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a b s t r a c t

The art gallery problem enquires about the least number of guards that are sufficient
to ensure that an art gallery, represented by a polygon P , is fully guarded. In 1998, the
problems of finding the minimum number of point guards, vertex guards, and edge guards
required to guard P were shown to be APX-hard by Eidenbenz, Widmayer and Stamm.
In 1987, Ghosh presented approximation algorithms for vertex guards and edge guards
that achieved a ratio of O(log n), which was improved up to O(log logOPT ) by King and
Kirkpatrick (2011). It has been conjectured that constant-factor approximation algorithms
exist for these problems. We settle the conjecture for the special class of polygons that
are weakly visible from an edge and contain no holes by presenting a 6-approximation
algorithm for finding the minimum number of vertex guards that runs in O(n2) time. On
the other hand, for weak visibility polygons with holes, we present a reduction from the
Set Cover problem to show that there cannot exist a polynomial time algorithm for the
vertex guard problem with an approximation ratio better than ((1 − ϵ)/12) ln n for any
ϵ > 0, unless NP = P . We also show that, for the special class of polygons without holes
that are orthogonal as well as weakly visible from an edge, the approximation ratio can be
improved to 3. Finally, we consider the point guard problem and show that it is NP-hard in
the case of polygons weakly visible from an edge.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The art gallery problem and its variants

The art gallery problem enquires about the least number of guards that are sufficient to ensure that an art gallery
(represented by a polygon P) is fully guarded, assuming that a guard’s field of view covers 360° as well as an unbounded
distance. This problem was first posed by Victor Klee in a conference in 1973, and in the course of time, it has turned into
one of the most investigated problems in computational geometry.

A polygon P is defined to be a closed region in the plane bounded by a finite set of line segments, called edges of P , such
that, between any two points of P , there exists a path which does not intersect any edge of P . If the boundary of a polygon
P consists of two or more cycles, then P is called a polygon with holes (see Fig. 1). Otherwise, P is called a simple polygon or a
polygon without holes (see Fig. 2).

An art gallery can be viewed as an n-sided polygon P (with or without holes) and guards as points inside P . Any point
z ∈ P is said to be visible from a guard g if the line segment zg does not intersect the exterior of P (see Figs. 1 and 2).
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Fig. 1. Polygon with holes.

Fig. 2. Polygon without holes.

In general, guards may be placed anywhere inside P . If the guards are allowed to be placed only on vertices of P , they are
called vertex guards. If there is no such restriction, guards are called point guards. Point and vertex guards together are also
referred to as stationary guards. If guards are allowed to patrol along a line segment inside P , they are called mobile guards.
If they are allowed to patrol only along the edges of P , they are called edge guards [17,28].

In 1975, Chvátal [8] showed that ⌊ n3⌋ stationary guards are sufficient and sometimes necessary (see Fig. 3) for guarding a
simple polygon. In 1978, Fisk [15] presented a simpler andmore elegant proof of this result. For a simple orthogonal polygon,
whose edges are either horizontal or vertical, Kahn et al. [22] and also O’Rourke [27] showed that ⌊ n4⌋ stationary guards are
sufficient and sometimes necessary (see Fig. 4).

1.2. Related hardness and approximation results

The decision version of the art gallery problem is to determine, given a polygon P and a number k as input, whether the
polygon P can be guarded with k or fewer guards. The problem was first proved to be NP-complete for polygons with holes
by O’Rourke and Supowit [29]. For guarding simple polygons, it was proved to be NP-complete for vertex guards by Lee and
Lin [25], and their proof was generalized to work for point guards by Aggarwal [1]. The problem is NP-hard even for simple
orthogonal polygons as shown by Katz and Roisman [23] and Schuchardt andHecker [30]. Each one of these hardness results
hold irrespective of whether we are dealing with vertex guards, edge guards, or point guards.

In 1987, Ghosh [16,18] provided an O(log n)-approximation algorithm for the case of vertex and edge guards by
discretizing the input polygon and treating it as an instance of the Set Cover problem. In fact, applying methods for the
Set Cover problem developed after Ghosh’s algorithm, it is easy to obtain an approximation factor of O(logOPT ) for vertex
guarding simple polygons or O(log h logOPT ) for vertex guarding a polygon with h holes. Deshpande et al. [9] obtained
an approximation factor of O(logOPT ) for point guards or perimeter guards by developing a sophisticated discretization
method that runs in pseudopolynomial time. Efrat and Har-Peled [11] provided a randomized algorithm with the same
approximation ratio that runs in fully polynomial expected time. For guarding simple polygons using vertex guards and
perimeter guards, King and Kirkpatrick [24] obtained an approximation ratio of O(log logOPT ) in 2011.

In 1998, Eidenbenz, Stamm and Widmayer [12,13] proved that the problem is APX-complete, implying that an
approximation ratio better than a fixed constant cannot be achieved unless P = NP. They also proved that if the
input polygon is allowed to contain holes, then there cannot exist a polynomial time algorithm for the problem with an
approximation ratio better than ((1 − ϵ)/12) ln n for any ϵ > 0, unless NP ⊆ TIME(nO(log log n)). Contrastingly, in the case
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Fig. 3. A polygon where ⌊ n3 ⌋ stationary guards are necessary.

Fig. 4. A polygon where ⌊ n4 ⌋ stationary guards are necessary.

of simple polygons without holes, the existence of a constant-factor approximation algorithm for vertex guards and edge
guards has been conjectured by Ghosh [16,19] since 1987. However, this conjecture has not yet been settled even for special
classes of polygons such as rectilinear, weak visibility, or LR-visibility polygons [17].

1.3. Our contributions

A polygon P is said to be aweak visibility polygon if every point in P is visible from some point of an edge [17]. In Section 2,
wepresent a 6-approximation algorithm,whichhas running timeO(n2), for vertex guarding polygons that areweakly visible
from an edge and contain no holes. This result can be viewed as a step forward towards solving Ghosh’s conjecture for a
special class of polygons. Then, in Section 3, by presenting a reduction from Set Cover we show that, for the special class
of polygons containing holes that are weakly visible from an edge, there cannot exist a polynomial time algorithm for the
vertex guard problem with an approximation ratio better than ((1 − ϵ)/12) ln n for any ϵ > 0, unless NP = P . Next, in
Section 4, we show that, for the special class of polygons without holes that are orthogonal as well as weakly visible from
an edge, the approximation ratio can be improved to 3. Finally, in Section 5, we consider the point guard problem in weak
visibility polygons and prove that it is NP-hard by showing a reduction from the decision version of the minimum line cover
problem.

2. Placement of vertex guards in weak visibility polygons

Let P be a simple polygon. If there exists an edge uv in P (where u is the next clockwise vertex of v) such that P is weakly
visible from uv, then it can be located in O(n2) time [4,20]. Henceforth, we assume that such an edge uv has been located.
Let bdc(p, q) (or, bdcc(p, q)) denote the clockwise (respectively, counterclockwise) boundary of P from a vertex p to another
vertex q. Note that, by definition, bdc(p, q) = bdcc(q, p). The visibility polygon of P from a point z, denoted by VP(z), is defined
to be the set of all points in P that are visible from z. In other words, VP(z) = {q ∈ P : q is visible from z}.

The shortest path tree of P rooted at any point s of P , denoted by SPT (s), is the union of Euclidean shortest paths from s to
all the vertices of P (see Fig. 5). This union of paths is a planar tree, rooted at r , which has n nodes, namely the vertices of P .
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Fig. 5. Euclidean shortest path tree rooted at s. The parents of vertices x, y and z in SPT (s) are marked as ps(x), ps(y) and ps(z) respectively.

For every vertex x of P , let pu(x) and pv(x) denote the parent of x in SPT (u) and SPT (v) respectively. In the same way, for
every interior point y of P , let pu(y) and pv(y) denote the vertex of P next to y in the Euclidean shortest path to y from u and
v respectively.

2.1. Guarding all vertices of a polygon

Suppose a guard is placed on each non-leaf vertex of SPT (u) and SPT (v). It is obvious that these guards see all points of
P . However, the number of guards required may be very large compared to the size of an optimal guarding set. In order to
reduce the number of guards, placing guards on every non-leaf vertex should be avoided. Let A be a subset of vertices of P .
Let SA denote the set which consists of the parents pu(z) and pv(z) of every vertex z ∈ A. Then, A should be chosen such that
all vertices of P are visible from guards placed at vertices of SA. We present a method for choosing A and SA as follows:-

Algorithm 2.1 An O(n2)-algorithm for computing a guard set SA for all vertices of P
1: Compute SPT (u) and SPT (v)
2: Initialize all the vertices of P as unmarked
3: Initialize A← ∅, SA ← ∅ and z ← u
4: while z ≠ v do
5: z ← the vertex next to z in clockwise order on bdc(u, v)
6: if z is unmarked then
7: A← A ∪ {z} and SA ← SA ∪ {pu(z), pv(z)}
8: Place guards on pu(z) and pv(z)
9: Mark all vertices of P that become visible from pu(z) or pv(z)

10: end if
11: end while
12: return the guard set SA

Lemma 1. Any guard g ∈ Sopt that sees vertex z of P must lie on bdc(pu(z), pv(z)).

Proof. Since pu(z) is the parent of z in SPT (u), z cannot be visible from any vertex of bdc(u, pu(z)), except pu(z). Similarly,
since pv(z) is the parent of z in SPT (v), z cannot be visible from any vertex of bdcc(v, pv(z)), except pv(z). Hence, any guard
g ∈ Sopt that sees z must lie on bdc(pu(z), pv(z)). �

Now, assume a special condition such that for every vertex z ∈ A, all vertices of bdc(pu(z), pv(z)) are visible from pu(z)
or pv(z). We prove that, in such a situation, |SA| ≤ 2|Sopt |, where Sopt denotes an optimal vertex guard set.
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Fig. 6. Case in Lemma 2 where the segment qpv(z) is intersected by bdc(u, pu(z)).

Lemma 2. Let z be a vertex of P such that all vertices of bdc(pu(z), pv(z)) are visible from pu(z) or pv(z). For every vertex x
lying on bdc(pu(z), pv(z)), if x sees a vertex q of P, then q must also be visible from pu(z) or pv(z).

Proof. If q lies on bdc(pu(z), pv(z)), then it is visible from pu(z) or pv(z) by assumption. So, consider the case where q lies on
bdcc(pu(z), pv(z)). Now, either q lies on bdc(u, pu(z)) or q lies on bdcc(v, pv(z)). In the former case, if bdcc(q, pv(z)) intersects
the segment qpv(z), then q or pv(z) is not weakly visible from uv (see Fig. 6). Moreover, no other portion of the boundary
can intersect qpv(z) since qx and zpv(z) are internal segments. Hence, qmust be visible from pv(z). Analogously, if q lies on
bdcc(v, pv(z)), qmust be visible from pu(z). �

Lemma 3. Assume that every vertex z ∈ A is such that every vertex of bdc(pu(z), pv(z)) is visible from pu(z) or pv(z). Then,
|A| ≤ |Sopt |.

Proof. Assume on the contrary that |A| > |Sopt |. This implies that Algorithm 2.1 includes two distinct vertices z1 and z2
belonging to A which are both visible from a single guard g ∈ Sopt . Moreover, it follows from Lemma 1 that g must lie on
bdc(pu(z1), pv(z1)). Without loss of generality, let us assume that vertex z1 is added to A before z2 by Algorithm 2.1. In that
case, Algorithm 2.1 places guards at pu(z1) and pv(z1). Now, as vertex z2 is visible from g , it follows from Lemma 2 that z2 is
also visible from pu(z1) or pv(z1). Therefore, z2 is already marked, and hence, Algorithm 2.1 does not include z2 in A, which
is a contradiction. �

Lemma 4. |SA| = 2|A|.

Proof. For every z ∈ A, since Algorithm 2.1 includes both the parents pu(z) and pv(z) of z in SA, it is clear that |SA| ≤ 2|A|. If
both the parents of every z ∈ A are distinct, then |SA| = 2|A|. Otherwise, there exists two distinct vertices z1 and z2 in A that
share a common parent, say p. Without loss of generality, let us assume that vertex z1 is added to A before z2 by Algorithm
2.1. In that case, Algorithm 2.1 places a guard at p, which results in z2 getting marked. Thus, Algorithm 2.1 cannot include z2
in A, which is a contradiction. Hence, it must be the case that |SA| = 2|A|. �

Lemma 5. If every vertex z ∈ A is such that all vertices of bdc(pu(z), pv(z)) are visible from pu(z) or pv(z), then |SA| ≤ 2|Sopt |.

Proof. By Lemma 4, |SA| = 2|A|. By Lemma 3, |A| ≤ |Sopt |. So, |SA| = 2|A| ≤ 2|Sopt |. �

The above bound does not hold if there exists z ∈ A such that some vertices of bdc(pu(z), pv(z)) are not visible from pu(z)
or pv(z). Consider Fig. 7. For each i ∈ {1, 2, . . . , k− 1}, zi+1 is not visible from pu(zi) or pv(zi), which forces Algorithm 2.1 to
place guards at pu(zi+1) and pv(zi+1). Therefore, Algorithm 2.1 includes z1, z2, z3, . . . , zk in A and places a total of 2k guards
at vertices u, pv1, pu2, pv2, . . . , puk, pvk, where puj = pu(zj) and pvj = pv(zj) for all j ∈ {1, 2, . . . , k}. However, all vertices of
P are visible from just two guards placed at u and g . Hence, |SA| = 2k whereas |Sopt | = 2. Since the construction in Fig. 7
can be extended for any arbitrary integer k, |SA| can be arbitrarily large compared to |Sopt |. So, we present a new algorithm
which gives us a 4-approximation.

In the new algorithm, bdc(u, v) is scanned to identify a set of unmarked vertices, denoted as B, such that all vertices of
P are visible from guards in SB = {pu(z)|z ∈ B} ∪ {pv(z)|z ∈ B}. However, unlike the previous algorithm (see Algorithm
2.1), the new algorithm (see Algorithm 2.2) does not blindly include in B every next unmarked vertex that it encounters
during the scan. During the scan, if z denotes the current unmarked vertex being considered, then it may either choose to
include z in B or skip ahead to the next unmarked vertex along the scan depending on certain properties of z. At the end of
each iteration of the outer while-loop (running from line 4 to line 22), Algorithm 2.2 maintains the invariant that, for every
unmarked vertex y of bdc(u, z) (excluding z), pu(y) and pv(y) see all unmarked vertices of bdc(pu(y), y). Let z ′ denote the
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Fig. 7. An instance where the guard set SA computed by Algorithm 2.1 is arbitrarily large compared to an optimal guard set Sopt .

Fig. 8. All vertices of bdc(z, pv(z)) are already marked due to guards at g1 & g2 .

next unmarked vertex of bdc(z, pv(z)) in clockwise order from z such that z ′ is not visible from either pu(z) or pv(z). Note
that, depending on the current vertex z, z ′ may or may not exist. However, one of the following four mutually exclusive
scenarios must be true.

(A) Every vertex of bdc(z, pv(z)) is already marked due to guards currently included in SB (see Fig. 8).
(B) Every unmarked vertex of bdc(z, pv(z)) is visible from pu(z) or pv(z) (see Fig. 9).
(C) Not every unmarked vertex of bdc(pu(z ′), z ′) is visible from pu(z ′) or pv(z ′) (see Fig. 10).
(D) Every unmarked vertex of bdc(pu(z ′), z ′) is visible from pu(z ′) or pv(z ′) (see Fig. 11).

If z satisfies property (A) or (B), then z is included in B and the first unmarked vertex of bdc(pv(z), v) in clockwise order
from pv(z)becomes the new z (see lines 6–9 of Algorithm2.2). If z satisfies property (C), then z is included in B and z ′ becomes
the new z. If z satisfies property (D), then z ′ becomes the new z (see lines 11–14 of Algorithm 2.2). Whenever z is included
in B, pu(z) and pv(z) are included in SB and all unmarked vertices that become visible from pu(z) or pv(z) are marked. After
doing so, if there remain unmarked vertices on bdcc(z, u), then bdcc(z, u) is scanned from z in counterclockwise order and
more guards are included in SB according to the following strategy (see lines 15–20 of Algorithm 2.2).

(i) y← pu(z)
(ii) Scan bdcc(y, u) from y in counterclockwise till an unmarked vertex x is located.
(iii) Add x to B. Add pu(x) and pv(x) to SB.
(iv) Mark every vertex visible from pu(x) or pv(x).
(v) y← pu(x)
(vi) Repeat steps (ii)–(v) until all vertices of bdcc(z, u) are marked.
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Fig. 9. The only unmarked vertex y of bdc(z, pv(z)) is visible from pv(z).

Initially, z is chosen to be u itself (see line 3 of Algorithm 2.2). Then, for each z under consideration along the clockwise
scan of bdc(u, v), the appropriate action is performed corresponding to the property of z. Then, z is updated and the process
is repeated until v is reached. The set of vertices SB is returned by the algorithm (see line 23 of Algorithm 2.2) as a guard set.
The entire process is described in pseudocode below as Algorithm 2.2.

Algorithm 2.2 An O(n2)-algorithm for computing a guard set S for all vertices of P
1: Compute SPT (u) and SPT (v)
2: Initialize all the vertices of P as unmarked
3: Initialize B← ∅, SB ← ∅ and z ← u
4: while there exists an unmarked vertex in P do
5: z ← the first unmarked vertex on bdc(u, v) in clockwise order from z
6: if every unmarked vertex of bdc(z, pv(z)) is visible from pu(z) or pv(z) then
7: B← B ∪ {z} and SB ← SB ∪ {pu(z), pv(z)}
8: Mark all vertices of P that become visible from pu(z) or pv(z)
9: z ← pv(z)

10: else
11: z ′ ← the first unmarked vertex on bdc(z, v) in clockwise order
12: while every unmarked vertex of bdc(pu(z ′), z ′) is visible from pu(z ′) or pv(z ′) do
13: z ← z ′ and z ′ ← the first unmarked vertex on bdc(z ′, v) in clockwise order
14: end while
15: w← z
16: while there exists an unmarked vertex on bdc(u, z) do
17: B← B ∪ {w} and SB ← SB ∪ {pu(w), pv(w)}
18: Mark all vertices of P that become visible from pu(w) or pv(w)
19: w← the first unmarked vertex on bdcc(w, u) in counterclockwise order
20: end while
21: end if
22: end while
23: return the guard set S = SB

Let us try to show an upper bound on S, by constructing a bipartite graph G = (B ∪ Sopt , E) such that the degree of each
vertex in B is exactly 1 and the degree of each vertex in Sopt is at most 2. Let us denote by bi the ith vertex included in B
during the runtime of the algorithm. By Lemma 1, each guard Sopt that sees bi must be a vertex of bdc(pu(bi), pv(bi)). We
construct the graph G by initially choosing, for each bi ∈ B, a guard g ∈ Sopt that sees bi and adding an edge gbi to E, which
immediately implies that the degree of each vertex in G belonging to B is exactly 1. Note that, a single guard g ∈ Sopt may see
multiple vertices of B, and it may therefore have degree greater than 1 in G. By carefully reviewing some of the associations
between guards in Sopt and vertices in B, and making some adjustments to the set of edges E, let us attempt to restrict to at
most 2 the degree of each vertex in G that belongs to Sopt .

In order to enforce this degree restriction, let us consider a guard g ∈ Sopt that sees three distinct vertices bi, bj, bk ∈ B,
where i < j < k and for any l such that i < l < j or j < l < k, vertex bl is not visible from g . Now, by Lemma 2, bj or bk cannot



116 P. Bhattacharya et al. / Discrete Applied Mathematics 228 (2017) 109–129

Fig. 10. Guards at pu(z ′) and pv(z ′) do not see the unmarked vertex y of bdc(pu(z ′), z ′).

Fig. 11. Guards at pu(z ′) and pv(z ′) see all unmarked vertices of bdc(pu(z ′), z ′).

lie on bdcc(pu(bi), pv(bi)), since any vertex visible from g that lies on bdcc(pu(bi), pv(bi)) is marked by Algorithm 2.2 when
vertex bi is included in B. Also, due to the invariance maintained by Algorithm 2.2, every unmarked vertex of bdc(pu(bi), bi)
is visible from pu(bi) or pv(bi) when bi is first considered as the current vertex, and is therefore marked by Algorithm 2.2
when vertex bi is included in B. So, bj or bk cannot lie on bdc(pu(bi), bi). Thus, both bj and bk must lie on bdc(bi, pv(bi)).

Suppose the vertex bi is included in B because it satisfies property (A) or (B), that is every unmarked vertex of
bdc(bi, pv(bi)) is visible from pu(bi) or pv(bi), when it is considered to be the current vertex by Algorithm 2.2. Then, the
vertices bj and bk cannot exist. So, it must be the case that vertex bi satisfies property (C) or (D). Let us consider these two
cases separately.

If the vertex bi satisfies property (C), that is, if we consider the next unmarked vertex b′i in clockwise order, not every
unmarked vertex lying on bdc(pu(b′i), b

′

i) is visible from pu(b′i) or pv(b′i). Since there do not exist any unmarked vertices on
bdc(bi, b′i), it must be the case that pu(b′i) lies on bdc(u, pu(bi)) and there exists a vertex xi lying on bdc(pu(bi), bi) such that xi
is not visible from pu(b′i) or pv(b′i). As xi is not visible from pv(b′i), xi is not visible from any vertex that lies on bdc(b′i, pv(b′i)).
Now, let us consider separately the following two subcases—(i) bj and b′i are the same vertex, or pv(bj) lies on bdc(bj, pv(b′i));
and, (ii) pv(b′i) lies on bdc(b′i, pv(bj)).

If bj and b′i are the same vertex or pv(bj) lies on bdc(bj, pv(b′i)), then xi is not visible from any vertex that lies on
bdc(bj, pv(bj)). So, if we consider any guard g ′ ∈ Sopt that sees xi, g ′ cannot lie on bdc(bj, pv(bj)). Note that the inclusion
of bj in B implies that bj is not visible from pu(bi) or pv(bi). Let qu be the vertex closest to bj on the Euclidean shortest path
from pu(bi) to bj. Since pu(bi) must lie on bdc(u, pu(xi)), if g ′ lies on bdc(pu(bj), qu), then g ′ cannot see bj. Also, g ′ cannot
lie on bdc(qu, bj), since no vertex on bdc(qu, bj) is visible from xi. Hence, any guard g ′ ∈ Sopt which sees xi must lie outside
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bdc(pu(bj), pv(bj)) and therefore be distinct from g . So, in this case, we delete the edge gbi in G and insert the edge g ′bi
instead, thereby restricting the degree of g in G to 2.

If pv(b′i) lies on bdc(b′i, pv(bj)) (see Fig. 12), then there must exist a vertex bl ∈ B such that i < l < j and bl lies on
bdc(bi, bj). So, by our initial assumption, any guard g ′′ ∈ Sopt that sees bl must be distinct from g . So, in this case, we delete
the edge gbi in G and insert the edge g ′′bi instead, thereby restricting the degree of g in G to 2.

If the vertex bi satisfies property (D), that is every unmarked vertex lying on bdc(pu(b′i), b
′

i) is visible from pu(b′i) or pv(b′i)
when it is first considered to be the current vertex by Algorithm 2.2, then b′i is skipped initially and later included in Bwhen
the algorithm backtracks to place guards for unmarked vertices lying on bdcc(pu(bi−1), u). Again, just like bi, bj cannot be
included in B because it satisfies property (A) or (B), since the existence of bk leads to a contradiction from Lemma 2. Now,
in case that vertex bj is included in B because it satisfies property (C), we can argue just as before that there exists a vertex
xj lying on bdc(pu(bj), bj) such that xj is not visible from pu(b′j) or pv(b′j), where b′j is the next unmarked vertex in clockwise
order. Moreover, it follows that there must exist some other guard g ′ ∈ Sopt distinct from g . So, in this case, we delete the
edge gbj in G and insert the edge g ′bj instead, thereby restricting the degree of g in G to 2. However, a problem arises when bj
also satisfies property (D), because thenwe cannot find some other guard in Sopt distinct from g withwhichwe can associate
it. In fact, note that we may have an arbitrarily long chain of vertices, all belonging to B, but satisfying property (D), which
can jeopardize our attempts to restrict the degree of the single guard g ∈ Sopt that sees all of them.

In order to prevent the above situation from happening, we modify our algorithm slightly. In the new algorithm, we
maintain in a separate set B′ all the vertices that are included during backtracking. At the end of the clockwise scan, when all
vertices have beenmarked,we check for redundant vertices in B′. A vertex q is considered to be redundant and removed from
the set B′ if every vertex that ismarked due to the guards placed at pu(q) and pv(q) during its inclusion is also visible from the
parents of some other vertex included later in B′. Therefore, the new algorithm implements this by running a backward scan
over the vertices included in B′, in reverse order of inclusion, and marking every unmarked vertex visible from the parents
of the current vertex under consideration. A particular vertex is eliminated during the scan if no new vertices are marked
when it is considered as the current vertex. The modified algorithm is described in pseudocode below as Algorithm 2.3.

Algorithm 2.3 An O(n2)-algorithm for computing a guard set S for all vertices of P
1: Compute SPT (u) and SPT (v)
2: Initialize all the vertices of P as unmarked
3: Initialize B← ∅, SB ← ∅, B′ ← ∅, S ′B ← ∅ and z ← u
4: while there exists an unmarked vertex in P do
5: z ← the first unmarked vertex on bdc(u, v) in clockwise order from z
6: if every unmarked vertex of bdc(z, pv(z)) is visible from pu(z) or pv(z) then
7: B← B ∪ {z} and SB ← SB ∪ {pu(z), pv(z)}
8: Mark all vertices of P that become visible from pu(z) or pv(z)
9: z ← pv(z)

10: else
11: z ′ ← the first unmarked vertex on bdc(z, v) in clockwise order
12: while every unmarked vertex of bdc(pu(z ′), z ′) is visible from pu(z ′) or pv(z ′) do
13: z ← z ′ and z ′ ← the first unmarked vertex on bdc(z ′, v) in clockwise order
14: end while
15: B← B ∪ {z} and SB ← SB ∪ {pu(z), pv(z)}
16: while there exists an unmarked vertex on bdc(u, z) do
17: w← the first unmarked vertex on bdcc(z, u) in counterclockwise order
18: B′ ← B′ ∪ {w} and S ′B ← S ′B ∪ {pu(w), pv(w)}
19: Mark all vertices of P that become visible from pu(w) or pv(w)
20: end while
21: end if
22: end while
23: Reinitialize all the vertices of P that are visible from some guard in SB as unmarked
24: for each vertex z ∈ B′ chosen in reverse order of inclusion do
25: Locate and mark each unmarked vertex visible from pu(z) or pv(z)
26: if no new vertices get marked due to guards at pu(z) or pv(z) then
27: B′ ← B′ \ {z} and S ′B ← S ′B \ {pu(w), pv(w)}
28: end if
29: end for
30: B← B ∪ B′
31: return the guard set S = SB ∪ S ′B

Observe that Algorithm 2.3 eliminates from the set B precisely those vertices which we previously found impossible to
reassociate with a different guard in Sopt , in case the initial guard with which we associated it already had edges in the
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Fig. 12. A possible situation where pv(b′i) lies on bdc(b′i, pv(bj)).

bipartite graph G incident on it from more than two vertices of B. So, if we now revisit our strategy for constructing the
bipartite graph G in order to associate guards in Sopt with guards in B (in the same way as we did the analysis for Algorithm
2.2), the following lemma must be true.

Lemma 6. In the bipartite graph G, the degree of each vertex in B is exactly 1 and degree of each vertex in Sopt is at most 2.

Corollary 7. |B| ≤ 2|Sopt |.

Theorem 8. |S| ≤ 4|Sopt |.

Proof. By arguments similar to those in the proof of Lemma 4, |SB| = 2|B|. Also, by Corollary 7, |B| ≤ 2|Sopt |. Therefore,
|S| = |SB| = 2|B| ≤ 4|Sopt |. �

2.2. Guarding all interior points of a polygon

In the previous subsection, we presented an algorithm (see Algorithm 2.2) which returns a guard set S such that all
vertices of P are visible from guards in S. However, it may not always be true that all interior points of P are also visible from
guards in S. Consider the polygon shown in Fig. 13. While scanning bdc(u, v), our algorithm places guards at pu(z) and pv(z)
as all vertices of bdc(pu(z), pv(z)) become visible from pu(z) or pv(z). Observe that in fact all vertices of P become visible
from these two guards. However, the triangular region P \ (VP(pu(z))∪VP(pv(z))), bounded by the segments x1x2, x2x3 and
x3x1, is not visible from pu(z) or pv(z). Also, one of the sides x1x2 of the triangle x1x2x3 is a part of the polygonal edge a1a2.
In fact, for any such region invisible from guards in S, one of the sides must always be a part of a polygonal edge. Otherwise,
there should exist another guard g (see Fig. 13) from which the entire polygonal side (x1x2) of the region is visible and yet
some portion of the region (including x3) is not visible. However, such a vertex g cannot be weakly visible from the edge
uv, which is a contradiction. Henceforth, any such region invisible from guards in S is referred to as an invisible cell, and the
polygonal edge which contributes as a side to the invisible cell is referred to as its corresponding partially invisible edge. One
additional guard is required in order to see each invisible cell entirely. For example, in Fig. 13, an extra guard is required at
a vertex of bdc(z, w), since none of the vertices outside this boundary can see all points of the invisible cell x1x2x3.

The boundary of the visibility polygon VP(s) of any vertex s consists of polygonal edges and constructed edges. A
constructed edge yx is an edge formed by extending the segment sy (which could be either an edge of P or an internal
segment), where y is some other vertex of P , till it touches the boundary of P at a point x. If y lies on bdc(s, x), the region of
P bounded by bdc(y, x) and xy is referred to as the left pocket of VP(z). Similarly, if y lies on bdcc(s, x), then the region of P
bounded by bdcc(y, x) and xy is referred to as the right pocket of VP(z). In both these cases, we refer to the vertex y as the lid
vertex and the point x as the lid point of the corresponding left or right pocket.

Observe that each invisible cell must be wholly contained within the intersection region (which is a triangle) of a left
pocket and a right pocket. For example, in Fig. 13, the invisible cell x1x2x3 is actually the entire intersection region of the
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Fig. 13. All vertices are visible from pu(z) or pv(z), but the triangle x1x2x3 is invisible.

Fig. 14. The left pocket of VP(pu(z)) can contain only one invisible cell.

Fig. 15. Multiple invisible cells exist within the polygon that are not visible from the guards placed at pu(z) and pv(z).

left pocket of VP(pu(z)) and the right pocket of VP(pv(z)). Also, z is the lid vertex and x2 is the lid point of the left pocket of
VP(pu(z)). Similarly, w is the lid vertex and x1 is the lid point of the right pocket of VP(pv(z)).

Suppose bdc(z, x2) contains reflex vertices (see Fig. 14). In that case, in addition to the invisible cell x1x2x3, the left pocket
of VP(pu(z)) may contain several regions that are not visible from pv(z). However, in each such region there exists a vertex,
say q, that is not visible from pv(z), which contradicts the fact that all vertices of bdc(pu(z), pv(z)) are visible from pu(z)
or pv(z). So, the left pocket of VP(pu(z)) can contain only one invisible cell. Analogously, the right pocket of VP(pv(z)) can
contain only one invisible cell.

Now consider the situation (as shown in Fig. 15) where VP(pu(z)) has several left pockets and VP(pv(z)) has several right
pockets which intersect pairwise to create multiple invisible cells. In order to guard these invisible cells, additional guards
are placed as follows. Let c1 be the lid point of the left pocket containing the first invisible cell in clockwise order. Then,
guards are placed at pu(c1) and pv(c1). Now, for every invisible cell T , the portions of T are removed that are visible from
pu(c1) or pv(c1). Note that some of these cells may turn out to be totally visible and hence may be eliminated altogether.
This process is repeated until all invisible cells become totally visible.
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Fig. 16. Placement of guards to in order to see all invisible cells.

In general, we may have a situation where multiple invisible cells are created by the intersection of the left and right
pockets of arbitrary pairs of guards belonging to S (see Fig. 16). In this scenario, all invisible cells are guarded by introducing
a set of additional guards S ′ as follows. Initially, both C and S ′ are empty. Scan bdc(u, v) from u in clockwise order to locate
the first edge aidi that is not totally visible from guards in S ∪ S ′, where di is the next clockwise vertex of ai. Let c ′i ci be the
portion of aidi that is not visible from guards in S ∪ S ′, where c ′i ∈ bdc(ai, ci) and ci ∈ bdc(c ′i , di). In other words, c ′i ci is the
polygonal side of the first invisible cell. Add pu(ci) and pv(ci) to S ′. Also, add ci to C . Repeat this process until all the edges of
P are totally visible from guards in S ∪ S ′. At its termination, let us assume that C = {c1, c2, . . . , ck}. The entire procedure is
described in pseudocode as Algorithm 2.4.

Algorithm 2.4 An O(n2)-algorithm for computing a guard set S ∪ S ′ for guarding P entirely
1: Compute SPT (u) and SPT (v)
2: Compute the set of guards S using Algorithm 2.3
3: Initialize C ← ∅, S ′ ← ∅ and z ← u
4: while there exists an edge in P that is partially visible from guards in S ∪ S ′ do
5: z ′ ← the vertex next to z in clockwise order on bdc(u, v)
6: if if the edge zz ′ is partially visible from guards in S ∪ S ′ then
7: ci ← the lid point of the left pocket on zz ′
8: C ← C ∪ {ci} and S ′ ← S ′ ∪ {pu(ci), pv(ci)}
9: end if

10: z ← z ′
11: end while
12: return the guard set S ∪ S ′

Theorem 9. The running time of Algorithm 2.4 is O(n2).

Proof. SPT (u) and SPT (v) can be computed in O(n) time [21]. Then, the computation of the guard set S takes O(n2) time,
since it involves scanning the boundary of P and identifying vertices to be marked whenever new guards are placed. The
number of lid points on an edge can be at most O(n). Therefore, each time a new vertex is added to S ′, the invisible portion
of the first partially visible edge in clockwise order can be determined in O(n) time. Hence, the overall running time of
Algorithm 2.4 is O(n2). �

We have the following lemma connecting S ′ with Sopt .

Lemma 10. 2|C | = |S ′| ≤ 2|Sopt |.

Proof. For every ci ∈ C , there exists an invisible cell Ti. For every such invisible cell Ti, let li and ri respectively denote the lid
vertices of the left and right pockets intersecting to form Ti (see Fig. 16). Let g ∈ S be the guard such that li is the lid vertex
of a left pocket of VP(g). Similarly, let g ′ ∈ S be the guard such that ri is the lid vertex of a right pocket of VP(g ′).

Assume that, for every Ti, there exists at least one guard in Sopt that sees all points of Ti. Now, consider any guard gopt ∈ Sopt
that sees all points of Ti. Then, gopt can lie on bdc(li, ri). Also, gopt can lie on bdc(pu(ci), g), but only when pu(ci) ≠ li and pu(ci)
lies on bdc(u, g). Now, let z be the vertex such that pv(z) = g ′. Then, no vertex of bdc(z, g ′) is visible from any vertex of



P. Bhattacharya et al. / Discrete Applied Mathematics 228 (2017) 109–129 121

bdc(g ′, v). Further, if z is such that pu(z) = g , then z has to lie on bdc(g, li). Otherwise, z has to lie on bdc(li, c ′i ). In either
case, gopt cannot lie on bdc(g ′, v) since c ′i lies on bdc(z, g ′).

Since the guard set S ′ includes pu(z) and pv(z) for every z ∈ C , clearly |S ′| = 2|C |. If for every i, there exists a unique
vertex belonging to Sopt that sees all points of Ti, then obviously |S ′| ≤ 2|Sopt |. Consider the special situation where li+1 = ri
for some i (see Fig. 15) so that both Ti and Ti+1 are totally visible from ri. Since all points of Ti are visible from ri, it must be
the case that pv(ci) = ri. Moreover, ri can be a vertex of Sopt . Therefore, no additional guards are chosen for Ti+1 because all
points of Ti+1 become visible from the guard already placed at ri.

If no vertex of bdc(li, ri) belongs to Sopt , then there must be a vertex of Sopt lying on bdc(pu(ci), g) and pu(ci) must belong
to bdc(u, g). If pu(ci−1) also belongs to bdc(u, g), then Sopt must have a vertex on the boundary bdc(pu(ci), pv(ci−1)) in order
to see Ti−1 because li−1 is the lid vertex of a left pocket of VP(pu(ci−1)). Hence, 2|C | = |S ′| ≤ 2|Sopt |.

Finally, if we remove the assumption that there exists at least one guard in Sopt that sees all points of Ti, then the size of
Sopt increases but our guard set S ′ remains the same. Therefore, the bound is still preserved. �

Theorem 11. |S ∪ S ′| ≤ 6|Sopt |.

Proof. By Lemmas 5 and 10, |S ∪ S ′| ≤ |S| + |S ′| ≤ 4|Sopt | + 2|Sopt | ≤ 6|Sopt |. �

3. Inapproximability of vertex guard problem in weak visibility polygons with holes

Given a weak visibility polygon P with holes, having n vertices, the aim of the Vertex Guard problem is to find a smallest
subset S of the set of vertices of P such that every point in the interior of the polygon P can be seen from at least one vertex
in S. The vertices in S are called vertex guards. In this section, we show an inapproximability result for the Vertex Guard
problem in a weak visibility polygon with holes by showing how to construct an instance of Vertex Guard for every instance
of Set Cover. In Section 3.1, we describe an existing reduction for general polygons with holes given by Eidenbenz, Stamm
and Widmayer [12]. Then, in Section 3.2, we modify this reduction so that it works even for polygons with holes that are
weakly visible from an edge.

3.1. Existing reduction for general polygons with holes

An instance of Set Cover consists of a finite universe E = {e1.e2, . . . , en} of elements ej and a collection S = {s1,
s2, . . . , sm} of subsets si where each si ⊆ E. The problem is to find S ′ ⊆ S of minimum cardinality such that every element
ei, for 1 ≤ i ≤ n, belongs to at least one subset in S ′. For the ease of discussion, the elements in E and the subsets in S are
assumed to have an arbitrary, but fixed order.

As shown in Fig. 17, a polygon is constructed in the x–y plane. For every set si (1 ≤ i ≤ m), a point ((i− 1)d′, a) is placed
on the horizontal line y = a with a constant distance d′ between any two consecutive points. For simplicity, the ith such
point from the left is also referred to as si. Corresponding to every element ej ∈ E, two points (Dj, 0) and (D′j, 0) are placed
on the horizontal line y = 0, where D1 ≥ 0 and D′j = Dj + d for a positive constant d. The points are arranged from left
to right, and for each j = 1, . . . , n, they are referred to as Dj and D′j . For each j = 1, . . . , n, the distance dj = Dj+1 − D′j is
defined later.

Let sk and sl be respectively the first and last sets of which ej is a member. Without loss of generality, assume that sk and
sl are distinct. A line g is drawn through sk and Dj. Also, a line g ′ is drawn through sl and D′j . Naming the intersection point
of g and g ′ as Ij, the triangle DjIjD′j is called a spike. Since it plays a crucial role in the construction, the point Ij of each spike
is called the distinguished point of the spike.

For any pair (i, j), if the set si contains the element ej, then two lines are drawn connecting si with Dj and D′j , and the
area between these two lines is called a cone. Observe that, among all the lines mentioned so far, only the line segments
of the horizontal line y = 0 that are between adjacent spikes and the spikes themselves contribute edges to the polygonal
boundary whereas all other lines just help in the construction.

The correspondence between an instance of Vertex Guard and an instance of Set Cover is established by ensuring that
an optimal set of vertex guards includes only those points si which belong to an optimal solution of Set Cover. So, in the
construction, a guard at vertex si must see the spike of only those elements ej that are members of the set si. This is realized
by introducing a barrier line at y = b such that only line segments on the horizontal line y = b lying outside the cones are
part of the polygonal boundary (see Fig. 17). Another barrier line at y = b+ b′ is introduced at a distance of b′ from the first
barrier. Holes of the polygon are defined by connecting each pair of points that is created by the intersection of the same
cone-defining line with the barrier lines. The area between the two lines at y = b and y = b+ b′ is called the barrier. Note
that the barrier includes all the holes and it also contains a small part of every cone.

For every pair (i, j), let us denote the point at y = b on the line siDj as wij, and similarly, the point at y = b on the line siD′j
asw′ij. Now, the thickness b′ of the barrier is to be determined in such a way that, for every hole, all segments of its boundary
excluding those on the line y = b+ b′ is visible from two guards at P = (−d′′, 0) and V = (D′n + L, 0). To achieve this, the
thickness b′ is determined by intersecting, for each pair (i, j), a line from P through wij and a line from V through w′ij. Then,
b′ is assigned a value such that the barrier line y = b+ b′ goes through the lowest of all these intersection points.
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Fig. 17. The existing reduction for general polygons with holes.

To complete the construction, a vertical line segment PU at x = −d′′ is drawn from y = 0 to y = y0, where d′′ is a positive
constant. Except for the portion of it between the two barrier lines, this line segment forms a part of the polygonal boundary.
Also, a horizontal line segment is drawn from D′n to the point V at (D′n + L, 0). Finally, a point Q is located at (D′n + L, a) and
the external boundary of the polygon is completed by drawing the line segments UQ and QV , except for the portion of QV
lying between the barrier lines. The points on the segments PU and QV that lie on the barrier line y = b+ b′ are referred to
as X and Y respectively,

Let d′, d′′ and a be arbitrary positive constants. The rest of the parameters are set in terms of d′, d′′ and a as follows: d = d′
4 ,

b = 5
12a, b

′
=

35
144 a

−4l−1ml−1+2
l−1

i=0 4imi+2 d′′
d −

19
12
, and Dl = −4l−1ml−1d− d+ 2d

l−1
i=0 4

imi for l = 1, . . . , n. As a consequence of

these parameter settings, the following properties hold for this reduction.

• No three cones connecting different sets with different elements can overlap.
• The barrier is such that:

(a) All the intersections of cones from the same element ej are below y = b.
(b) All intersections of cones from different elements are above y = b+ b′.
(c) All of the barrier is visible from at least one of the two guards at P and V , except for the line segments at y = b+ b′.
• The spikes of no two elements intersect.

3.2. Modified reduction for weak visibility polygons with holes

To incorporate weak visibility from an edge, the known construction from Section 3.1 is modified as follows.
Let R be the set of all rays

−→
Djsi and

−→
D′jsi such that the spike corresponding to ej is visible from si. For every pair (i, j), the

point of intersection of the ray
−→
Djsi with the barrier line y = b + b′ is denoted as yi,j (see Fig. 18). Let R′ be the set of all

rays
−→
Ijyi,j such that the spike corresponding to ej is visible from si. Let α be the largest among all the angles made by rays

belonging to R ∪ R′ with the positive X-axis at y = 0. A line l′ is constructed such that l′ passes through sm and makes an
angle θ = α + 180−α

2 with the positive X-axis at y = 0. The line l′ is translated to obtain another line l in such a way that all
holes contained within the barrier lie below l. The point of intersection of lwith the line y = 0 is called V , whereas the point
of intersection of the segment PU with the barrier line y = b+ b′ is called X . Also, the top right vertex of the rightmost hole
contained within the barrier is referred to as Y .

Let β be the maximum among all the angles made by the rays
−→
Ysi with the positive X-axis at y = a. Among all points

of intersection of l with various rays belonging to R ∪ R′, let U ′ be the leftmost point. Then, a point U = (xu, yu) is located
along the ray VU ′ such that, for every i, the angle made by the ray

−→
Usi with the positive X-axis at y = a is greater than β
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Fig. 18. The modified reduction for weak visibility polygons with holes with inlay showing details for the construction of triangular holes corresponding
to each si .

(not represented accurately in Fig. 18 due to space constraints). Then, the external boundary of the polygon is completed by
drawing the segments PU , PV andUV , except for the portion of PU lying between the barrier lines. Themodified construction
ensures that all spikes are totally visible from the edge UV . However, no distinguished point is visible from the point U itself
(see Fig. 18).

Let SU and SV denote the set of all rays of the form
−→
siU and

−→
Ysi respectively. Corresponding to every set si, let Si be the set

of all rays
−→
Djsi and

−→
D′jsi such that the spike corresponding to ej is visible from si. Now, let S = S1 ∪ S2 ∪ · · · ∪ Sm. Also, let Z be

the set of all points of intersection between any two rays belonging to the set S ∪ SU ∪ SY that lie above the horizontal line
y = a passing through every si. Now, a horizontal line y = a+ a′ is chosen such that it lies below all the points belonging to
Z . For every si, a clockwise angular scan is performed around si starting from the angle defined by

−→
siU till an angular region

is located that is contained in no cone. Two rays −→ri and
−→
r ′i are drawn within this region such that they intersect the line

y = a+ a′ at zi and z ′i respectively. Then, corresponding to each si, a triangular hole is created by joining the segments sizi,
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siz ′i and ziz ′i (see Fig. 18). Note that the entire region of the constructed polygon lying above the line y = b + b′ is weakly
visible from the edge UV . Moreover, this entire region is also visible from two guards placed at U and Y .

Lemma 12. The constructed polygon is weakly visible from the edge UV .

Proof. It is easy to see that all the interior points of the polygon lying above the line y = a + a′, those lying between the
lines y = b + b′ & y = a, and also those lying between the lines y = 0 & y = b are visible from the edge UV . The slope
of the line UV , the choice of U on it, and the way we set the value of a′ together ensure that, for every pair (i, j) such that
the spike corresponding to ej is visible from si, both the rays

−→
Djsi and

−→
D′jsi intersect UV . This implies that UV sees all interior

points within the cones formed by every such pair of rays, which includes every interior point of the polygon lying between
successive holes in the barrier (i.e. between the lines y = b & y = b + b′), as well as every point lying within the spikes
corresponding to the elements ej (i.e. lying below the line y = 0). Finally, observe that for each si, the rays −→sizi and

−→
siz ′i ,

obtained by extending the two sides of the corresponding triangular hole, also intersect UV . Thus, it is guaranteed that UV
even sees all the interior points lying between successive triangular holes, i.e. between the lines y = a & y = a+ a′, which
was the only region not considered so far. �

3.3. The reduction is polynomial

Observe that L, θ , d, d′, d′′, a, b are all constants in our reduction. The values for a′, b′, xu, yu and every Dj for j = 1, . . . , n
are computable in polynomial time and can be expressed with O(n logm) bits. Moreover, the computation of all angles and
intersection points required for the construction can be done in polynomial time. So, the construction of the weak visibility
polygon produces a polynomial number of points each of which can be computed in polynomial time and take at most
O(n logm) bits to be expressed. Therefore, it can be done in time polynomial in the size of the input Set Cover instance.
Furthermore, it follows from Lemma 13 below that the transformation of an optimal solution for any Set Cover instance to
an optimal solution for the corresponding Vertex Guard instance also takes polynomial time.

Lemma 13. In the construction in Section 3.2, an optimal solution of size k for a Set Cover instance induces an optimal solution of
size at most k+ 4 for the corresponding Vertex Guard instance, whereas an optimal solution of size k for a Vertex Guard instance
induces an optimal solution of size at most k− 3 for the corresponding Set Cover instance.

Proof. The choice of U , the slope of the line segment UV , and the choice of vertices zi and z ′i for each triangular hole
(corresponding to set si) together ensure the following-

• Each interior point of the constructed polygon lying above the line y = a+ a′ is visible from U .
• Each interior point of the polygon lying between the lines y = a &y = a+ a′ is visible from U or Y .
• Each interior point of the polygon lying between the lines y = b+ b′ &y = a is visible from Y .
• Each interior point of the polygon lying between the lines y = b &y = b+ b′ is visible from U , P or V .
• Each interior point of the polygon lying between the lines y = 0 &y = b is visible from both P and V .
• Each interior point of the polygon lying below the line y = 0 (i.e. the points belonging to the spikes corresponding to

each element ej) is visible from at least one si ∈ S ′ such that S ′ ⊆ {s1, s2, . . . , sm} is an optimal solution of the Set Cover
instance.

Therefore, given an optimal solution of size k for any instance of Set Cover, we can construct an optimal set of size at most
k+4 for the corresponding instance of Vertex Guard that consists of the vertices P , V , U , Y , along with every si such that the
set si is part of the optimal solution for the Set Cover instance. On the other hand, any optimal solution of a Vertex Guard
instance must include the vertices U and Y (in order to guard interior points above the line y = a + a′, and between the
lines y = b+ b′ & y = a, respectively), and at least one of P and V (in order to guard interior points between the lines y = 0
& y = b + b′), along with some subset S ′ ⊆ {s1, s2, . . . , sm}. So, if the size of the optimal Vertex Guard solution is k, then
|S ′| ≤ k− 3, and S ′ forms an optimal solution for the corresponding Set Cover instance. �

3.4. An inapproximability result

As mentioned in Section 1.2, Eidenbenz, Stamm and Widmayer [13] proved that, for polygons with holes, there cannot
exist a polynomial time algorithm for the art gallery problem with an approximation ratio better than ((1− ϵ)/12) ln n for
any ϵ > 0, unless NP ⊆ TIME(nO(log log n)). In order to prove this inapproximability result, they used a reduction from the
Restricted Set Cover problem. We follow the same approach in order to establish our own inapproximability result for the
case of polygons with holes that are weakly visible from an edge.

The Restricted Set Cover (RSC) problem consists of all Set Cover instances that have the property that the number of sets
m is less than or equal to the number of elements n, i.e. m ≤ n. Eidenbenz, Stamm and Widmayer proved the following
lemma.

Lemma 14 (Lemma 9 in [13]). RSC cannot be approximated by any polynomial time algorithm with an approximation ratio of
(1− ϵ) ln n for every ϵ > 0, unless NP ⊆ TIME(nO(log log n)).
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A recent strengthening of Feige’s [14] quasi-NP-hardness (see the notion of quasi-NP-hardness in [3]) result for Set Cover
approximation by Dinur and Steurer [10] allows us to invoke the stronger version below.

Lemma 15. RSC cannot be approximated by any polynomial time algorithmwith an approximation ratio of (1−ϵ) ln n for every
ϵ > 0, unless NP = P.

The modified reduction presented in Section 3.2 leads to the following lemma, similar to Lemma 10 in [13].

Lemma 16. Consider the promise problem of RSC (for any ϵ > 0), where it is promised that the optimum solution OPT is either
less than or equal to c or greater than c(1− ϵ) ln n with c, n and OPT depending on the instance I. This problem is NP-hard. Then,
the optimum value OPT ′ of the corresponding instance I ′ of the Vertex Guard problem for polygons with holes that are weakly
visible from an edge, is either less than or equal to c + 4 or greater than c+4

12 · (1− ϵ) ln |I ′|. More formally:

OPT ≤ c ⇒ OPT ′ ≤ c + 4 (1)

OPT > c(1− ϵ) ln n⇒ OPT ′ >
c + 4
12
· (1− ϵ) ln |I ′| (2)

Proof. The implication in (1) follows trivially from Lemma 13. We prove the contrapositive of (2), i.e.

OPT ′ ≤
c + 4
12
· (1− ϵ) ln |I ′| ⇒ OPT ≤ c(1− ϵ) ln n.

Recall from the proof of Lemma 13 that if we are given an optimal solutionOPT ′ of I ′with k guards, it is guaranteed to contain
the vertices U and Y , and at least one of P and V . So, we can obtain an optimal solution of I with at most k− 3 sets, simply
by choosing OPT = OPT ′ \ {P, V ,U, Y }. Therefore,

OPT ≤
c + 4
12
· (1− ϵ) ln |I ′| − 3 (3)

≤
c + 4
12
· (1− ϵ) ln n3 (4)

≤
4c
12
· 3(1− ϵ) ln n (5)

≤ c(1− ϵ) ln n (6)

where we used |I ′| ≤ n3 in (4), which is true because the polygon of I ′ consists of n spikes and less than nm ≤ n2 holes (since
m < n in any instance of RSC), and therefore, the polygon consists of less than k(n2

+ n) points, where k is a constant. �

Theorem 17. For polygons with holes that are weakly visible from an edge, the Vertex Guard problem cannot be approximated
by any polynomial time algorithm with an approximation ratio of ((1− ϵ)/12) ln n for every ϵ > 0, unless NP = P.

4. A 3-approximation algorithm for placing vertex guards in orthogonal weak visibility polygons

The class of orthogonal polygons weakly visible from an edge has been previously studied by Carlsson, Nilsson and
Ntafos [7] under the name of Manhattan skyline or histogram polygons, and they showed that there exists a linear time
greedy algorithm to optimally guard these polygons with point guards. Let us also consider a polygon P belonging to this
class, i.e. P is an orthogonal polygon weakly visible from an edge uv. In this section, we present a simpler algorithm for
vertex guarding P with an approximation factor of 3 – a clear improvement over the factor 6 which we obtained for the
more general class of weak visibility polygons.

First, we present an algorithm for computing a guard set SA covering only the vertices of P , described below in pseudocode
as Algorithm 4.1.

Lemma 18. Algorithm 4.1 always terminates.

Proof. Termination is guaranteed by the dual properties of orthogonality and weak visibility. �

Lemma 19. Any guard g ∈ Sopt that sees vertex z of P must lie on bdc(pu(z), pv(z)).

Proof. Since pu(z) is the parent of z in SPT (u), z cannot be visible from any vertex of bdc(u, pu(z)). Similarly, since pv(z) is
the parent of z in SPT (v), z cannot be visible from any vertex of bdcc(v, pv(z)). Hence, any guard g ∈ Sopt that sees z must
lie on bdc(pu(z), pv(z)). �

Lemma 20. Let z ∈ A. For every vertex x lying on bdc(pu(z), pv(z)), if x sees a vertex q of P, then q must also be visible from
pu(z) or pv(z).
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Algorithm 4.1 An O(n2)-algorithm for computing a guard set SA for all vertices of P
1: Compute SPT (u) and SPT (v)
2: Initialize all the vertices of P as unmarked
3: Initialize A← ∅ and SA ← ∅
4: while there exist unmarked vertices in P do
5: z ← u
6: while z ≠ v do
7: z ← the vertex next to z in clockwise order on bdc(u, v)
8: if z is unmarked and bdc(pu(z), pv(z)) are visible from pu(z) or pv(z) then
9: A← A ∪ {z} and SA ← SA ∪ {pu(z), pv(z)}

10: Place guards on pu(z) and pv(z)
11: Mark all vertices of P that become visible from pu(z) or pv(z)
12: end if
13: end while
14: end while
15: return the guard set SA

Fig. 19. Case in Lemma 20 where q lies on bdc(u, pu(z)).

Proof. Since z ∈ A, z must be a vertex of P such that all vertices of bdc(pu(z), pv(z)) are visible from pu(z) or pv(z). Hence, if
q lies on bdc(pu(z), pv(z)), then it is visible from pu(z) or pv(z). So, consider the case where q lies on bdcc(pu(z), pv(z)). Now,
either q lies on bdc(u, pu(z)) or q lies on bdcc(v, pv(z)). In the former case, if bdcc(q, pv(z)) intersects the segment qpv(z) (see
Fig. 19), then q or pv(z) is not weakly visible from uv. Moreover, no other portion of the boundary can intersect qpv(z) since
qx and zpv(z) are internal segments. Hence, q must be visible from pv(z). Analogously, if q lies on bdcc(v, pv(z)), q must be
visible from pu(z). �

Lemma 21. |A| ≤ |Sopt |.

Proof. Assume on the contrary that |A| > |Sopt |. This implies that Algorithm 4.1 includes two distinct vertices z1 and z2
belonging to A which are both visible from a single guard g ∈ Sopt . Moreover, it follows from Lemma 19 that g must lie on
bdc(pu(z1), pv(z1)). Without loss of generality, let us assume that vertex z1 is added to A before z2 by Algorithm 4.1. In that
case, Algorithm 4.1 places guards at pu(z1) and pv(z1). Now, as vertex z2 is visible from g , it follows from Lemma 20 that z2 is
also visible from pu(z1) or pv(z1). Therefore, z2 is already marked, and hence, Algorithm 4.1 does not include z2 in A, which
is a contradiction. �

Lemma 22. |SA| = 2|A|.

Proof. For every z ∈ A, since Algorithm 4.1 includes both the parents pu(z) and pv(z) of z in SA, it is clear that |SA| ≤ 2|A|. If
both the parents of every z ∈ A are distinct, then |SA| = 2|A|. Otherwise, there exists two distinct vertices z1 and z2 in A that
share a common parent, say p. Without loss of generality, let us assume that vertex z1 is added to A before z2 by Algorithm
4.1. In that case, Algorithm 4.1 places a guard at p, which results in z2 getting marked. Thus, Algorithm 4.1 cannot include z2
in A, which is a contradiction. Hence, it must be the case that |SA| = 2|A|. �

Lemma 23. |SA| ≤ 2|Sopt |.
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Fig. 20. All vertices of the orthogonal polygon are visible from pu(z) or pv(z), but the triangle x1x2x3 is invisible.

Proof. By Lemma 22, |SA| = 2|A|. By Lemma 21, |A| ≤ |Sopt |. So, |SA| = 2|A| ≤ 2|Sopt |. �

All interior points of P are not guaranteed to be visible from guards in the set SA computed by Algorithm 4.1. Consider
the polygon shown in Fig. 20. While scanning bdc(u, v), our algorithm places guards at pu(z) and pv(z) as all vertices of
bdc(pu(z), pv(z)) become visible from pu(z) or pv(z). Observe that in fact all vertices of P become visible from these two
guards. However, the triangular region P \ (VP(pu(z)) ∪ VP(pv(z))), bounded by the segments x1x2, x2x3 and x3x1, is not
visible from pu(z) or pv(z). Also, one of the sides x1x2 of the triangle x1x2x3 is a part of a polygonal edge. In fact, for any
such region invisible from guards in SA, one of the sides must always be a part of a polygonal edge. As mentioned previously
in Section 2.2, any such region invisible from guards in S is referred to as an invisible cell, and the polygonal edge which
contributes as a side to the invisible cell is referred to as its corresponding partially invisible edge. Also, we define lid points
and lid vertices as before. Next, we present an algorithm for computing an additional set of guards S ′A whose placement
ensures that all interior points of P are also guarded.

Algorithm 4.2 An O(n2)-algorithm for computing a guard set SA ∪ S ′A for guarding P entirely
1: Compute SPT (u) and SPT (v)
2: Compute the set of guards SA using Algorithm 4.1.
3: Initialize C ← ∅, S ′A ← ∅ and z ← u
4: while there exists an edge in P that is partially visible from guards in SA ∪ S ′A do
5: z ′ ← the vertex next to z in clockwise order on bdc(u, v)
6: if if the edge zz ′ is partially visible from guards in S ∪ S ′A then
7: ci ← the lid point of the left pocket on zz ′
8: C ← C ∪ {ci} and S ′A ← S ′A ∪ {pu(ci)}
9: end if

10: z ← z ′
11: end while
12: return the guard set SA ∪ S ′A

Theorem 24. The running time of Algorithm 4.2 is O(n2).

Proof. SPT (u) and SPT (v) can be computed in O(n) time [21]. Then, the computation of the guard set SA takes O(n2) time,
since it involves scanning the boundary of P and identifying vertices to be marked whenever new guards are placed. The
number of lid points on an edge can be at most O(n). Therefore, each time a new vertex is added to S ′A, the invisible portion
of the first partially visible edge in clockwise order can be determined in O(n) time. Hence, the overall running time of
Algorithm 4.2 is O(n2). �

We have the following lemma connecting S ′A with Sopt .

Lemma 25. |C | = |S ′A| ≤ |Sopt |.

Theorem 26. |SA ∪ S ′A| ≤ 3|Sopt |.

Proof. By Lemmas 23 and 25, |SA ∪ S ′A| ≤ |SA| + |S
′

A| ≤ 2|Sopt | + |Sopt | ≤ 3|Sopt |. �

Therefore, Algorithm 4.2 is a 3-approximation algorithm for solving the problem of guarding orthogonal polygons that
are weakly visible from an edge with minimum number of vertex guards.
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Fig. 21. NP-hardness reduction from DLCP for point guarding polygons weakly visible from an edge.

5. NP-hardness for point guarding polygons weakly visible from an edge

We prove that the Point Guard problem in polygons weakly visible from an edge is NP-hard by showing a reduction from
the decision version of the minimum line cover problem (MLCP), which is defined as follows. Let L = {l1, . . . , ln} be a set of
n lines in the plane. Find a set P of points, such that for each line l ∈ L there is a point in P that lies on l, and P is as small as
possible. Let DLCP denote the corresponding decision problem, that is, given L and an integer k > 0, decide whether there
exists a line cover of size k. DLCP is known to be NP-hard [26]. Moreover, MLCP was shown to be APX-hard [6,2].

The reduction (see Fig. 21) has the following steps. First, an axis-parallel rectangle R is drawn on the plane such that
it contains all points of pairwise intersection of lines in L. For each line l ∈ L, consider the closed segment l′ that lies
within this rectangle. Then, for each such segment l′, the end-point with the higher y co-ordinate is extended beyond the
boundaries of R and a very narrow spike is added to the boundary of R at this point. Note that, under this construction, the
lower horizontal edge uv of R does not have any spikes added to it. In fact, the bounding rectangle along with the added
spikes gives a polygon P which is weakly visible from the edge uv. Let the tip of each spike be henceforth referred to as a
distinguished point. Bymaking the spikes narrow enough, if it is ensured that the visibility polygons of no three distinguished
points intersect, then the weak visibility polygon P can be guarded using k point guards if and only if the set of lines L has
a cover of size k. One obvious way to achieve this correspondence is to restrict the placement of potential point guards to
only the points of pairwise intersection of lines in L. However, observe that instead of being placed exactly at the point
of intersection of two lines li, lj ∈ L, a point guard can be placed (without losing any visibility) at any point within the
intersection region of the visibility polygons of the distinguished points corresponding to the spikes generated by extending
l′i and l′j .

Theorem 27. The Point Guard problem is NP-hard for polygons weakly visible from an edge.
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