

suring the distribution of blood flow in the brain while a subject is performing various

activities. Through anatomical studies, one can investigate which parts of the brain are

connected to each other directly and which are not. In spite of the wealth of knowledge

which has now accumulated, the main question of how the brain represents and processes

information remains unresolved.

2.2.2 Neurons and Synapses

The core component of the nervous system, which includes the brain, spinal cord, and

peripheral ganglia, is the neuron, which is an electrically excitable cell that processes

and transmits information through electrochemical signals. A typical neuron (shown

in Figure 2.1) possesses a cell body (often called the soma), dendrites, and an axon.

Dendrites are thin structures that arise from the cell body, often extending for hundreds

of micrometres and branching multiple times, giving rise to a complex ‘dendritic tree’.

An axon is a special cellular extension that arises from the cell body at a site called the

axon hillock and travels for a long distance, as far as 1 meter in humans. The cell body

of a neuron frequently gives rise to multiple dendrites, but never to more than one axon,

although the axon may branch hundreds of times before it terminates. An axonal branch

of one cell sometimes comes in very close proximity to a point in the dendritic tree of

another cell to form a specialized connection called a synapse. Neurons communicate

with one another via synapses. Electrical activity in the axon of the presynaptic neuron

can cause chemical changes at the synapse and thereby influence electrical activity in

a dendrite of the postsynaptic neuron. Synapses can be excitatory or inhibitory, i.e.

they can either increase or decrease activity in the target neuron. Some neurons also

communicate via electrical synapses, which are direct, electrically conductive junctions

between cells.

All neurons are electrically excitable, maintaining voltage gradients across their mem-

branes by means of metabolically driven ion pumps, which combine with ion channels

embedded in the membrane to generate intracellular-versus-extracellular concentration
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Figure 2.1: Anatomy of a Typical Neuron (Source: Wikimedia Commons)

Figure 2.2: Synaptic Transmission via Neurotransmitters in a Chemical Synapse
(Source: Wikimedia Commons)
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differences of ions such as sodium, calcium, potassium, and chloride. Changes in the

cross-membrane voltage can alter the function of voltage-dependent ion channels. If the

voltage changes by a large enough amount, an all-or-none electrochemical pulse called an

action potential is generated, which travels rapidly along the cell’s axon, and activates

synaptic connections with other cells when it arrives.

In a chemical synapse, the process of synaptic transmission is as follows. When an

action potential reaches the axon terminal, it opens voltage-gated calcium channels,

allowing calcium ions to enter the terminal. Calcium causes synaptic vesicles filled with

neurotransmitter molecules to fuse with the membrane, thereby releasing their contents

into the synaptic cleft. As shown in Figure 2.2, the neurotransmitters diffuse across

the synaptic cleft and activate chemical receptors on the postsynaptic neuron. The

most well-known neurotransmitters are glutamate, GABA (gamma aminobutyric acid),

acetylcholine, dopamine and serotonin. The effect upon the postsynaptic neuron is

determined not by the presynaptic neuron or by the neurotransmitter, but by the type

of receptor that is activated. Receptors can be classified broadly as excitatory (causing

an increase in firing rate), inhibitory (causing a decrease in firing rate), or modulatory

(causing long-lasting effects not directly related to firing rate).

2.2.3 Generation of Action Potentials

Action potentials result from the presence of special types of voltage-gated ion channels

in the cell membrane of neurons[21]. A voltage-gated ion channel is a cluster of proteins

embedded in the membrane that has three key properties:

(i) It has the capability to assume more than one conformation.

(ii) At least one of the conformations creates a channel through the membrane that is

permeable to specific types of ions.

(iii) The transition between the conformations is influenced by the membrane potential.

Thus, a voltage-gated ion channel tends to be open for some values of the membrane

potential, and closed for others. However, the relationship between membrane potential

and channel state is probabilistic. Moreover, a time delay is involved. Therefore, the

accurate thing to say is that the membrane potential determines the rate of transitions

and the probability per unit time of each type of transition.
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Voltage-gated ion channels are capable of producing action potentials because they can

give rise to positive feedback loops. The membrane potential controls the state of the

ion channels, but the state of the ion channels controls the membrane potential. Thus,

in some situations, a rise in the membrane potential can cause ion channels to open,

thereby causing a further rise in the membrane potential. An action potential occurs

when this positive feedback cycle proceeds explosively. The variation in amplitude of

an action potential with time is determined by the biophysical properties of the specific

voltage-gated ion channels that produce it.

The course of the action potential can be divided into five parts as follows –

(1) Rising Phase: For a neuron at rest, there is a high concentration of sodium and

chlorine ions in the extracellular fluid compared to the intracellular fluid while there

is a high concentration of potassium ions in the intracellular fluid compared to the

extracellular fluid. This concentration gradient along with potassium leak channels

present on the membrane of the neuron causes an efflux of potassium ions making

the resting potential EK close to 70 mV. A typical action potential is initiated at

the axon hillock by a depolarization; like, for example, a stimulus that increases the

membrane voltage Vm. The depolarization opens both the sodium and potassium

channels in the membrane, allowing the ions to flow into and out of the axon, re-

spectively. If the depolarization is small, the outward potassium current overwhelms

the inward sodium current and the membrane repolarizes back to its normal resting

potential around 70 mV. However, if the depolarization is large enough, the inward

sodium current increases more than the outward potassium current and a runaway

condition (positive feedback) results: the more inward current there is, the more Vm

increases, which in turn further increases the inward current. A sufficiently strong

depolarization causes the voltage-sensitive sodium channels to open, and the in-

creasing permeability to sodium drives Vm closer to the sodium equilibrium voltage

ENa ≈ +55mV . The increasing voltage in turn causes even more sodium channels

to open, which pushes Vm still further towards ENa. This positive feedback contin-

ues until the sodium channels are fully open and Vm is close to ENa. The critical

threshold voltage for this runaway condition is usually around 45 mV, but it depends

on the recent activity of the axon. The sharp rise in Vm and sodium permeability

correspond to the rising phase of the action potential.

(2) Peak Phase: The positive feedback of the rising phase slows and comes to a halt as

the sodium ion channels become maximally open. At the peak phase of the action

potential, the sodium permeability is maximized and the membrane voltage Vm is

nearly equal to the sodium equilibrium voltage ENa.
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(3) Falling Phase: The same raised voltage that opened the sodium channels initially

also slowly shuts them off, by closing their pores. Thus, the sodium channels become

inactivated. This lowers the membrane’s permeability to sodium relative to potas-

sium, driving the membrane voltage back towards the resting value. At the same

time, the raised voltage opens voltage-sensitive potassium channels; the increase in

the membrane’s potassium permeability drives Vm towards EK . Combined, these

changes in sodium and potassium permeability cause Vm to drop quickly, repolariz-

ing the membrane and producing the falling phase of the action potential.

(4) Undershoot Phase: The raised voltage opens up many more potassium channels

than usual, and some of these do not close right away when the membrane returns

to its normal resting voltage EK . In addition, further potassium channels open in

response to the influx of calcium ions during the action potential. The potassium

permeability of the membrane is transiently unusually high, driving the membrane

voltage Vm even lower than the potassium equilibrium voltage EK . Hence, there

is a hyperpolarization, that persists until the membrane potassium permeability

returns to its usual value, and this corresponds to the undershoot phase of the

action potential.

(5) Refractory Period: Each action potential is followed by a refractory period, which

can be divided into an absolute refractory period, during which it is impossible to

evoke another action potential, and then a relative refractory period, during which

the stimulus required to evoke another action potential has to be stronger than

usual. These two refractory periods are caused by changes in the state of sodium

and potassium channel molecules. When closing after an action potential, sodium

channels enter an inactivated state, in which they cannot be made to open regardless

of the membrane potential, and this gives rise to the absolute refractory period. Even

after a sufficient number of sodium channels have transitioned back to their resting

state, it frequently happens that a fraction of potassium channels remains open,

making it difficult for the membrane potential to depolarize, and thereby giving rise

to the relative refractory period. Because the density and subtypes of potassium

channels may differ greatly between different types of neurons, the duration of the

relative refractory period is highly variable.

In Figure 2.3 below, we have shown a diagrammatic representation of the typical phases

in the generation of an action potential via voltage-gated ion channels.
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Figure 2.3: Typical Phases in the Generation of an Action Potential via Voltage-
Gated Ion Channels (Source: Wikimedia Commons)

2.2.4 Conduction of Action Potentials

The part of the axon where it emerges from the soma is called the axon hillock. Besides

being an anatomical structure, the axon hillock is also the part of the neuron that has the

greatest density of voltage-dependent sodium channels. This makes it the most easily

excited part of the neuron and the spike initiation zone for the axon. The action poten-

tial generated at the axon hillock propagates as a wave along the axon. The currents

flowing inwards at a point on the axon during an action potential spread out along the

axon, and depolarize the adjacent sections of its membrane. If sufficiently strong, this

depolarization provokes a similar action potential at the neighboring membrane patches.

Once an action potential has occurred at a patch of membrane, the membrane patch

needs time to recover before it can fire again. At the molecular level, this absolute refrac-

tory period corresponds to the time required for the voltage-activated sodium channels

to recover from inactivation. There are many types of voltage-activated potassium chan-

nels in neurons, some of which inactivate fast and some of which inactivate slowly or do

not inactivate at all. This variability always guarantees the availability of a source of

current for repolarization, even if some of the potassium channels are inactivated because

of preceding depolarization. On the other hand, all neuronal voltage-activated sodium
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Figure 2.4: Conduction of an Action Potential towards an Axon Terminal (Source:
Wikimedia Commons)
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channels inactivate within several milliseconds during strong depolarization, thus mak-

ing following depolarization impossible until a substantial fraction of sodium channels

have returned to their closed state.

Although it limits the frequency of firing, the absolute refractory period ensures that the

action potential moves in only one direction along an axon. The currents flowing in due

to an action potential spread out in both directions along the axon. However, only the

unfired part of the axon can respond with an action potential; the part that has just fired

is unresponsive until the action potential is safely out of range and cannot restimulate

that part. In the usual orthodromic conduction, the action potential propagates from the

axon hillock towards the synaptic knobs. Propagation in the opposite direction, known

as antidromic conduction, is very rare.

2.2.5 The Neocortex and Pyramidal Neurons

The average adult human brain weighs about 1.4 kilograms and most of it is covered

with a fairly uniform outer layer called the cortex. With the exception of a small part

of it that is older in terms of evolutionary history, the majority of the cortex is believed

to have evolved at the time of the appearance of mammals. For this reason, this larger

part is called the neocortex. Valiant chooses to primarily focus on the neocortex in his

quest to model cognition due to the following encouraging factors –

(1) All the evidence points to the neocortex as being the main seat of memory and

higher brain functions.

(2) Long distance connections are realized in the neocortex by one class of cells called

pyramidal neurons, thus facilitating random access tasks that may need information

from any part of memory.

(3) The neocortex is a part of the brain that has grown explosively in relation to most

other parts since humans evolved from early primates, suggesting that it is organized

along principles that scale well with size.

The human neocortex (shown in Figure 2.5), sometimes called the gray matter, is a

layer of tissue having many convoluted folds, typically a little more than 2000 square

centimeters in total area and a little more than 2 millimeters in average thickness. The

cell bodies of the pyramidal neurons reside in this thin layer. Each of these cells has

a very long axon that is about 0.0003 millimeters wide but up to several centimeters

long. The axon typically leaves the gray matter near the cell body, passes through the
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Figure 2.5: The Human Brain and its Regions (Source: Wikimedia Commons)

so-called white matter to a distant part of the neocortex (sometimes in the opposite

hemisphere), re-renters the gray matter there and then splits into numerous branches to

form an axonal branching. Thus, the white matter is best viewed as a cable box through

which a vast amount of long distance communication is realized. The axonal branches

carry the output of the computation performed by the neuron and form synapses with

the dendritic trees of other neurons.

2.3 Cognitive Functions in the Brain

2.3.1 Cognitive Substrate

While providing a computational account of the working of the brain, the problem of

specifying the cognitive functions presents the most formidable difficulties. For a com-

plicated device such as the brain, it is difficult both to describe the total behaviour in

its full complexity, as well as to decompose it into simpler constituents. There exist the-

oretical results[22, 23] in computational learning theory that show that even relatively

simple computational mechanisms can result in behaviours that are so complex that a

description of the mechanism or of the constituent parts of the behaviour cannot be

recovered feasibly from observations of the behaviour itself. However, Valiant believes

that there is some substrate of simple functions on which human cognition is built, which

he hopes to discover by inspired guesswork.

In order to find candidates for the functions of the this cognitive substrate, one approach

could be to study the results of experiments in cognitive psychology and to use them to

identify the basic functionalities that underly behaviour. However, this appears to be
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difficult in practice. Thus, Valiant[41] adopts a reverse approach that starts with some

simple functionalities and then traces the implications that follow from them.

2.3.2 Boolean Functions, Conjunctions and DNFs

In 1854, Boole[5] constructed a mathematical system, now called Boolean algebra, that

was explicitly motivated by questions of cognition. In this section, we discuss his system

and explain why Valiant feels it to be a useful starting point.

A variable x in Boolean algebra can take values ‘true’ or ‘false’ rather than numerical

values. This is because the intention of a Boolean variable is to represent a proposition.

Thus, x can stand for “it is raining”, and y for “it is cold”. The intention of a Boolean

operation is to create new propositions from old ones. For example, the operation ‘and’,

denoted by ∧, can be used to create the new proposition ‘x ∧ y’ which in this instance

would represent the proposition “it is raining and it is cold”. In a similar way, the

operation ‘or’, denoted by ∨, can be used to create the new proposition ‘x ∨ y’ which

would represent the proposition “it is raining or it is cold or possibly both”. A third

operation is ‘not’, and it is denoted by ¬. So, ‘¬y’ would represent the proposition “it

is not cold”. While ∧ and ∨ have two arguments, and are hence binary operators, ¬
is unary and has just one argument. Boolean algebra is concerned with the laws under

which expressions formed by Boolean operations can be manipulated.

Perhaps the most important aspect of Boole’s work is that it provides a model of cogni-

tion in which variables can take on only a discrete choice of values, in particular ‘true’ and

‘false’, rather than an unbounded choice. Though the merits of this central idea, that

cognition should be modeled in terms of discrete mathematics, can be debated, it has

withstood the test of time remarkably well and permeates current thinking. Valiant also

readily adopts this view that discrete representations play a fundamental part in the

substrate of principles on which human cognition is built, though he notes that by itself

Boolean algebra is clearly an incomplete theory of cognition. However, he is reluctant

to reject it simply for that reason, because he feels that the true “laws of thought” are

of significant descriptional complexity and Boolean algebra captures only a part of it.

The most basic cognitive tasks to be considered are those of recognition. In Valiant’s

neuroidal model, these are implemented by circuits that evaluate the corresponding

Boolean function or predicate. For some set of input variables, say x, y, z, the circuit

will output ‘true’ or ‘false’ according to the value the function takes when supplied with
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the truth values for x, y and z. The input variables may themselves be the outputs

of Boolean functions and may express something complicated. In general, whenever a

scene is presented to the system, the truth of the predicates are evaluated by the system

for that scene.

A central question is to determine which classes of Boolean functions are most ap-

propriate for modelling how knowledge is represented in the brain. In particular, an

incremental version of this question that should be of particular interest is: if one new

piece of knowledge is learned, what is the appropriate class of representations from which

the act of learning selects? Classes that are too general become unrealistic if no plausi-

ble mechanism can be found for learning instances of them. On the other hand, classes

that are too restrictive are unrealistic if they cannot express significant fragments of real

world knowledge.

A simple but unavoidable class is that of conjunctions. A conjunction is simply the

‘and’ of a set of Boolean variables, such as x3 ∧ x5 ∧ x7. The truth of every variable

that appears in a conjunction is both necessary and sufficient for the conjunction to be

true. Valiant[41] notes that conjunctions seem to be well-suited for representing single

instances of objects or events, since they express the conjunction of all the relevant

attributes. The notion of “yesterday’s dinnertime guests” contains simultaneously the

attributes ‘yesterday’, ‘dinnertime’ and ‘guest’. Thus, it seems difficult to avoid express-

ing it as some kind of conjunction. For this reason, Valiant accommodates conjunctions

centrally in his computational model for cognition.

On the other hand, it has been extensively argued that more general concepts require

richer representation classes. Wittgenstein argued that the notion of a “game” has no

attributes that are both necessary and sufficient. For example, not every game is won or

lost, not every game is played by two people, and so on. For these reasons we need to go

to more general representations. A most attractive generalization is disjunctive normal

form, usually abbreviated to DNF. A DNF expression is a disjunction of conjunctions,

such as:

(x1 ∧ x5 ∧ x7) ∨ (x2 ∧ x4 ∧ x8) ∨ (x3 ∧ x5 ∧ x6)

DNFs can express concepts that have several distinct varieties of typical members. As

an illustration, if we are allowed to write one conjunction to characterize one-person

games and another one to characterize two-person games, then we could get a far better

characterization of games with a DNF than is possible with a single conjunction.
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One crucial point is that, though the conventional definitions of conjunctions and DNF

allow negations of variables, Valiant tries to avoid using negations as much as possible.

In Valiant’s neuroidal model, the firing of a neuroid usually corresponds to a variable z

being true. Now, if the need to represent its negation arises, then a separate neuroid is

associated with a new variable, say y, which is logically equivalent to ¬z and which will

be true when the neuroid fires. However, on a few occasions, it becomes necessary to

face the issue of negation or inhibition explicitly.

2.3.3 Learning Phenomenon

Learning phenomena have been classified and categorized in numerous ways. However,

Valiant[41] specifically wishes to draw our attention to two dichotomies that appear to be

fundamental in any context in which we wish to describe explicit mechanisms of learning.

The first dichotomy is between memorization and inductive learning. Memorization is

simply the storage of some information that is explicitly provided or internally deduced.

The information memorized may be, for example, the spelling of a word, or it may re-

late to the appearance of a person, the description of an event, or the result of a logical

deduction. Inductive learning, on the other hand, can be defined as any kind of infor-

mation gathering where the information acquired is not explicitly given or necessarily

implied by that which is explicitly given. The common characteristic that the phenom-

ena of inductive learning have is that some form of generalization is involved that is

not dictated unquestionably by the evidence. When learning to recognize chairs from

some examples, we acquire a capability that is somehow more general than the ability

to merely recognize the particular examples of chairs that we have seen.

In conventional computers, memorization is a trivial operation. In the neural context,

however, it raises challenging computational problems that can easily be underestimated.

Of course, the challenge of modeling inductive learning is even greater, since learning

involving generalization poses fundamental philosophical questions as to its very nature

that memorization does not.

The second dichotomy is between supervised and unsupervised learning. Consider the

process in which the learner is presented with some examples. In the case of supervised

learning, the information describing each example is accompanied by information of a

second kind called the labeling. The labeling could be provided by the teacher or deduced

internally by the learner. Like, when learning the concept of a chair, a child is presented
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with a sequence of examples each labeled as “chair” or “not chair”. In unsupervised

learning, on the other hand, information describing the examples alone is presented,

with no additional commentary.

We can use these two dichotomies to describe four modes of learning and characterize

each of them with examples as follows–

• Unsupervised memorization is appropriate for memorizing the sound or spelling of

a word about which we have no previous knowledge.

• Supervised memorization is appropriate for associating the face of a person with a

name.

• Unsupervised inductive learning is typically to do with spotting combinations of

events or attributes that occur together unexpectedly often.

• Supervised inductive learning is appropriate for learning a concept or category such

as ‘chair’ or ‘honesty’ from examples labeled as positive or negative instances of

the given category.

In his computational model of the brain, Valiant aims to set up a neuroidal circuit

for each of the learning processes that, when given inputs subsequent to the learning

experience, will recognize the input according to the required function.

2.3.4 The Nature of Concepts

The nature of a concept, sometimes called a category or a universal, has always been a

central subject of philosophical speculation. When we describe an object as a ‘chair’,

we essentially mean that it belongs to a certain class. Valiant[41] feels that one should

attempt to delimit more carefully the nature of the classes that humans employ as cat-

egories. While saying that concepts correspond to Boolean functions is definitely a step

toward taking a position on this issue, Valiant argues that it is only a small one. Fur-

ther, he thinks that a better question to ask would be whether there exist more detailed

models of concepts that are more useful.

One major problem area is to determine which classes of computationally tractable

knowledge representations are sufficient to represent human concepts. Is it Boolean

conjunctions, or disjunctive normal form, or something else? Psychological experiments

yield some clues here. For example, it has been found[37] that artificial concepts made up
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by combining elementary concepts by “and” or “or” are much easier to learn by humans

than those composed by the “exclusive-or” connective. Further clues are provided by

the attempts of researchers in artificial intelligence to describe natural concepts formally.

Boolean concepts may have internal structure in several additional ways. The exemplar

theory suggests that our representation of a chair consists of descriptions of particular

chairs that we have seen. On seeing a new object, we compare it with these exemplars

and see whether it is sufficiently similar to at least one of them. Of course, one big

unanswered problem here is to describe measures of similarity that work for the whole

range of human concepts. Related theories suggest that concepts are graded. Some

chairs are classified by human subjects as more typical than others. Furthermore, this

subjective meausure of typicality correlates with more objective ones, such as reaction

times measured when subjects are asked to categorize objects. Yet another theory claims

that there are a number of attributes that are each positive indicators of chairhood, and

a chair is anything which satisfies at least a certain number of these.

Perhaps, it is not quite correct to view each concept as unitary. For example, although

our notion of “India” is at some level a single Boolean function, it is more useful to

view it as the interaction of maybe a large number of functions variously acquired by

memorization or inductive learning. Thus, we may have in our mind, as a prototype, a

map from an atlas viewed in childhood. In addition, we can clearly recognize outlines

that are close enough, which is an ability acquired by inductive learning. Moreover,

there may be many items of information acquired by memorization that are associated

with these inductively learned functions; in this case, perhaps, the names and locations

of cities. Thus, if we see an outline map that resembles India and a dot inside labeled

Mumbai, the immediate computational reaction is probably not usefully viewed as the

evaluation of the unitary concept of India, but rather as the recognition of a number of

distinct predicates. On occasion, these may turn out to be inconsistent with each other,

in which case we would need to resolve amongst them by other means.

2.3.5 Cognitive Psychology

Over the last century, a large body of experimental data has been collected regarding the

cognitive performance of humans under various laboratory conditions. The phenomena

studied have included memory, learning, attention, as well as numerous others. Though

many of these results are robust and reproducible in the same way as are experimental

results in the physical sciences, one glaring difference is that no global theories have
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emerged that account for the broad ranges of phenomena and can make comparable

predictions. To Valiant, it seems that a successful search for such global theories will need

to be theory driven. One needs to start with theories that have the potential to be global.

Then, experiments can resolve among the candidates. The neuroidal formulation about

to be described in the next section is intended to facilitate a range of such theories. In

developing the neuroidal model, Valiant[41] found to his surprise that several mechanisms

that were introduced to overcome computational impediments corresponded closely to

notions that already had wide acceptance in cognitive psychology. This section explores

in detail each of these connections, which are as follows:

1. Multi-Object Scenes: The propositional predicates of Boolean algebra can be

applied to a whole scene, but the issue we need to consider is how they are applied

to parts of a multi-object scene. For example, in the normal interpretation when

a picture is being described, the predicates blue or green could describe the whole

picture. However, the question of how humans deal with the situation where the

picture contains several distinguishable parts, one of which is blue and another

green, has been the subject of careful investigation[38]. In a typical experiment,

a human subject is presented with pictures that each contain a number of figures,

such as green triangles, blue squares, etc. The subject is asked various questions

and the time required for answering them is reliably measured. A typical finding is

that when asked whether the picture contains an object having a single attribute,

such as being green or being a triangle, the time taken is independent of the num-

ber of objects. The interpretation of this is that processing of all the objects is

carried out in parallel, and perhaps a global propositional predicate, such as “there

is a triangular object”, is evaluated for the whole scene, in time independent of

the complexity of the scene. In contrast, if an object having a conjunction of two

attributes is sought, such as a green triangle, then the time taken to answer in-

creases linearly with the number of objects, suggesting that the subject is, at some

level, processing the objects in sequence. This sequential strategy is exactly the

solution which is adopted in the neuroidal model to deal with multi-object scenes,

chiefly because it appears to be the simplest general computational mechanism for

this task.

2. Illusory conjunctions: Conjunctions of attributes in a part of a scene are typ-

ically not noticed if they have not been attended to. In experiments of the kind

just described, subjects sometimes report having seen a green triangle and a red

square when they have in fact been presented with a red triangle and a green

square, but for too short a time to be able to attend to them separately. This

phenomenon is called illusory conjunctions. Even in our everyday lives, we fail to



Chapter 2. Valiant’s Neuroidal Model 47

recall conjunctions that we have no motivation to have noticed. For example, very

few people can recall which are the letters associated with a particular digit on

a mobile keypad, although they have been exposed to these inputs innumerable

times. Even single attributes need to be attended to to be remembered. That is

precisely why people often find it difficult to recall the direction in which the head

faces in particular denominations of currency notes. Such attentional mechanisms

were incorporated into the neuroidal model by Valiant because they solve several

computational problems effectively, and not in order to fit psychological data. In

particular, Valiant worked under the assumption that the attentional system can

identify meaningful constituent parts of the scene and attend to each of them in

turn[31].

3. Imagery: In the neuroidal model, the view is taken that the sensory areas of

the cortex process the perceptual inputs, and transform them to more and more

abstract representations as the information is passed up to higher levels. Suppose,

at some point, neurons corresponding to ‘chair’ fire. If by some internal deductions

or associations the neurons corresponding to ‘table’ are caused to fire as a result,

the firing of these ‘table’ neurons may cause some activity in the lower level sensory

areas, similar to the activity induced by the sight of the table. This reverse flow

of information corresponds to the act of imagining a table. Thus, while certain

activity in the sensory areas would normally cause the ‘table’ neurons in the higher

area to fire, the act of human imagination suggests that exactly the reverse is also

possible and typical. Hence, that is also the viewpoint that has been adopted in

the neuroidal model. The existence and location of such imagery areas have been

the subject of detailed investigation by means of psychological experiments as well

as brain scans[24, 25], and the results are not inconsistent with this viewpoint.

4. Working Memory: Psychologists have consistently differentiated short term or

working memory[39] from long term memory. In the neuroidal model we have

peripherals that correspond to imagery and working memory in order to empower

the NTR to perform random access tasks and to store long term memory.

5. Memory Capacity: Experiments have been performed to explore the limits of

memory capacity. In one such experiment, Standing[34] presented 10,000 pictures

to a group of people over five days. Right afterwards, these people were shown

a combination of new pictures and original pictures, and astonishingly, they cor-

rectly recognized the pictures they had previously seen with an accuracy rate of

83%. Such experiments, aimed at determining the quantitative limits of cognitive

performance, are clearly of considerable relevance for resolving among detailed

computational theories.
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6. Concept Formation and Learning Relations: The issue of concept formation

goes beyond simple memorization and is quite difficult to investigate. Inspite of

that, several impressive studies have been carried out with pigeons. There is sub-

stantial evidence that, after seeing many examples of a concept, such as pictures

that depict water in some form, the pigeons succeeded in generalizing appropri-

ately, and they could classify previously unseen pictures according to whether the

generalization learned holds or not[17]. Though it is difficult to isolate in lab-

oratory experiments simple learning phenomenon that distinguish humans from

other species, one area in which non-humans appear to have much more difficulty

is that of learning relations[18]. Correspondingly, Valiant found that the handling

of relations in the neuroidal model also introduces an extra level of difficulty.

7. Learning Algorithms: A prudent approach to identifying the knowledge repre-

sentations and learning algorithms that are used by humans is through the study

of language learning in children. Let us consider the question of whether children

tend to overgeneralize of undergeneralize when using a word recently learned. Since

many learning algorithms have a tendency to do one or the other, observations on

humans can be used to rule out learning algorithms that are clearly inconsistent

with observation. Current evidence[6, 26] suggests that overgeneralization is more

prevalent in humans than undergeneralization.

8. Pavlovian Conditioning: Pavlovian conditioning is a striking phenomenon about

which a large amount of experimental data has been accumulated[27, 30]. In a typi-

cal experiment demonstrating it, a subject has an air puff blown into an eye causing

it to blink (or is prompted to perform some other reflex action), and at about the

same time is also presented with a one of a wide variety of stimuli, such as the

sight of a yellow square. It is observed that, if this procedure is repeated enough

times, the subject becomes conditioned, so that at later times the presentation of

only the yellow square causes blinking even in the absence of the air puff. This

can easily be regarded as a random access phenomenon, since the range of stimuli

one can substitute for the yellow square is quite large. Furthermore, instead of

having just one ordinary stimulus such as the yellow square, one can have several.

The conditioned response can then be made dependent on more than one such

variable. It is tempting to speculate that the learning phenomenona associated

with Pavlovian conditioning reflect some basic learning mechanisms at the neural

level. Therefore, it is of considerable interest to try and relate them to learning

algorithms.

9. Priming: Another example of a well-studied area of robust phenomena, is prim-

ing [40]. In a typical experiment, a human subject is given a list of fifty words to
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read. Some time later, the subject is presented with some word fragments and

asked to complete each one to make a word. Interestingly, it is found that the sub-

ject is more likely to reconstruct a word recently seen in the list, rather than an

equally valid alternative, even when the subject cannot consciously recollect hav-

ing seen that word. In the neuroidal model, there can be several alternative ways

of incorporating priming effects. For example, Valiant suggests allowing recently

increased synaptic weights to attenuate with time, so that the most recent changes

always have greater relative influence when compared to earlier ones. This may

be allowed only at low levels, or only at certain other levels of processing. Thus,

various alternative models of priming can be constructed by experimentation and

compared.

10. Mixed Mode Representations: Another question to ponder over is whether an

item in memory is represented accurately in each mode separately. For example, we

can ask: do there exist neurons for recognizing dogs within the vision area and each

of the other sensory areas separately, or are the indicators that confirm doghood

in the various modalities mixed together at a level preliminary to recognition by

any one? More particularly, if we present a word fragment and a picture fragment,

which separately are not enough to remind a person of the object to which they

both refer, can the presentation of the fragments together do so? To Valiant,

our innate ability to solve crossword puzzles suggests an affirmative answer to

this question, which in turn makes him believe that objects do have mixed mode

representations. Mixed mode representations also seem to be more economical in

terms of representation and computation, and this would appear to compensate

for the accompanying loss in precision.

2.4 Valiant’s Neuroidal Model

2.4.1 The History of Artificial Neural Networks

An artificial neuron is a mathematical abstraction of biological neurons. Artificial neu-

rons are the constitutive units in an artificial neural network. An artificial neuron

receives one or more inputs (representing one or more dendrites) and sums them to

produce an output (representing the axon in a biological neuron). Usually the sums of

each node are weighted, and the sum is passed through a non-linear function known as

an activation function or transfer function.



Chapter 2. Valiant’s Neuroidal Model 50

The first artificial neuron was the Threshold Logic Unit (shown in Figure 2.6), which

was proposed by Warren McCulloch and Walter Pitts in 1943. As a transfer function,

it employed the Heaviside step function, equivalent to applying a simple threshold.

Since the beginning it was noticed that any Boolean function could be implemented

by networks of such devices. This is easily seen from the fact that one can implement

the AND and OR functions, and use them in the disjunctive or the conjunctive normal

form. Initially, only a simple model was considered, with binary inputs and outputs,

and some restrictions on the possible weights. Researchers also realized soon that cyclic

networks, with feedbacks through neurons, could define dynamical systems with memory,

but most of the research concentrated on strictly feed-forward networks because of the

smaller difficulty they present.

Figure 2.6: Threshold Logic Unit (Source: Wikimedia Commons)

One important and pioneering artificial neural network that used the linear threshold

function was the perceptron[33], developed by Frank Rosenblatt in 1957. This model

already considered more flexible weight values in the neurons, and was used in machines

with adaptive capabilities. In the late 1980s, when research on neural networks regained

strength, neurons with more continuous transfer functions such as the sigmoid function

started to be considered. The possibility of differentiating the activation function allows

the direct use of the gradient descent and other optimization algorithms for the adjust-

ment of the weights while learning. Neural networks also started to be used as a general

function approximation model.

2.4.2 Neuroidal Nets

In order to model the neuroidal tabula rasa (NTR), Valiant[41] defines an idealized

model of a network of artificial neurons which he calls a neuroidal net. Each neuroid
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in the net is defined to be a linear threshold element, as formalized by McCulloch and

Pitts in 1943, but is augmented by states and a simple timing mechanism. However,

as it turns out, these apparently innocuous augmentations render the model a lot more

programmable and computationally powerful.

A neuroidal net is specified by a quintuple (G,W,X, δ, λ), where:

• G is the graph describing the topology of the underlying network

• W is the set of possible weights for the edges of the graph

• X is the set of modes for the neuroids

• δ is the update function for the modes

• λ is the update function for the weights

The subsequent few subsections will elaborate on each of the notions described above.

Such a quintuple essentially provides us with a complete description of the net. In

addition, if the initial conditions, i.e. the initial weights and modes of the neuroids, and

input sequence, i.e. the timing and firing of those neuroids controlled directly by the

peripherals, are specified, then the behaviour of the net is also determined.

2.4.3 Topology of the Network

In any neuroidal net, the topology of the underlying network is described by a directed

graph G = (V,E), where V is a finite set of N nodes labelled by distinct integers in

[N ] and E is a set of directed edges between the nodes. Nodes i and j are said to be

adjacent or neighbours if at least one of the directed edges (i, j) or (j, i) belongs to E.

A neuroid corresponds to a node j together with all the edges directed towards it. An

edge (i, j) models a synapse between two neurons where i is the presynaptic neuron and

j is the postsynaptic neuron. By saying that a neuroid corresponds both to a node j

as well as the incoming edges to j, Valiant essentially associates each synapse with its

postsynaptic neuron.

2.4.4 Modes of a Neuroid

The mode of a neuroid describes every aspect of its instantaneous condition other than

the weights on its edges. It models properties that are global for the neuron rather than

relating only to particular synapses. It is specified as a pair of values (q, ~T ), where q
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belongs to a finite set of states Q and ~T is a vector of γ numbers T (1), T (2),. . . ,T (γ) for

some fixed integer γ. The first component T (1) of ~T , called the threshold of the neuron

and denoted in short by T , models the electrical potential required to be overcome to

cause the neuron to fire. Valiant allows for the possibility of γ > 1 in his model. For

example, we may wish to include a second number that expresses the confidence in a

generalization that has been learned inductively by a neuroid. However, when not stated

otherwise, we shall assume that γ = 1. At any instant, the mode of neuroid i is denoted

by si, its state by qi, and its threshold by Ti.

The states bear names that are mnemonics for their function, such as:

• AM → Available Memory

• SM → Supervised Memory

• AR → Available Relay

The state space Q is partitioned into two kinds of states called firing and queiscent

states. If a neuroid goes to a firing state, then it is a convention to update its state

by appending the letter ‘F’ at the end of the mnemonic for its previous state. For each

neuroid i, the Boolean variable fi is defined as follows:

fi =

{
1 if neuroid i is in a firing state

0 otherwise

2.4.5 The Mode and Weight Update Functions

The action of the update functions δ and λ on neuroid i depend, among other things,

on the quantity wi, which is defined to be the sum of those weights wki of neuroid i that

are on edges (k, i) that come from neuroids that are currently firing. More formally, we

can write:

wi =
∑

(k,i)∈E,fk=1

wki

The mode update function δ defines, for each combination (si, wi) that holds at time t,

the mode s′i ∈ X that neuroid i will transit to at time t+ 1, and is therefore written as:

δ(si, wi) = s′i
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The weight update function λ defines, for each combination (si, wi, wji, fj) that holds at

time t, the weight w′ji that edge (j, i) will bear at time t+ 1, and is therefore written as:

λ(si, wi, wji, fj) = w′ji

The definitions of δ and λ express the following basic intentions–

(a) The updates to a neuroid should depend only on its own condition and that of

neuroids from which it has incoming edges.

(b) The firing condition of these neighbours should be the only aspect of their instan-

taneous description that has any direct effect.

(c) The actual dependence on these neighbours should be through a linear sum of the

form in which wi is defined above.

Valiant allows updates to a neuroid to occur even when it is not firing itself, which helps

to prevent unwanted cascades of firings. If every neuron that needed to be updated was

forced to fire, then the effects of this additional activity would also have to be controlled

while designing algorithms. Notice that, once G, X and W are defined for the NTR, an

algorithm for a functionality is simply a specification of the update functions δ and λ as

well as a description of the input sequence that has to be realized.

2.4.6 An Illustrative Example

As an example, suppose that we have a neuroid i that at time t = 0 is in a state we

call A1, and has 5 incoming edges with different weights from its neighbouring nodes,

as shown in Figure 2.7. Suppose that, independent of the initial value of the threshold

Ti, we want that at time t = 1 the state of neuroid i be A2, the weights of the incoming

edges from neighbours not firing at time 0 be set to 0, and that the new threshold Ti

equal the sum of the weights of the incoming edges from all the neighbours that did fire

at time 0. Figure 2.8 illustrates the updates that are required in one particular instance

when the peripherals prompt neuroids 2,4 and 6 to fire at time 0.

The transitions below show how the algorithm that realizes these updates would be

expressed within the model:

∀Ti, wi : δ([A1, Ti], wi) = [A2, wi]

∀Ti, wi, wji : λ([A1, Ti], wi, wji, 0) = 0
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1 1 1

A1,Ti = T

f2 = 1 f3 = 0 f4 = 1 f5 = 0 f6 = 1

1 2

Figure 2.7: Initial Weights and Modes (at T=0) in Example Algorithm

0 0 1

A2,Ti = 4

f2 = 1 f3 = 0 f4 = 1 f5 = 0 f6 = 1

1 2

Figure 2.8: Updated Weights and Modes (at T=1) in Example Algorithm
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When writing more elaborate algorithms, Valiant prefers, for the sake of clarity, a more

succinct notation that groups together the transitions that are to occur simultaneously

at a node. In this notation, the above transitions would be written as:

{qi = A1} ⇒ {qi := A2, Ti := wi, if fj = 0 then wji := 0}

The above algorithm enables node i to recognize at later times the same pattern of

inputs that it was exposed to at time 0. If all the inputs that were firing at time 0 fire

together again at a later time, then the same value of wi will be achieved as at time 0,

and the value of the threshold set at time 1 will be reached, which will cause the node

to fire. The firing of additional inputs will not affect this outcome since the weights

from these have been set to 0 at time 1. Also, once the node is in state A2, no further

opportunities for weight changes are possible, unless more transitions are added.

2.4.7 Timing Mechanism and Neuroidal Algorithms

Timing is crucially important to Valiant’s model. The peripherals have the power to

cause various sets of neuroids in the NTR to fire simultaneously at various times. The

actual choices of the sets and the times, which are called prompts, determine the in-

put sequence. There is a substantial body of experimental evidence that suggests that

synchronized rhythmic behaviour is a pervasive characteristic of the cortex[3, 11], and

hence the hypothesized power of causing synchronous firings ascribed to the peripherals

is not unreasonable. Between successive prompts from the peripherals, an algorithm is

expected to perform only a few basic steps. The assumption of any global synchroniza-

tion mechanism is not required, but Valiant[41] does suppose that the neuroids share

common notions of a time unit, and hence can keep in synchrony for such short se-

quences of basic steps by following their own clocks. Even if their clocks keep slightly

different times it is not problematic as long as they need to keep in step for only short

periods. However, for simplicity, Valiant assumes in his model that the neuroids have

exactly identical clocks.

In order to make programming manageable, neuroidal systems actually work with two

very different time scales. The individual transitions δ and λ work on a scale of very

short intervals called microunits, which roughly correspond to the switching times of

biological neurons. For orchestrating computations in the NTR, the peripherals work

on a longer time scale, measured in terms of macrounits. The peripherals are able to

prompt the NTR by simultaneously causing to fire some subset of the neuroids in the

NTR that are directly controllable by the peripherals. A cascade of computations on
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the microunit time scale then ensues in the NTR, and we assume that this terminates

in a stable situation before a full macrounit of time has elapsed. When this macrounit

has elapsed, the peripherals may prompt the NTR again with the same or a different

subset of neuroids.

In order to ensure that the cascade of firings in the NTR initiated by a prompt does

indeed terminate in a stable situation, several alternative approaches can be taken. One

major issue is that the computation performed in one cascade of the NTR needs to have

an interpretation that is robust to the various demands that may be made on the NTR.

For example, the peripherals may prompt low level neuroids, and the algorithm being

executed may need to modify neuroids representing higher level concepts that are sepa-

rated in the network from the prompted ones by several intermediate neuroids. We need

to avoid situations in which an algorithm is executed incorrectly because the various

input signals that were to arrive simultaneously had traversed paths of different lengths,

and for that reason failed to arrive when needed. In order to keep the algorithms as

simple as possible, Valiant wants us to assume that the implementation is equivalent to

one in which a neuroid undergoes cascade transitions only when all the signals that need

to arrive there have arrived. Clearly, a sufficient condition for this is that the graph

formed by the neuroids that are actively involved in any cascade is acyclic, and all paths

from the inputs to any one node are of the same length.

A neuroidal algorithm for a task is defined by Valiant to be a sequence of steps, each

initiated by a prompt from the peripherals, and resulting in some updates to some neu-

roids. These prompts will be separated in time by an integral number of macrounits.

Now it turns out that a convenient high-level description can be provided for neuroidal

algorithms of interest to us, that convey their essence. In these descriptions, it is as-

sumed that any neuroids that need to be prompted by the peripherals can be prompted

directly by the peripherals, thereby suppressing the possibility that the prompted neu-

roids influence the ones taking part in the algorithm through a cascade of threshold

firings. As a result, a macrounit can be equated with a microunit in the description of

these algorithms. Thus, we can very conveniently describe all algorithms at this level

on just one time scale. A more detailed level of neuroidal implementation, of the kind

described in the previous paragraph, is assumed to support these high-level algorithms.

Perhaps the simplest way to interpret such algorithms is to assume that the threshold

transitions that occur in cascades take infinitesimal or zero time, while all other tran-

sitions take unit time, corresponding to a macrounit. In order to maintain consistency,

Valiant therefore adopts the following conventions in the high-level descriptions of all

neuroidal algorithms to be discussed in later sections: all transitions are assumed to
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take unit time, with the exception of threshold transitions and prompts, both of which

cause the corresponding nodes to fire instantaneously.

2.4.8 Discussions on the Model

Some points discussing the salient features of the model and some possible extensions

to it are as follows–

(1) Since each synapse of a real neuron appears to be either excitatory or inhibitory, the

weights in the model are assumed to have fixed sign, i.e. each wji is predetermined

to be either non-negative or non-positive.

(2) In Valiant’s model, the graph G describing the topology of the network can be gen-

eralized to a multigraph. So then, instead of there being at most one edge from node

i to node j, there may be several, say k. In that case, we distinguish between them

by (i, j)1, (i, j)2, . . . , (i, j)k, and their weights by w1
ij , w

2
ij , . . . , w

k
ij . Such a multiplic-

ity of edges from node i to node j corresponds to the axonal branching of neuron i

having k synapses with the dendritic tree of neuron j. Note that while two synapses

of weight one may have the same effect as one synapse of weight two as far as the

conditions that would make j fire, the update function λ may treat them differently.

(3) Another aspect of the model is that it can even allow randomized transitions δ and λ.

This means that for each combination of argument values of δ and λ there may not be

just one outcome at the next time unit, but several. A neuroid will choose randomly

among these according to predetermined probabilities. While randomization has

found applications in many areas of computation, it is not known whether it plays

any role in the brain.

(4) The model can also allow each state q ∈ Q to have a latency l(q) that is a positive

integer. If node i arrives in state q at time t, then neither its mode nor its weights

can be changed until time t+ l(q) at the earliest. The latency is a timing mechanism

corresponding roughly to the refractory period in real neurons. The updates to the

mode and weights of a neuroid at time t is determined entirely by the description of

the net at time (t−1), unless it happens that at time t a neuroid has not completed

the latency period it entered most recently, in which case no update will occur. A

state that has latency l can be easily simulated by a sequence of l states each of

latency one, which have the property that they each transition in unit time to the

next state in the sequence, independent of all other conditions. Hence, allowing

states to have differing rather than the same latencies does not increase the power

of the model, but may allow for more succinct descriptions of some algorithms.
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(5) For economy of descriptions, threshold transitions are assumed by default. Such

a transition occurs whenever all three of the following conditions hold: wi ≥ Ti,

there is no other explicitly stated transition which is available, and neuroid i is not

within a latency period. In such a threshold transition, only the state of a neuroid is

updated and the update changes the state to one with the same mnemonic but with

an ‘F’ appended, indicating that it is a firing state. Threshold transitions typify

the process by which circuits recognize inputs, while the other transitions typically

modify weights or thresholds for the purpose of learning.

(6) The definitions provided by Valiant are not the minimal ones that achieve a certain

expressive power. They incorporate some redundancy in order to provide for ease

of expression, which is useful if the model is to be used as a programming language.

For example, the dependence of λ on wi is redundant in the sense that the value

of wi can be stored as a T (k) component of the mode si, and updated by means

of δ transitions in a subsequent step. Transformations such as this, that leave the

expressive power of the model invariant, provide evidence of the robustness of the

model, since we know that, if a model is robust, then its expressive power should be

preserved under reasonably wide ranges of mutations to the model.

2.5 Knowledge Representation

2.5.1 Representation of Items

Since a neural system can cope in a complex external world, one must presume that its

behaviour can be described in terms of the various semantic items that are meaningful

in that world. By the term item we mean just about any aspect of the world that may

be useful in describing it. Individual objects, events, properties, relationships, concepts,

and categories are all examples of items. Valiant[41] finds it plausible that the items

that are appropriate for describing the world of experience of the NTR provide the right

vocabulary for describing its behaviour when it interacts with that world. However, a

harder problem is to determine whether these same items also provide the most appro-

priate internal vocabulary for the neural system.

There exist some theories that posit localist representations of items[2], which claim that

each item in the world that can be recognized by an individual correspond to only some

particular neurons that recognize it. At the other extreme, there exist theories that posit

global (or holographic) representations of items[19], which claim that the representation

of each item is spread over many or even all of the neurons. Various positions that are
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intermediate have also been taken[9].

Valiant emphasizes that the choice of knowledge representation is a most central issue

in analyzing models of neural computation. Instances of the representation have to be

expressible succinctly in the neuroidal model. Also, there has to be a plausible account

of how these structures can be learned.

2.5.2 Positive Knowledge Representations

The representations that Valiant[41] adopts in his model, called positive representations,

can be characterized in terms of the following five features –

(1) Each neuron corresponds to a single semantic item.

(2) There are typically several neurons representing each item, if it is represented at all.

(3) Only those new items are added to memory that are experienced and noticed by

the attentional mechanisms. For example, we do not have neurons to represent

all possible combinations of car makes and colours that we are already familiar

with. Suppose we notice a black Volkswagen on the road one day. Unless a black

Volkswagen has figured prominently in our life in the past, neurons for both the

colour black and Volkswagen will fire, but there may not be neurons previously

allocated for the combination.

(4) The representation is hierarchical. Once some items have been assigned to neurons,

new items expressible in terms of the items already represented can be assigned to

previously unused neurons. However, the hierarchy need not be strict in the sense

that cyclical relationships are forbidden. It is possible that once two related items

have been assigned, their meaning is refined in terms of each other. The emphasis

is more on the idea that some items are high level, being satisfied for very specific

inputs, while others are lower level and of greater generality, being satisfied for wider

ranges of input. High level items are typically represented in terms of combinations

of lower level items.

(5) The reality of the neuroidal implementations makes it graded, so that only approx-

imations of any idealized Boolean functions are represented. One reason for this is

that the physical neural connections necessary to realize the ideal function will be

present only with high probability, and not with certainty. A second reason is that

sometimes there may not be any simple idealized function to realize. For example,

a circuit for recognizing a chair may involve subcircuits for various types of chairs

so that the overall circuit has no simple characterization.
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In the neuroidal model, the set of neuroids representing an item z is usually denoted by

z̃. Typically there are about r neuroids corresponding to each item, where r is called

the replication factor. The basic intention is that, when the system is presented from

the outside with an input corresponding to item z, then all the r neuroids in the set z̃

should fire.

Replication ensures robustness, as well as a slightly lower connectivity requirement on

the network than would be needed otherwise. Sets or assemblies of cells to represent

a concept has been used by several authors[7, 16] before, usually with the implication

that within each such set or assembly each member has an excitatory influence on the

others. Such assemblies would have a self-imposed tendency toward an all-or-none firing

behaviour. However, Valiant makes no such assumption in his representation.

Valiant[41] envisages that, in practice, any grading in the individual circuits is compen-

sated for by having multiple representations for important items, so as to improve the

overall system reliability. For example, the nodes corresponding to the item ‘chair’ may

be associated with several circuits, each of which attempts to find confirmation of chair-

hood in a different way. Now, if a reasonable fraction of these succeed, then it can be

assumed that overwhelming evidence of chairhood has been found.

2.5.3 Vicinal Algorithms

All of the algorithms that Valiant describes as part of his model can be considered, at

a suitable level of abstraction, as vicinal or neighbourly. The most basic feature of a

vicinal algorithm is that, whenever some communication has to be established between

two items not directly connected, the algorithm establishes the necessary communication

via neuroids that are each common neighbours of some pair of neuroids that represent

the two items respectively. Thus, if x̃ and ỹ correspond to two items, and E(x̃) and

E(ỹ) are the sets of neighbouring nodes of x̃ and ỹ respectively, then E(x̃)∪E(ỹ), known

as the undirected frontier of x̃ and ỹ (shown in Figure 2.9), is the set through which

communication takes place. Because of the primacy they give to communication via

common neighbours we call these algorithms vicinal.
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x̃ ỹ

E(x̃)∩E(ỹ)

Figure 2.9: The Undirected Frontier of x̃ and ỹ

Some algorithms may require that a two-way channel of communication be established,

if temporarily, between pairs of nodes. This can be done most easily by requiring that

the edges be bidirectional, in the sense that a directed edge (i, j) ∈ E has an associated

reverse edge (j, i) also belonging to E. The algorithms that exploit bidirectionality can

be interpreted as demonstrating the computational efficacy of point-to-point feedback.

Whether such bidirectionality between individual neurons is pervasive in the cortex is

currently unknown. However, it is well established that for most pathways linking one

cortical area to another there are reciprocal pathways going in the opposite direction.

What is unknown is whether the reciprocity is precise enough to realize bidirectional

edges directly.

2.5.4 Random Graphs

The simplest model that supports vicinal algorithms directly are random graphs. Ran-

dom graphs have two important properties that are necessary for supporting these al-

gorithms, namely a certain frontier property, and a certain hashing property. Random

mulipartite graphs also have very similar frontier and hashing properties, and hence are

equally good for supporting vicinal algorithms. However, for the sake of greater simplic-

ity, Valiant assumes the former model.

The main difference between the models is that while the first treats all nodes as equal,

the second splits them into sets, each of which corresponds to a different area of the

cortex. In both cases the edges model long distance communication between pyramidal

neurons in the cortex. In the multipartite case we assume that certain pairs of areas are

connected, and those that are have random connections between them. It is interesting
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to note that random multipartite graphs resemble some of the hierarchical structures

that have been found in visual cortex[10].

2.5.5 Frontier Property

Since vicinal algorithms establish communication between the sets representing two

items through the frontier of these two sets, this frontier should be non-empty in gen-

eral. Furthermore, since it is the aim of some of the algorithms to store a new item at

this frontier, so that the new item becomes an equal citizen with the others, one also

needs that this frontier be of size about r, where r is the replication factor. The opera-

tion of allocating frontier nodes for storing a conjunction x∧y is called JOIN by Valiant.

A graph G = (V,E) is said to have the (r, l,m)-frontier property if, when x̃, ỹ ⊆ V

are randomly chosen disjoint subsets of size r, the size of the frontier E(x̃) ∪ E(ỹ) has

expectation l and variance m. A graph that is ideal for executing vicinal algorithms

should have l = r and m = 0.

Let us consider a random graph on N nodes such that for each pair of nodes (i, j), a

directed edge joining i to j is present with probability p, independent of all other pairs.

Then the expected indegree of each node is the same as the expected outdegree and

equals pN . We regard r as a fixed constant, N as varying and large, and p as diminish-

ing as N grows. Let x̃,ỹ be disjoint sets of r nodes. Then the probability that any one

fixed node i, not belonging to x̃ or ỹ, lies in the frontier of x̃ and ỹ is (1− (1− p)r)2. To

see this, first observe that the probability that i /∈ E(x̃) is (1− p)r, since (1− p) is the

probability that it fails to be connected to any fixed member of x̃, and there are r such

members. The probability that it is connected to at least one node in x̃ is, therefore,

(1− (1− p)r). Since the same statement holds for ỹ, the square of this expression gives

us the desired probability. Note that we are assuming here that the edges coming to i

from different nodes are either present or absent independent of each other.

Both in this section and the subsequent section, we shall make the following assumptions,

which we will call the pristine conditions assumptions, while estimating probabilities–

(i) The number of neuroids representing any one item already stored is exactly r.

(ii) The edges directed toward neuroids not yet allocated are present with equal prob-

ability independently.
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Regarding r as fixed, if p→ 0 as N →∞, then by application of the binomial theorem

to (1− (1− p)r)2, we get:

(1− (1− p)r)2

= 1− 2(1− p)r + (1− p)2r

= 1− 2(1− rp+ r(r − 1)p2/2 +O(p3)) + (1− 2rp+ 2r(2r − 1)p2/2 +O(p3))

= r2p2 +O(p3)

Thus, for each node i not belonging to x̃ or ỹ, the probability of being in their frontier

E(x̃) ∪ E(ỹ) is given by p∗ = r2p2 + O(p3), and is independent for different choices of

i. Hence, the size of the frontier is governed by a binomial distribution consisting of

N∗ = N − 2r trials, each with probability of success p∗. If we choose p = (Nr)−
1
2 , then

we obtain that the number of nodes in the frontier has:

Expectation = N∗p∗

= (N − 2r)(r/N −O(N−
3
2 ))

= r −O(N−
1
2 )

Variance = N∗p∗(1− p∗)
= (N − 2r)(r/N −O(N−

3
2 ))(1− r/N +O(N−

3
2 ))

= r −O(N−
1
2 )

Thus, we conclude that a random graph on N nodes with p = (Nr)−
1
2 , or expected de-

gree (N/r)
1
2 , has the (r, r−O(N−

1
2 ), r−O(N−

1
2 ))-frontier property. For implementing

vicinal algorithms, random graphs with expected degree (N/r)
1
2 appear therefore to be

well-suited.

Since we intend to make the NTR capable of learning hierarchically, it is pertinent to

ask what happens when the process of creation of new frontiers from sets that were

previously frontiers themselves is repeated to arbitrary depth. Unfortunately, it turns

out that the variance of this process is too large to maintian stability over a large

number of iterations. Experiments suggest, however, that for r = 50, this process is

maintainable in such random graphs to depth 4 or 5. It is not clear whether there exist

graphs that have frontier properties that have lower variance and hence are more stable.

It is known, however, that for r ≥ 2, the ideal (r, r, 0)-frontier property is not possessed

by any bidirected graph with more than 3r nodes[13].
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2.5.6 Frontier Property and Associations

Besides memory allocation, the common neighbours of pairs of neuroids also play an

important role in vicinal algorithms in establishing associations between arbitrary pairs

of items already stored. If node sets x̃ and z̃ are already allocated, we may wish to

update the network so that at later times, whenever x̃ fires, so will z̃. Valiant calls this

update operation LINK.

If we suppose that µ ≥ 0 is some constant, then in a random graph with edge probability

p = (µ/(rN))
1
2 , the expected number of members of z̃ that have a common neighbour

with at least one member of x̃ is about r(1 − e−µ), assuming that x̃ and z̃ have size r.

For example, if µ = 1, then about 63% of the z̃ nodes will be connected to some member

of x̃ via a common neighbour, while if µ = 4, then the fraction is as large as 98%.

To prove the claim about the number of members of z̃ that have a common neighbour

with x̃, let us first consider the probability that there is a path of length two to one fixed

member, say i ∈ z̃, from at least one member of x̃ via a fixed node j. Since the probability

that at least one member of x̃ is connected to j is (1 − (1 − p)r), and the probability

that j is connected to i is p, the probability of both happening is p(1− (1− p)r). Using

the binomial theorem, this can be written as p(rp+O(p2)), which on substituting for p

gives µ/N +O(N−
3
2 ). Hence, the probability that there is such a path via at least one

of the N − 2r possible choices of j is:

1− (1− µ/N +O(N−
3
2 ))N−2r

Using the fact that (1 − 1
x)x → e−1 as x → ∞ we obtain that this probability is

1 − e−µ(1 + O(N−
1
2 ). Since this probability holds for each i ∈ z̃, the expected number

of members of z̃ having the required property is r times this quantity, which approaches

r(1− e−µ) asymptotically as N →∞.

Therefore, when establishing an association from the representatives of one item x̃ to the

representatives of another z̃, a greater value of µ implies that, on expectation, a greater

fraction of the nodes of z̃ will be reached successfully. However, values for µ greater

than one perturbs the frontier node allocation process described in the last section,

since we will end up allocating about µr rather than r nodes to each new item. This

can be counteracted by having the node allocation process reject each node provisionally

allocated with probability µ−1 uniformly at random. In this way, both the processes of

JOIN and LINK can be supported on the same network.
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2.5.7 Hashing Property

The hashing property is required to ensure that the nodes chosen for representing a new

item will be, with high probability, among those not previously chosen. Since the only

mechanism used for allocating new storage is that of assigning a frontier E(x̃)∪E(ỹ) to

a new item that is associated with the conjunction x ∧ y, the property that needs to be

ensured is that for any choice of x and y, this frontier contains a sufficient number of

previously unallocated neuroids which will be able to represent the new item effectively.

As in conventional hashing, Valiant assumes that only a certain constant fraction of all

the neuroids are ever assigned. To justify the plausibility of this assumption, he observes

that a human living for 100 years and having 1010 available neurons will be able to allo-

cate up to 103 new neurons each hour without more than 10% of the memory ever filling

up. This holds even in the absence of any provisions for freeing memory or forgetting.

Let us consider the situation in which a set of items is already stored and a new one is

to be allocated. Now, we allocate the frontier of some appropriate pair of sets x̃ and ỹ to

store the new item. This pair is quite arbitrary, though perhaps restricted to a certain

depth in the network. We need to show that if the graph was randomly chosen then

with high likelihood it can accommodate the new item in the sense that the frontier will

contain a significant number of nodes that are still available for allocation.

Valiant[41] does a very approximate calculation using the pristine conditions assump-

tions (mentioned in section 2.5.5) and assuming µ = 1 for simplicity. Let us consider x̃

and ỹ both to have size r, assume that there are N(1 − u) nodes still unallocated for

some constant u (where 0 ≤ u ≤ 1), and assume that each potential edge to any fixed

unallocated node i, from any fixed x̃ or ỹ node, is present with probablility p = (Nr)−
1
2

independent of the presence of other edges. Then, exactly as before, the probability that

node i is adjacent to some node in x̃ and some node in ỹ is (1−(1−p)r)2 = r2p2 +O(p3).

Hence, if there are N(1− u) choices of i, then the expected size of the frontier of x̃ and

ỹ that is unallocated is given by:

N(1− u)(r2p2 +O(p3))

= N(1− u)(
r2

Nr
+O((Nr)−

3
2 ))

= r(1− u) +O(N−
1
2 )
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The advantages achieved by using such a hashed memory can be summarized as follows.

Regarding r as a constant, suppose that we have (u/2)N/r items already stored, for

some small enough constant u < 1, and some sequence of another (u/2)N/r new items

come along, each one expressible as the conjunction of a pair previously memorized.

Although the new pairs may be viewed as chosen from many more pairs potentially, and

although only N neuroids are available, we can nevertheless allocate memory for this

arbitrary sequence of new items that present themselves, at least with probability. To

reiterate, the main point is that arbitrary new items drawn from quadratically many

possibilities can be allocated without needing quadratically many nodes.

2.6 Unsupervised Memorization - A Case Study

Valiant[41] describes several algorithms within the neuroidal model in which to tries

to capture the essence of various cognitive tasks such as supervised and unsupervised

memorization, supervised inductive learning, correlational learning etc. This section

attempts to convey the general flavour of these algorithms by selecting and presenting

Valiant’s algorithm for unsupervised memorization as a case study.

2.6.1 Problem Specification

Unsupervised memorization appears on the surface to be a simple task. Following one

presentation of an input, changes need to take place in the neuroidal system so that if

an identical or similar enough input is presented in the future, the neuroidal system will

recognize this repetition.

Despite its apparent simplicity, this task poses the very fundamental problem of storage

allocation. Since the instance to be memorized may be unanticipated and arbitrary a

mechanism is required for allocating storage space to essentially arbitrary new items.

Since Valiant’s model employs a positive knowledge representation, the process of storage

allocation can be treated as one of identifying some previously unused neuroids and

committing them to the purpose of representing the newly encountered item.

Since memorization can be related to forming Boolean conjunctions, Valiant considers

the following idealization of the task –

• An input has a number of attributes that correspond to items x1, x2, ..., xn that

are represented in the NTR by neuroid sets x̃1, x̃2, ..., x̃n. We regard these sets as

all having size r, and regard the neuroids within any one of these sets as having

identical behaviour, i.e. at any time either all fire or none do.
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• When this input is presented, the nodes in all the sets x̃1, x̃2, ..., x̃n will be caused

to fire by the peripherals.

• The objective is to allocate a new set of neuroids z̃ to represent the new item z

that corresponds to this input, and to update the net in such a way that in future

interactions the nodes z̃ will fire if and only if x̃1, x̃2, ..., x̃n all fire simultaneously.

• Further, the underlying network is assumed to be a random graph having the

(r, r −O(N−
1
2 ), r −O(N−

1
2 ))-frontier property.

2.6.2 Algorithmic Approach

Valiant[41] attempts to solve the problem of learning 2-conjunctions first, since the

more general case of learning n-conjunctions can easily be reduced to this case. Thus,

he starts off by specifying an algorithm that will allocate to the item z = x ∧ y the

frontier z̃ = E(x̃) ∪ E(ỹ) and enable the neuroids in z̃ to modify themselves so that in

future they will all fire whenever both x̃ and ỹ fire simultaneously.

The initial conditions for the algorithm about to specified (as shown in Figure 2.10) –

(i) The neuroids that implement unsupervised memorization are all initially in avail-

able memory (AM) state.

(ii) All the incoming edges to these neurons have weight 1 initially.

(iii) The threshold of all the neuroids in the state (AM) is effectively infinite, or in

other words, higher than the number of incoming edges. Thus, the neuroids can-

not undergo threshold firing until after they are allocated and have changed to

unsupervised memory (UM) state.

A formal description of the algorithm follows:-

Step 0:

Prompt x̃.

{qi = AM, wi ≥ 1} ⇒ {qi ← AM1, Ti ← wi, if fj = 1 then wji ← 2}.

Step 1:

Prompt ỹ.

{qi = AM1, wi ≥ 1} ⇒ {qi ← UM, Ti ← Ti + wi,

if fj = 0 ∧ wji = 1 then wji ← 0,

if fj = 0 ∧ wji = 2 then wji ← 1}.
{qi = AM1, wi < 1} ⇒ {qi ← AM, Ti ←∞, ∀j wji ← 1}.
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1
1 1

1
1 1 1 1 1 1 1 1 1 1 1

1

x̃ ỹ

AM AMAM AM AM AM

Figure 2.10: Initial Conditions at T=0 for Unsupervised Memorization

While analyzing the above algorithm, keep in mind that –

(i) The conditions in a rule at step t always refer to time t, but the updates mentioned

happen only at time t+ 1.

(ii) Default threshold transitions are instantaneous but are implied to exist only for

nodes that do not satisfy the precondition in any explicitly stated rule.

(iii) Any node which is firing state at a particular instant spontaneously ceases to fire

after one unit of time has elapsed.

In the above algorithm, the x̃ nodes fire in the first step. As shown in Figure 2.11, all

AM nodes adjacent to a member of x̃ go into state AM1, record the value of wi in Ti,

and update the weights on the incoming edges from x̃ to 2, leaving the values of the

others as 1. In the second step the ỹ nodes fire. By this time, the x̃ nodes have ceased

firing by default. As shown in Figure 2.12, those AM1 nodes that are adjacent also to

some ỹ node now go into unsupervised memory state (UM), update their threshold to

equal the total number of x̃ and ỹ nodes to which they are adjacent, and adjust their

weights so as to be 1 on edges coming from the x̃ and ỹ nodes, and to be 0 on all other

incoming edges. The remaining AM1 nodes, those not adjacent to any of the ỹ nodes,

revert to the original mode and weights of available memory neuroids. Therefore, this
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x̃ ỹ
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Figure 2.11: Weights and Modes at T=1 for Unsupervised Memorization

1
1 1

0
1 1 1 1 1 1 1 1 0 1 1

1

x̃ ỹ

z̃ = E(x̃)∩E(ỹ)

AM AMUM,T=3 UM,T=2 UM,T=2 UM,T=2

Figure 2.12: Weights and Modes at T=2 for Unsupervised Memorization
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algorithm does indeed perform unsupervised memorization of 2-conjunctions.

For learning conjunctions of arbitrary length, the previous algorithm can be used itera-

tively as a subroutine, as long as the peripherals do appropriately more work. To learn

x1∧x2∧x3, for example, the peripherals would find some ordering on these 3 items, such

as x1, x2, x3. They would then supply x1 and x2 in a call of the algorithm for learning

2-conjunctions so that a new item z1 = x1∧x2 is memorized. Finally, they would supply

z1 and x3 in a second call of that algorithm so that z = z1 ∧ x3 = x1 ∧ x2 ∧ x3 is memo-

rized. By supplying z1, we mean that z̃1 will be made to fire, which will be achieved by

causing x̃1 and x̃2 to be fired simultaneously. It is easy to see that this strategy can be

iterated so that conjunctions of any length n can be learned, though the time needed

for learning would increase linearly with n.

2.6.3 Discussions

A few points that merit discussion are as follows –

• In the algorithm described above, the AM1 nodes do not undergo threshold firings

since, when alternative transitions are available, those are invoked instead. This

allows Ti to be used to memorize a number rather than to represent a real threshold

when a node is in state AM1.

• The avoidance of inessential firings can be important for an algorithm, since this

also minimizes the side-effects. In the above algorithm, for example, if the AM1

nodes had been allowed to fire then these would have caused a cascade of unin-

tended storage allocations of a nature similar to the intended one.

• The strategy of allocating only previously unused neuroids to represent a new item

makes it possible for learning to be cumulative, in the sense that unrelated items

in memory will be left alone by any one execution of unsupervised memorization.

• All items, once allocated, are treated as equal citizens. Items represented by nodes

that are allocated by the mechanisms described here play the same role as items

represented by nodes that are controlled directly by the peripherals.

• The hierarchical memory allocation process implies a hierarchical view of the

knowledge that can be stored, where items are defined relative to each other rather

than being defined absolutely. However, any item already stored can be learned in

supervised mode in terms of any of the others. Hence circular relationships among

the items may develop that do not respect the hierarchy of the original allocation

process.
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2.7 Concluding Remarks

The brain is remarkably energy efficient and can carry out computations that challenge

the world’s largest supercomputers, even though it relies on decidedly imperfect com-

ponents: neurons that are a slow, variable, organic mess. Comprehending language,

conducting abstract reasoning, controlling movement — the brain does all this and

more in a package that is smaller than a shoebox and consumes only around 20W of

power[8, 14], less than a household light bulb. Therefore, in recent times, researchers

have been directing a lot of effort towards ushering in a new computing paradigm called

cognitive computing, whose aim is the development of computer systems modeled af-

ter the human brain. Cognitive computing[29] integrates technology and biology in an

attempt to re-engineer the brain, one of the most efficient and effective computers on

earth. An early instantiation of a cognitive computing chip has been developed under

the Darpa SyNAPSE program at IBM directed by Dharmendra Modha[28, 35]. The

neuroidal model lays down a robust theoretical framework which acts as a very good

guideline for building cognitive computing systems in the future.

Valiant feels that the enormous descriptional complexity of the brain may be due as

much to the variety of mechanisms incorporated as to the intricacy of any one of them.

Valiant knew that in order to describe such a variety of algorithms one needed a suitably

expressive language. Therefore, he purposefully designed a highly programmable model,

so that it could support a greater variety of tasks than any previous modelers appear

to have attempted within a single system. Moreover, the broad flexibility of the model

allows us to investigate wide classes of hypotheses together.

In any model such as the one proposed by Valiant, two opposing constraints need to be

reconciled. First, the model needs to be simple enough so that there is little question

that real cortical neurons are at least as powerful computationally. Then, any algorithm

devised for neuroids can be construed as an existence proof that the corresponding

functionality can indeed be supported by cortical neurons. The second constraint on

the model is that it has to capture the essence of the computational capabilities of the

brain, at least for implementing random access tasks. The direct relevance of Valiant’s

model to real neural computations rests on the fact that it does seem to satisfy these

two opposing constraints simultaneously. In fact, Valiant provides us with a compu-

tational scheme that supports cognitive functions such as memorization, association,

inductive learning and is feasible on networks of model neurons that respect the widely

observed values of the 3 quantitative parameters of the neocortex: the neuron number,

the synapse number and the switching times. Moreover, the algorithms are simple and

most of them require just one step of vicinal or neighbourly influence.
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