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Polygons and Visibility

Figure: Polygon with holes Figure: Polygon without holes

Definition (Visibility of a Point)

Any point z ∈ P is said to be visible from another point g ∈ P if
the line segment zg does not intersect the exterior of P.
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Art Gallery Problem

The art gallery problem (AGP) enquires about the least number of
guards that are sufficient to ensure that an art gallery is fully
guarded, assuming that a guard’s field of view covers 360◦ as well
as an unbounded distance.

An art gallery can be viewed as an n-sided polygon P (with or
without holes) and guards as points in P.

Guards may be allowed to be placed anywhere within P (point
guards), or they may be allowed to be placed only on the vertices
of P (vertex guards).

Victor Klee (1973) → How many point guards or vertex guards are
always sufficient to guard a simple polygon having n vertices?
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Sufficient Number of Guards

Theorem ( Chvatal (1975), Fisk (1978) )

For guarding a simple polygon with n vertices, bn3c point guards or
vertex guards are sufficient and sometimes necessary.

Figure: A polygon where b n3c point guards or vertex guards are necessary.
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Art Gallery Problem - Hardness Results

Definition (Decision Version of the Art Gallery Problem)

Given a polygon P and a number k as input, can the polygon P be
guarded with k or fewer guards?

Hardness results known for the decision version of AGP:

Proved to be NP-complete for vertex guards (Lee and Lin).

Proved to be NP-complete for point guards (Aggarwal).

Proved to be APX-complete (Eidenbenz, Stamm and
Widmayer), implying that no PTAS can exist for AGP.

Specifically for polygons with holes, AGP cannot be
approximated to within a factor of Ω(ln n) (Eidenbenz,
Stamm and Widmayer).
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Art Gallery Problem - Approximation Algorithms

For computing the minimum number of guards, the following
approximation algorithms exist:

O(log n)-approximation algorithm for vertex and edge guards
by Ghosh in 1987 via a reduction to set cover.

O(log OPT )-approximation pseudopolynomial time algorithm
for point guards and perimeter guards by Deshpande et al.

O(log OPT )-approximation randomized algorithm with fully
polynomial expected running time by Efrat and Har-Peled.

O(log log OPT )-approximation algorithm for perimeter guards
by King and Kirkpatrick in 2011 by using ε-nets.

Conjecture (Ghosh (1987))

There exist polynomial time algorithms with a constant
approximation ratio for vertex guarding polygons without holes.
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Our Contributions

Definition (Weak Visibility Polygon)

A polygon P is said to be a weak visibility polygon if every point in
P is visible from some point of an edge uv .

We present:

1 A 6-approximation algorithm, which has running time O(n2),
for vertex guarding polygons that are weakly visible from an
edge and contain no holes.

2 A reduction from Set Cover to show that, for the special class
of polygons containing holes that are weakly visible from an
edge, there cannot exist a polynomial time algorithm for the
vertex guard problem with an approximation ratio better than
((1− ε)/12) ln n for any ε > 0, unless NP = P.
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Euclidean Shortest Path Tree

s

z

y

x

ps(y)

ps(x)

ps(z)

Figure: Euclidean shortest path tree rooted at s. The parents of vertices
x , y and z in SPT (s) are marked as ps(x), ps(y) and ps(z) respectively.
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A Naive Algorithm for Guarding All Vertices

u v

A = {}; SA = {}
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A Naive Algorithm for Guarding All Vertices
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A = {x} ; SA = {}
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A Naive Algorithm for Guarding All Vertices

u v

pv(x)

x

A = {x} ; SA = {u, pv (x)}
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A Naive Algorithm for Guarding All Vertices

u v

pv(x)

x
y

A = {x} ; SA = {u, pv (x)}
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A Naive Algorithm for Guarding All Vertices

pv(y)

u v

pv(x)

pu(y)

x
y

z

A = {x , y} ; SA = {u, pv (x), pu(y), pv (y)}
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A Naive Algorithm for Guarding All Vertices

pv(y)

u v

pv(x)

pu(y)

pu(z)

x
y

z

A = {x , y , z} ; SA = {u, pv (x), pu(y), pv (y), pu(z), v}
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A Naive Algorithm for Guarding All Vertices

pv(y)

u v

pv(x)

pu(y)

pu(z)

x
y

z

A = {x , y , z} ; SA = {u, pv (x), pu(y), pv (y), pu(z), v}
N.B. - |SA| = 2|A|
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Performance Guarantee under a Special Condition

pv(y)

u v

pu(y)

x
y

z

N.B. - The vertex y ∈ A is such that every vertex lying on the
clockwise boundary between pu(y) and pv (y) (henceforth denoted

as bdc(pu(y), pv (y)) ) is visible from pu(y) or pv (y).
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Performance Guarantee under a Special Condition

Lemma

If each vertex z ∈ A is such that every vertex of bdc(pu(z), pv (z))
is visible from pu(z) or pv (z), then |SA| ≤ 2|Sopt |.

Proof.

|SA| = 2|A|
|A| ≤ |Sopt | (to be shown next)

Therefore, |SA| = 2|A| ≤ 2|Sopt |
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Location of an Optimal Guard for Vertex z

z

pu(z)

pv(z)

u v

x

Lemma

Any guard x ∈ Sopt that sees z must lie on bdc(pu(z), pv (z)).
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Proof sketch of |A| ≤ |Sopt |

z

pu(z)

pv(z)

u v

x

q

All vertices of bdc(pu(z), pv (z)) are visible from pu(z) or pv (z).

If q is visible from x , then q must be visible from pu(z) or pv (z).
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A Bad Input Polygon for the Naive Algorithm

z1

z2
z3

zk
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u v

pu2 pu3

pvk
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pv2

pv1
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For this input instance, |SA| = 2k, whereas Sopt = {u, g}.
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A Better Strategy for Guarding All Vertices

B = {} ; S = {}

New Strategy - Skip some unmarked vertices along the clockwise
scan and choose vertices to include in B more carefully!

Invariance - If z is the current vertex under consideration along the
clockwise scan, then every vertex of bdc(u, z) is visible from some
guard in S ∪ {pu(z), pv (z)}.
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A Better Strategy for Guarding All Vertices

Case 1 - Every vertex lying on bdc(z , pv (z)), except z itself, is
either visible already from guards currently in S or becomes visible
if new guards are placed at pu(z) and pv (z).

z

u v

pv(z)

pu(z)

g2
g1

B = B ∪ {z} ; S = S ∪ {pu(z), pv (z)} ; z = x
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A Better Strategy for Guarding All Vertices

Case 2 - There exist some vertices lying on bdc(z , pv (z)), not
visible already from guards currently in S , such that they do not
become visible even if new guards are placed at pu(z) and pv (z).

z

z′

u v
pv(z)

pu(z)

Let z ′ be the next vertex along the clockwise scan that is not
visible from any guard already in S .
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A Better Strategy for Guarding All Vertices

Case 2a - Not every unmarked vertex of bdc(pu(z ′), z ′) is visible
from pu(z ′) or pv (z ′).

z

z′

u v
pv(z)

pv(z
′)

pu(z
′)

pu(z)

q

r

B = B ∪ {z} ; S = S ∪ {pu(z), pv (z)} ; z = x
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A Better Strategy for Guarding All Vertices

Case 2b - Every unmarked vertex of bdc(pu(z ′), z ′) is visible from
pu(z ′) or pv (z ′).
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B = B ∪ {} ; S = S ∪ {} ; z = z ′
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A Better Strategy for Guarding All Vertices

Case 2b - Every unmarked vertex of bdc(pu(z ′), z ′) is visible from
guards at pu(z ′) or pv (z ′).

z

u v

pv(z)

pu(z)

B = B ∪ {} ; S = S ∪ {} ; z = z ′
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Approximation Ratio of our Algorithm

Lemma

|B| ≤ 2|Sopt |.

Proof.

There exists a bipartite graph G = (B ∪ Sopt ,E ) such that:
(a) the degree of each vertex in B is exactly 1, and,
(b) the degree of each vertex in Sopt is at most 2.

Lemma

|S | ≤ 4|Sopt |.

Proof.

|S | = 2|B|
|B| ≤ 2|Sopt |

Therefore, |S | = 2|B| ≤ 4|Sopt |.
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Insufficiency of Guards in S to Cover all Interior Points

pv(z)

a1 a2

pu(z)

u v

z

x1 x2

x3

w

Figure: All vertices are visible from the guard set S = {pu(z), pv (z)}, but
all points in the triangular interior region x1x2x3 are invisible.

NOTE: One of the sides x1x2 of the triangle x1x2x3 is a part of the

polygonal edge a1a2. In fact, for any such invisible region, one of the

sides must always be part of a polygonal edge.
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Insufficiency of Guards in S to Cover all Interior Points
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Figure: Multiple invisible regions exist within the polygon that are not
visible from the guard set S = {pu(z), pv (z)}.
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Placement of More Guards to Cover all Interior Points

pv(z)

a1
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a3d1

d2
d3

pu(z)
u v

z

c1

c2
c3c′1

c′2
c′3

Figure: Multiple invisible regions exist within the polygon that are not
visible from the guard set S = {pu(z), pv (z)}.

Lemma

It is possible to choose an additional set of guards S ′ to cover all
invisible regions such that |S ′| ≤ 2|Sopt |.
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Approximation Ratio of our Algorithm

Theorem

Our algorithm has an approximation ratio of 6.

Proof.

The final guard set returned by our algorithm is |S ∪ S ′|.

|S ∪ S ′| = |S |+ |S ′|
≤ 4|Sopt |+ 2|Sopt |
= 6|Sopt |
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Running Time of our Algorithm

Theorem

For a weak visibility polygon P having n vertices, the running time
of our algorithm is O(n2).

Proof.

Computation of SPT (u) and SPT (v) takes O(n) time.

Computation of guard set S takes O(n2) time.

Computation of guard set S ′ also takes O(n2) time.

Hence, the overall running time of our algorithm is O(n2).
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A Known Inapproximability Result

Theorem (Eidenbenz, Stamm and Widmayer (1998))

For polygons with holes, there cannot exist a polynomial time
algorithm for AGP with an approximation ratio better than
((1− ε)/12) ln n for any ε > 0, unless NP ⊆ TIME(nO(log log n)).

The above theorem utilizes the following result by Feige -

Theorem (Feige (1998))

Set Cover cannot be approximated to within a factor of (1− ε) ln n
for every ε > 0 unless NP ⊆ TIME(nO(log log n)).
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Our Inapproximability Result

A modification of their reduction leads us to the following result -

Theorem

For weak visibility polygons with holes, there cannot exist a
polynomial time algorithm for the vertex guarding problem with an
approximation ratio better than ((1− ε)/12) ln n for any ε > 0,
unless NP ⊆ TIME(nO(log log n)).
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Our Inapproximability Result

A very recent result by Dinur and Steurer -

Theorem (Dinur and Steurer (2014))

Set Cover cannot be approximated to within a factor of (1− ε) ln n
for every ε > 0 unless NP = P.

With this strengthening of Feige’s quasi-NP-hardness, our
inapproximability result gets improved to -

Theorem

For weak visibility polygons with holes, there cannot exist a
polynomial time algorithm for the vertex guarding problem with an
approximation ratio better than ((1− ε)/12) ln n for any ε > 0,
unless NP = P.
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Thank You!
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