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Abstract—The art gallery problem enquires about the least
number of guards sufficient to ensure that an art gallery,
represented by a simple polygon P , is fully guarded. Most
standard versions of this problem are known to be NP-hard. In
1987, Ghosh provided a deterministic O(logn)-approximation
algorithm for the case of vertex guards and edge guards in
simple polygons. In the same paper, Ghosh also conjectured the
existence of constant factor approximation algorithms for these
problems. We present (https://arxiv.org/abs/1712.05492) three
polynomial-time algorithms with a constant approximation ratio
for guarding an n-sided simple polygon P using vertex guards.
(i) The first algorithm, that has an approximation ratio of 18,
guards all vertices of P in O(n4) time.
(ii) The second algorithm, that has the same approximation
ratio of 18, guards the entire boundary of P in O(n5) time.
(iii) The third algorithm, that has an approximation ratio of 27,
guards all interior and boundary points of P in O(n5) time.
Further, these algorithms can be modified to obtain similar
approximation ratios while using edge guards.

The significance of our results lies in the fact that these
results settle the conjecture by Ghosh regarding the existence
of constant-factor approximation algorithms for this problem,
which has been open since 1987 despite several attempts by
researchers. Our approximation algorithms exploit several deep
visibility structures of simple polygons which are interesting in
their own right.

Index Terms—Art gallery problem, approximation algorithm,
simple polygons, visibility, vertex guards, weakly visible, shortest
path, minimum link path

I. INTRODUCTION

The art gallery problem enquires about the least number
of guards sufficient to ensure that an art gallery (represented
by a polygon P ) is fully guarded, assuming that a guards
field of view covers 360° as well as unbounded distance.
This problem was first posed by Victor Klee in a conference
in 1973, and has become a well investigated problem in
computational geometry.

A polygon P is defined to be a closed region in the plane
bounded by a finite set of line segments, called edges of P ,
such that between any two points of P , there exists a path
which does not intersect any edge of P . If the boundary of a
polygon P consists of two or more cycles, then P is called a
polygon with holes (see Figure 1). Otherwise, P is called a

simple polygon or a polygon without holes (see Figure 2).

An art gallery can be viewed as an n-sided polygon P (with
or without holes) and guards as points inside P . Any point
z ∈ P is said to be visible from a guard g if the line segment
zg does not intersect the exterior of P . In general, guards
may be placed anywhere inside P . If the guards are allowed
to be placed only on vertices of P , they are called vertex
guards. If there is no such restriction, then they are called
point guards. The point guards that are constrained to lie on
the boundary of P , but not necessarily at the vertices, are
referred to as perimeter guards. Point, vertex and perimeter
guards together are also referred to as stationary guards. If
guards are allowed to patrol along a line segment inside P ,
they are called mobile guards. If they are allowed to patrol
only along the edges of P , they are called edge guards [1], [2].

In 1975, Chvtal [3] showed that bn3 c stationary guards are
sufficient and sometimes necessary (see Figure 3) for guarding
a simple polygon. In 1978, Fisk [4] presented a simpler and
more elegant proof of this result. For a simple orthogonal
polygon, whose edges are either horizontal or vertical, Kahn
et al. [5] and also ORourke [6] showed that bn4 c stationary
guards are sufficient and sometimes necessary (see Figure 4).

A. Related hardness and approximation results

The decision version of the art gallery problem is to
determine, given a polygon P and a number k as input,
whether the polygon P can be guarded with k or fewer
point guards. This problem was first shown to be NP-hard
for polygons with holes by ORourke and Supowit [7]. This
problem was also shown to be NP-hard for simple polygons
for guarding using only vertex guards by Lee and Lin [8].
Their proof was generalized to work for point guards by
Aggarwal [9]. The problem was shown to be NP-hard even
for simple orthogonal polygons by Katz and Roisman [10]
and Schuchardt and Hecker [11]. Abrahamsen, Adamaszek
and Miltzow [12] have recently shown that the art gallery
problem for point guards is ETR-complete.
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Fig. 1. Polygon with holes

Fig. 2. Polygon without holes

Fig. 3. A polygon where bn
3
c stationary guards are necessary.

Fig. 4. A polygon where bn
4
c stationary guards are necessary.

In 1987, Ghosh [13], [14] provided a deterministic
O(log n)-approximation algorithm for the case of vertex and

edge guards by discretizing the input polygon P and treating
it as an instance of the Set Cover problem. As pointed out by
King and Kirkpatrick [15], newer methods for improving the
approximation ratio of the Set Cover problem itself have been
developed in the time after Ghoshs algorithm was published.
By applying these methods, the approximation ratio of
Ghosh’s algorithm becomes O(logOPT ) for guarding simple
polygons and O(log h logOPT ) for guarding a polygon with
h holes, where OPT denotes the size of the smallest guard
set for P . Deshpande et al. [16] obtained an approximation
factor of O(logOPT ) for point guards or perimeter guards by
developing a sophisticated discretization method that runs in
pseudo-polynomial time. Efrat and Har-Peled [17] provided a
randomized algorithm with the same approximation ratio that
runs in fully polynomial expected time. Bonnet and Miltzow
[18] obtained an approximation factor of O(logOPT ) for
the point guard problem assuming integer coordinates and
a specific general position. For guarding simple polygons
using perimeter guards, King and Kirkpatrick [15] designed
a deterministic O(log logOPT )-approximation algorithm in
2011. The analysis of this result was simplified by Kirkpatrick
[19].

In 1998, Eidenbenz, Stamm and Widmayer [20], [21]
proved that the problem is APX-complete, implying that
an approximation ratio better than a fixed constant cannot
be achieved unless NP = P. They also proved that if the
input polygon is allowed to contain holes, then there cannot
exist a polynomial time algorithm for the problem with an
approximation ratio better than ((1ε)/12) lnn for any ε > 0,
unless NP ⊆ TIME(nO(log logn)). Extending their method,
Bhattacharya, Ghosh and Roy [22] proved that, even for
the special subclass of polygons with holes that are weakly
visible from an edge, there cannot exist a polynomial time
algorithm for the problem with an approximation ratio better
than ((1ε)/12) lnn for any ε > 0, unless NP = P. These
inapproximability results establish that the approximation
ratio of O(log n) obtained by Ghosh in 1987 is in fact the
best possible for the case of polygons with holes. However,
for simple polygons, the existence of a constant factor
approximation algorithm for vertex and edge guards was
conjectured by Ghosh [13], [23] in 1987.

Ghosh’s conjecture has been shown to be true for vertex
guarding in two special sub-classes of simple polygons, viz.
monotone polygons and polygons weakly visible from an edge.
In 2012, Krohn and Nilsson [24] presented an approximation
algorithm that computes in polynomial time a guard set for a
monotone polygon P , such that the size of the guard set is at
most 30 times the optimal guard set. Bhattacharya, Ghosh and
Roy [22], [25] presented a 6-approximation algorithm that runs
in O(n2) time for vertex guarding simple polygons that are
weakly visible from an edge. For vertex guarding this subclass
of simple polygons that are weakly visible from an edge, a
PTAS has recently been proposed by Katz [26].



B. Our contributions

In this paper, we present three polynomial-time algorithms
with a constant approximation ratio for guarding an n-sided
simple polygon P using vertex guards. The first algorithm,
that has an approximation ratio of 18, guards all vertices
of P in O(n4) time. The second algorithm, that has the
same approximation ratio of 18, guards the entire boundary
of P in O(n5) time. The third algorithm, that has an
approximation ratio of 27, guards all interior and boundary
points of P in O(n5) time. As an extension we show, using
similar techniques, constant-factor approximation can also be
achieved for guarding P we also present identical algorithms,
maintaining both the approximation bounds as well as
the running times, can be obtained using edge guards. In
particular, we show that the same approximation ratios of 18,
18 and 27 hold for guarding all vertices, the entire boundary,
and the interior of P , with time complexities O(n4), O(n5)
and O(n5) respectively. The significance of our results lies in
the fact that these results settle the long-standing conjecture
by Ghosh [13] regarding the existence of constant-factor
approximation algorithms for these problem, which has been
open since 1987 despite several attempts by researchers.

In each of our algorithms, P is first partitioned into
a hierarchy of weak visibility polygons according to the
link distance from a starting vertex (see Figure 6). This
partitioning is very similar to the window partitioning given
by Suri [27], [28] in the context of computing minimum link
paths. Then, starting with the farthest level in the hierarchy
(i.e. the set of weak visibility polygons that are at the
maximum link distance from the starting vertex), the entire
hierarchy is traversed backward level by level, and at each
level, vertex guards (of two types, viz. inside and outside)
are placed for guarding every weak visibility polygon at that
level of P . At every level, a novel procedure is used that has
been developed for placing guards in (i) a simple polygon
that is weakly visible from an internal chord, or (ii) a union
of overlapping polygons that are weakly visible from multiple
disjoint internal chords. Note that these chords are actually
the constructed edges introduced during the hierarchical
partitioning of P .

Due to partitioning according to link distances, guards can
only see points within the adjacent weak visibility polygons
in the hierarchical partitioning of P . This property locally
restricts the visibility of the chosen guards, and thereby
ensures that the approximation bound on the number of vertex
guards placed by our algorithms at any level leads directly to
overall approximation bounds for guarding P . Thus, a constant
factor approximation bound on the overall number of guards
placed by our algorithms is a direct consequence of choos-
ing vertex guards in a judicious manner for guarding each
collection of overlapping weak visibility polygons obtained
from the hierarchical partitioning of P . Our algorithms exploit
several deep visibility structures of simple polygons which are

interesting in their own right.

II. PRELIMINARY DEFINITIONS AND NOTATIONS

Let P be a simple polygon. Assume that the vertices of P
are labelled v1, v2, . . . , vn in clockwise order. Let V(P ) denote
the set of all vertices. Let bdc(p, q) (or bdcc(p, q)) denote the
clockwise (respectively, counterclockwise) boundary of P
from a vertex p to another vertex q. Note that by definition
bdc(p, q) = bdcc(q, p). Also, we denote the entire boundary
of P by bd(P ). So, bd(P ) = bdc(p, p) = bdcc(p, p) for any
chosen vertex p belonging to P .

The visibility polygon of P from a point z,
denoted as VP(z), is defined to be the set of all
points of P that are visible from z. In other words,
VP(z) = {q ∈ P : q is visible from z}. Observe that
the boundary of VP(z) consists of polygonal edges and
non-polygonal edges. We refer to the non-polygonal edges as
constructed edges. Note that one point of a constructed edge
is a vertex (say, vi) of P , while the other point (say, ui) lies
on bd(P ). Moreover, the points z, vi and ui are collinear (see
Figure 5).

Let bc be an internal chord or an edge of P . A point q
of P is said to be weakly visible from bc if there exists a
point z ∈ bc such that q is visible from z. The set of all
such points of P is said to be the weak visibility polygon of
P from bc, and denoted as VP(bc). If VP(bc) = P , then
P is said to be weakly visible from bc. Like VP(z), the
boundary of VP(bc) also consists of polygonal edges and
constructed edges viui (see Figure 5). If z (or bc) does not
belong to bdc(viui), then viui is called a left constructed
edge of VP(z) (respectively, VP(bc)). Otherwise, viui is
called a right constructed edge. For any constructed edge
viui of VP(bc) (or VP(z)), observe that viui divides P
into two subpolygons. One of the subpolygons is bounded
by bdc(vi, ui) and viui, whereas the other one is bounded
by bdcc(vi, ui) and viui. Out of these two, the subpolygon
that does not contain bc (respectively, z) is referred to as the
pocket of viui, and is denoted by P (viui) (see Figure 5).
If viui is a left (or right) constructed edge, then P (viui) is
called a left pocket (or right pocket).

A link path between two points s and t in P is a path
inside P that connects s and t by a chain of line segments
called links. A minimum link path between s and t is a link
path connecting s and t that has the minimum number of
links. Observe that there may be several different minimum
link paths between s and t. The link distance between any
two points of P is defined to be the number of links in a
minimum link path between them.

III. PARTITIONING A SIMPLE POLYGON INTO WEAK
VISIBILITY POLYGONS

Our partitioning algorithm partitions P into regions
according to their link distance from v1. The algorithm



starts by computing VP(v1), which is the set of all points
of P whose link distance from v1 is 1. Let us denote
VP(v1) as V1,1. Then the algorithm computes the weak
visibility polygons from every constructed edge of V1,1. Let
vk(1)uk(1), vk(2)uk(2), . . . , vk(c)uk(c) denote the constructed
edges of V1,1 along bd(P ) in clockwise order from v1,
where c is the number of constructed edges in V1,1. Then
the algorithm removes V1,1 from P . It can be seen that the
remaining polygon P \ V1,1 consists of c disjoint polygons
P (vk(1)uk(1)), P (vk(2)uk(2)), . . . , P (vk(c)uk(c)). For each
j ∈ {1, 2, . . . , c}, the weak visibility polygon VP(vk(j)uk(j))
is computed inside the pocket P (vk(j)uk(j)), and it is denoted
as V2,j , i.e. V2,j = VP(vk(j)uk(j)) ∩ P (vk(j)uk(j)). Let
W1 = {V1,1} and W2 =

⋃c
j=1{V2,j}. Observe that W2 is the

set of all the disjoint regions of P , such that every point of
each disjoint region in W2 is at link distance two from v1.
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Fig. 6. Figure showing the partitioning of a simple polygon into visibility
windows.

Repeating the same process, the algorithm computes
W3,W4, . . . ,Wd, where d denotes the maximum link distance
of any point of P from v1. Note that it is not possible

for any visibility polygon belonging to Wd =
⋃c

j=1 Vd,j to
have any constructed edge. Therefore, no further visibility
polygon is computed. Hence, P = W1 ∪ W2 ∪ . . .Wd =
V1,1 ∪V2,1 ∪V2,2 ∪ . . .∪Vd,1 ∪Vd,2 ∪ . . .. Thus, the algorithm
returns the set W =

⋃d
i=1Wi, which is a partition of P . We

present the pseudocode for the entire partitioning algorithm
below as Algorithm III.1.

Algorithm III.1 An algorithm for partitioning P
1: Compute VP(v1)
2: V1,1 ← VP(v1), W1 ← {V1,1}
3: C ← ⋃

s∈W1
(constructed edges of s), c← |C|

4: W ←W1, i← 1
5: while c > 0 do
6: i← i+ 1, Wi ← ∅
7: for j = 1 to c do
8: Vi,j ← VP(vk(j)uk(j)) ∩ P (vk(j)uk(j))
9: Wi ←Wi ∪ {Vi,j}

10: end for
11: W ←W ∪Wi

12: C ← ⋃
s∈Wi

(constructed edges of s), c← |C|
13: end while
14: return W =0

Figure 6 shows the outcome of running Algorithm
III.1 on a simple polygon P having 31 vertices, where
the maximum link distance of any point of P from
v1 is 5. The algorithm returns the partition W =
{V1,1, V2,1, V2,2, V3,1, V3,2, V3,3,, V4,1, V4,2, V5,1, V5,2, V5,3}.

It can be seen that Algorithm III.1, as stated above, requires
O(n2) time, since the visibility polygons are computed sep-
arately. However, the running time can be improved to O(n)
by using the partitioning method given by Suri [27], [28]
in the context of computing minimum link paths. Using the
algorithm of Hershberger [29] for computing visibility graphs
of P , Suri’s algorithm computes weak visibility polygons from
selected constructed edges. The same method can be used to
compute weak visibility polygons from all constructed edges
of visibility polygons in W in O(n) time. The visibility graph
of P is a graph which has a node corresponding to every
vertex of P and there is an edge between a pair of nodes if
and only if the corresponding pair of vertices are visible from
each other in P . We summarize the result as follows.

Theorem 1: A simple polygon P can be partitioned into
visibility polygons according to their link distance from any
vertex in O(n) time.

IV. TRAVERSING THE HIERARCHY OF VISIBILITY
POLYGONS

Our algorithm for placement of vertex guards uses the
hierarchy of visibility polygons W , as computed in Sec-
tion III. Let Sd, Sd−1, . . . , S2, S1 be the set of vertex
guards chosen for guarding vertices of visibility polygons
in Wd,Wd−1, . . . ,W2,W1 respectively. Since W1 = {V1,1}
and V1,1 = VP(v1), we have S1 = {v1}. So the algorithm



essentially has to decide guards in Sd, Sd−1, . . . , S2. We have
the following observation.

Lemma 2: For 2 ≤ i < d, every vertex guard in Si belongs
to some visibility polygon in Wi+1 ∪ Wi ∪ Wi−1, whereas
every vertex guard in Sd belongs to some visibility polygon
in Wd ∪Wd−1.

As can be seen from Lemma 2, the placement of guards is
locally restricted to visibility polygons belonging to adjacent
levels in the partition hierarchy W . We formalize this
intuition by introducing the notion of the partition tree of P ,
which is a dual graph denoted by T . Each visibility polygon
Vi,j ∈ W is represented as a vertex of T (also denoted by
Vi,j), and two vertices of T are connected by an edge in T
if and only if the corresponding visibility polygons share a
constructed edge. Treating V1,1 as the root of T , the standard
parent-child-sibling relationships can be imposed between the
visibility polygons in W .

Our algorithm starts off by guarding all vertices belonging
to the visibility polygons in Wd = {Vd,1, Vd,2, . . . }, which
are effectively the nodes of T furthest from the root V1,1.
The algorithm scans Vd,1,Vd,2,. . . separately for identifying
the respective guards in Sd. We know from Lemma 2 that
every vertex guard in Sd belongs to some visibility polygon
in Wd ∪ Wd−1. Consider a particular Vd,k ∈ Wd, and let
Vd−1,j ∈ Wd−1 be the parent of Vd,k in T . Consider the
constructed edge vkuk between Vd,k and Vd−1,j . For guarding
the vertices of Vd,k = VP(vkuk) \ Vd−1,j , it is enough to
focus on the subpolygon Q consisting of Vd,k itself and
the portion of Vd−1,j that is weakly visible from vkuk. So,
the subproblem of guarding Vd,k (or any other visibility
polygon belonging to Wd) essentially reduces to placing
vertex guards in a polygon containing a weak visibility chord
vu (corresponding to vkuk in the original subproblem) in
order to guard only the vertices lying on one side of uv;
however, vertex guards can be chosen freely from either side
of the chord uv.

Instead of guarding each weak visibility polygon Q
separately, common vertex guards can be placed by traversing
the boundary of overlapping weak visibility polygons. Let us
explain by considering any Vd−1,j ∈ Wd−1. Let us denote
the constructed edges that are shared between Vd−1,j and the
m children of Vd−1,j as vj(1)uj(1), vj(2)uj(2), . . . , vj(m)uj(m)

respectively. Using all these constructed edges, let us
construct the weak visibility polygons VP(vj(1)uj(1)),
VP(vj(2)uj(2)), . . . , VP(vj(m)uj(m)). Observe that
each such weak visibility polygon is divided into two
portions by the corresponding constructed edge; one of
the portions forms a child of Vd−1,j belonging to Wd,
whereas the other portion is a subregion of Vd−1,j itself.
Moreover, for several of the weak visibility polygons
among VP(vj(1)uj(1)),VP(vj(2)uj(2)), . . . ,VP(vj(m)uj(m)),
the second portions may have overlapping subregions
in Vd−1,j . Thus, there may exist vertex guards in these
overlapping subregions that can see portions of several of

the children of Vd−1,j . Therefore, for guarding vertices
of polygons from Wd, let us extend the definition of Q
to be the union of all the overlapping weak visibility
polygons defined by the constructed edges corresponding
to the children of each Vd−1,j . For instance, consider
the constructed edges v17u17, v21u21 and v23u23 on the
boundary of V4,1 in Figure 6; for guarding the corresponding
children V5,1, V5,2 and V5,3 respectively, we define Q as
VP(v17u17) ∪ VP(v21u21) ∪ VP(v23u23) and traverse Q.

After having successively computed Sd for guard-
ing vertices belonging to visibility polygons in Wd =
{Vd,1, Vd,2, . . . }, the algorithm next computes Sd−1 for guard-
ing vertices belonging to visibility polygons in Wd−1 =
{Vd−1,1, Vd−1,2, . . . }. Since all vertices belonging to visibil-
ity polygons in Wd are already marked by guards chosen
belonging to Sd, all remaining unmarked vertices of P can
have link distance at most d − 1 from v1. So, any weak
visibility polygon Vd−1,k ∈ Wd−1 can now be treated as
a weak visibility polygon that is the farthest link distance
from v1. Therefore, the guards of Sd−1 are chosen in a
similar way as those of Sd. It can be seen that this same
method can be used for computing Si for every i < d.
Thus, in successive phases, our algorithm computes the guard
sets Sd, Sd−1, Sd−2, . . . , S2 for guarding vertices belonging to
visibility polygons in Wd,Wd−1,Wd−2, . . . ,W2 respectively,
until it finally terminates after placing a single guard at v1
for guarding vertices of V1,1 ∈ W1. The final guard set
S = Sd ∪ Sd−1 ∪ Sd−2 ∪ · · · ∪ S2 ∪ S1 returned by the
algorithm guards all vertices of P . The pseudocode for the
entire algorithmic framework is provided below.

Algorithm IV.1 Algorithm for computing a guard set S from
the partition tree T rooted at v1

1: Initialize all vertices of P as unmarked
2: d← number of levels in the partition tree T
3: for each i ∈ {d− 1, . . . , 3, 2, 1} do
4: Si+1 ← ∅
5: ci ← |Wi| {ci denotes the number of nodes at the ith

level of T}
6: for each j ∈ {1, 2, . . . , ci} do
7: Place new guards in Si+1 for guarding every un-

marked vertex of all children of Vi,j
8: Mark all vertices of P that are visible from the new

guards added to Si+1

9: end for
10: end for
11: S1 ← {v1}
12: return S = Sd ∪ Sd−1 ∪ Sd−2 ∪ · · · ∪ S2 ∪ S1 =0

V. CONCLUSIONS

Using the algorithmic framework described above, we ob-
tained three approximation algorithms for guarding a simple
n-sided polygon P using vertex guards, which we have sum-
marized in the following theorems [30].



Theorem 3: A set G of vertex guards for guarding all
vertices of P can be computed in O(n4) time, such that
|G| ≤ 18 × |Gopt|, where Gopt is a an optimal vertex guard
set for guarding all vertices of P . [30]

Theorem 4: A set G of vertex guards for guarding the entire
boundary of P can be computed in O(n5) time, such that
|G| ≤ 18 × |Gopt|, where Gopt is a an optimal vertex guard
set for guarding the entire boundary of P . [30]

Theorem 5: A set G of edge guards for guarding the entire
interior and boundary of P can be computed in O(n5) time,
such that |G| ≤ 27×|Gopt|, where Gopt is a an optimal vertex
guard set for guarding the entire interior of P . [30]

These algorithms can be easily modified to obtain the same
approximation bounds while using edge guards as well. We
also believe that suitable modifications of our algorithm
may lead to constant-factor approximations for the version
of the problem that uses perimeter guards, which is still
open. Though the approximation ratios for our algorithms are
slightly on the higher side, they do successfully settle the long-
standing conjecture by Ghosh by providing constant-factor
approximation algorithms for these problems. We feel that, in
practice, our algorithms will provide guard sets that are much
closer in size to an optimal solution. Our algorithms exploit
several deep visibility structures of simple polygons which are
interesting in their own right.
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