An Inapproximability Result 0000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Vertex Guarding in Weak Visibility Polygons

Pritam Bhattacharya

School of Technology and Computer Science, Tata Institute of Fundamental Research, Mumbai

(Joint work with Subir Kumar Ghosh and Bodhayan Roy)

An Inapproximability Result 0000

Polygons and Visibility

Figure: Polygon without holes

Definition (Visibility of a Point)

Any point $z \in P$ is said to be *visible* from another point $g \in P$ if the line segment zg does not intersect the exterior of P.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Art Gallery Problem

The art gallery problem (AGP) enquires about the least number of guards that are sufficient to ensure that an art gallery is fully guarded, assuming that a guard's field of view covers 360° as well as an unbounded distance.

Art Gallery Problem

The art gallery problem (AGP) enquires about the least number of guards that are sufficient to ensure that an art gallery is fully guarded, assuming that a guard's field of view covers 360° as well as an unbounded distance.

An art gallery can be viewed as an *n*-sided polygon P (with or without holes) and guards as points in P.

Art Gallery Problem

The art gallery problem (AGP) enquires about the least number of guards that are sufficient to ensure that an art gallery is fully guarded, assuming that a guard's field of view covers 360° as well as an unbounded distance.

An art gallery can be viewed as an *n*-sided polygon P (with or without holes) and guards as points in P.

Guards may be allowed to be placed anywhere within P (*point guards*), or they may be allowed to be placed only on the vertices of P (*vertex guards*).

Art Gallery Problem

The art gallery problem (AGP) enquires about the least number of guards that are sufficient to ensure that an art gallery is fully guarded, assuming that a guard's field of view covers 360° as well as an unbounded distance.

An art gallery can be viewed as an *n*-sided polygon P (with or without holes) and guards as points in P.

Guards may be allowed to be placed anywhere within P (*point guards*), or they may be allowed to be placed only on the vertices of P (*vertex guards*).

Victor Klee (1973) \rightarrow How many point guards or vertex guards are always sufficient to guard a simple polygon having *n* vertices?

An Inapproximability Result 0000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Sufficient Number of Guards

Theorem (Chvatal (1975), Fisk (1978))

For guarding a simple polygon with n vertices, $\lfloor \frac{n}{3} \rfloor$ point guards or vertex guards are sufficient and sometimes necessary.

An Inapproximability Result 0000

Sufficient Number of Guards

Theorem (Chvatal (1975), Fisk (1978))

For guarding a simple polygon with n vertices, $\lfloor \frac{n}{3} \rfloor$ point guards or vertex guards are sufficient and sometimes necessary.

Figure: A polygon where $\lfloor \frac{n}{3} \rfloor$ point guards or vertex guards are necessary.

An Inapproximability Result 0000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Art Gallery Problem - Hardness Results

Definition (Decision Version of the Art Gallery Problem)

Given a polygon P and a number k as input, can the polygon P be guarded with k or fewer guards?

An Inapproximability Result 0000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Art Gallery Problem - Hardness Results

Definition (Decision Version of the Art Gallery Problem)

Given a polygon P and a number k as input, can the polygon P be guarded with k or fewer guards?

Hardness results known for the decision version of AGP:

• Proved to be NP-complete for vertex guards (Lee and Lin).

An Inapproximability Result 0000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Art Gallery Problem - Hardness Results

Definition (Decision Version of the Art Gallery Problem)

Given a polygon P and a number k as input, can the polygon P be guarded with k or fewer guards?

Hardness results known for the decision version of AGP:

- Proved to be NP-complete for vertex guards (Lee and Lin).
- Proved to be NP-complete for point guards (Aggarwal).

An Inapproximability Result 0000

Art Gallery Problem - Hardness Results

Definition (Decision Version of the Art Gallery Problem)

Given a polygon P and a number k as input, can the polygon P be guarded with k or fewer guards?

Hardness results known for the decision version of AGP:

- Proved to be NP-complete for vertex guards (Lee and Lin).
- Proved to be NP-complete for point guards (Aggarwal).
- Proved to be APX-complete (Eidenbenz, Stamm and Widmayer), implying that no PTAS can exist for AGP.

An Inapproximability Result

Art Gallery Problem - Hardness Results

Definition (Decision Version of the Art Gallery Problem)

Given a polygon P and a number k as input, can the polygon P be guarded with k or fewer guards?

Hardness results known for the decision version of AGP:

- Proved to be NP-complete for vertex guards (Lee and Lin).
- Proved to be NP-complete for point guards (Aggarwal).
- Proved to be APX-complete (Eidenbenz, Stamm and Widmayer), implying that no PTAS can exist for AGP.
- Specifically for polygons with holes, AGP cannot be approximated to within a factor of Ω(ln n) (Eidenbenz, Stamm and Widmayer).

Art Gallery Problem - Approximation Algorithms

For computing the minimum number of guards, the following approximation algorithms exist:

• $\mathcal{O}(\log n)$ -approximation algorithm for vertex and edge guards by Ghosh in 1987 via a reduction to set cover.

Art Gallery Problem - Approximation Algorithms

For computing the minimum number of guards, the following approximation algorithms exist:

- $\mathcal{O}(\log n)$ -approximation algorithm for vertex and edge guards by Ghosh in 1987 via a reduction to set cover.
- $O(\log OPT)$ -approximation pseudopolynomial time algorithm for point guards and perimeter guards by Deshpande et al.

Art Gallery Problem - Approximation Algorithms

For computing the minimum number of guards, the following approximation algorithms exist:

- $\mathcal{O}(\log n)$ -approximation algorithm for vertex and edge guards by Ghosh in 1987 via a reduction to set cover.
- $O(\log OPT)$ -approximation pseudopolynomial time algorithm for point guards and perimeter guards by Deshpande et al.
- $O(\log OPT)$ -approximation randomized algorithm with fully polynomial expected running time by Efrat and Har-Peled.

Art Gallery Problem - Approximation Algorithms

For computing the minimum number of guards, the following approximation algorithms exist:

- $\mathcal{O}(\log n)$ -approximation algorithm for vertex and edge guards by Ghosh in 1987 via a reduction to set cover.
- $O(\log OPT)$ -approximation pseudopolynomial time algorithm for point guards and perimeter guards by Deshpande et al.
- $O(\log OPT)$ -approximation randomized algorithm with fully polynomial expected running time by Efrat and Har-Peled.
- O(log log OPT)-approximation algorithm for perimeter guards by King and Kirkpatrick in 2011 by using ε-nets.

Art Gallery Problem - Approximation Algorithms

For computing the minimum number of guards, the following approximation algorithms exist:

- $\mathcal{O}(\log n)$ -approximation algorithm for vertex and edge guards by Ghosh in 1987 via a reduction to set cover.
- $O(\log OPT)$ -approximation pseudopolynomial time algorithm for point guards and perimeter guards by Deshpande et al.
- $O(\log OPT)$ -approximation randomized algorithm with fully polynomial expected running time by Efrat and Har-Peled.
- O(log log OPT)-approximation algorithm for perimeter guards by King and Kirkpatrick in 2011 by using ε-nets.

Conjecture (Ghosh (1987))

There exist polynomial time algorithms with a constant approximation ratio for vertex guarding polygons without holes.

An Inapproximability Result 0000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Our Contributions

Definition (Weak Visibility Polygon)

A polygon P is said to be a *weak visibility polygon* if every point in P is visible from some point of an edge uv.

Our Contributions

Definition (Weak Visibility Polygon)

A polygon P is said to be a *weak visibility polygon* if every point in P is visible from some point of an edge uv.

We present:

• A 6-approximation algorithm, which has running time $\mathcal{O}(n^2)$, for vertex guarding polygons that are weakly visible from an edge and contain no holes.

Our Contributions

Definition (Weak Visibility Polygon)

A polygon P is said to be a *weak visibility polygon* if every point in P is visible from some point of an edge uv.

We present:

- A 6-approximation algorithm, which has running time $\mathcal{O}(n^2)$, for vertex guarding polygons that are weakly visible from an edge and contain no holes.
- A reduction from Set Cover to show that, for the special class of polygons containing holes that are weakly visible from an edge, there cannot exist a polynomial time algorithm for the vertex guard problem with an approximation ratio better than $((1 \epsilon)/12) \ln n$ for any $\epsilon > 0$, unless NP = P.

An Inapproximability Result 0000

Euclidean Shortest Path Tree

Figure: Euclidean shortest path tree rooted at s. The parents of vertices x, y and z in SPT(s) are marked as $p_s(x)$, $p_s(y)$ and $p_s(z)$ respectively.

An Inapproximability Result 0000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$A = \{\}; S_A = \{\}$$

An Inapproximability Result 0000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$A = \{x\}; S_A = \{\}$$

An Inapproximability Result 0000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$A = \{x\}$$
; $S_A = \{u, p_v(x)\}$

An Inapproximability Result 0000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$A = \{x\}$$
; $S_A = \{u, p_v(x)\}$

An Inapproximability Result 0000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$A = \{x, y\} ; S_A = \{u, p_v(x), p_u(y), p_v(y)\}$$

An Inapproximability Result 0000

A Naive Algorithm for Guarding All Vertices

 $A = \{x, y, z\} ; S_A = \{u, p_v(x), p_u(y), p_v(y), p_u(z), v\}$

An Inapproximability Result 0000

$$A = \{x, y, z\} ; S_A = \{u, p_v(x), p_u(y), p_v(y), p_u(z), v\}$$

N.B. - $|S_A| = 2|A|$

An Inapproximability Result 0000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Performance Guarantee under a Special Condition

N.B. - The vertex $y \in A$ is such that every vertex lying on the clockwise boundary between $p_u(y)$ and $p_v(y)$ (henceforth denoted as $bd_c(p_u(y), p_v(y))$) is visible from $p_u(y)$ or $p_v(y)$.

An Approximation Algorithm

An Inapproximability Result 0000

Performance Guarantee under a Special Condition

Lemma

If each vertex $z \in A$ is such that every vertex of $bd_c(p_u(z), p_v(z))$ is visible from $p_u(z)$ or $p_v(z)$, then $|S_A| \le 2|S_{opt}|$.

An Inapproximability Result 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Performance Guarantee under a Special Condition

Lemma

If each vertex $z \in A$ is such that every vertex of $bd_c(p_u(z), p_v(z))$ is visible from $p_u(z)$ or $p_v(z)$, then $|S_A| \leq 2|S_{opt}|$.

•
$$|S_A| = 2|A|$$

•
$$|{\sf A}| \leq |{\sf S}_{opt}|$$
 (to be shown next)

• Therefore,
$$|S_A| = 2|A| \le 2|S_{opt}|$$

An Approximation Algorithm

An Inapproximability Result 0000

Location of an Optimal Guard for Vertex z

An Approximation Algorithm

An Inapproximability Result 0000

Location of an Optimal Guard for Vertex z

Lemma

Any guard $x \in S_{opt}$ that sees z must lie on $bd_c(p_u(z), p_v(z))$.

200

An Approximation Algorithm

An Inapproximability Result 0000

(日)、(四)、(E)、(E)、(E)

Proof sketch of $|A| \leq |S_{opt}|$

• All vertices of $bd_c(p_u(z), p_v(z))$ are visible from $p_u(z)$ or $p_v(z)$.

An Approximation Algorithm

An Inapproximability Result 0000

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

Proof sketch of $|A| \leq |S_{opt}|$

- All vertices of $bd_c(p_u(z), p_v(z))$ are visible from $p_u(z)$ or $p_v(z)$.
- If q is visible from x, then q must be visible from $p_u(z)$ or $p_v(z)$.

An Approximation Algorithm

An Inapproximability Result

Proof sketch of $|A| \leq |S_{opt}|$

- All vertices of $bd_c(p_u(z), p_v(z))$ are visible from $p_u(z)$ or $p_v(z)$.
- If q is visible from x, then q must be visible from $p_u(z)$ or $p_v(z)$.

An Approximation Algorithm

An Inapproximability Result 0000

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

Proof sketch of $|A| \leq |S_{opt}|$

- All vertices of $bd_c(p_u(z), p_v(z))$ are visible from $p_u(z)$ or $p_v(z)$.
- If q is visible from x, then q must be visible from $p_u(z)$ or $p_v(z)$.

An Inapproximability Result 0000

A Bad Input Polygon for the Naive Algorithm

For this input instance, $|S_A| = 2k$, whereas $S_{opt} = \{u, g\}$.

An Inapproximability Result

A Better Strategy for Guarding All Vertices

$$B = \{\}; S = \{\}$$

New Strategy - Skip some unmarked vertices along the clockwise scan and choose vertices to include in *B* more carefully!

Invariance - If z is the current vertex under consideration along the clockwise scan, then every vertex of $bd_c(u, z)$ is visible from some guard in $S \cup \{p_u(z), p_v(z)\}$.

An Approximation Algorithm

An Inapproximability Result 0000

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

A Better Strategy for Guarding All Vertices

Case 1 - Every vertex lying on $bd_c(z, p_v(z))$, except z itself, is either visible already from guards currently in S or becomes visible if new guards are placed at $p_u(z)$ and $p_v(z)$.

An Approximation Algorithm

An Inapproximability Result 0000

A Better Strategy for Guarding All Vertices

Case 1 - Every vertex lying on $bd_c(z, p_v(z))$, except z itself, is either visible already from guards currently in S or becomes visible if new guards are placed at $p_u(z)$ and $p_v(z)$.

 $B = B \cup \{z\} ; S = S \cup \{p_u(z), p_v(z)\} ; z = x$

An Approximation Algorithm

An Inapproximability Result

A Better Strategy for Guarding All Vertices

Case 2 - There exist some vertices lying on $bd_c(z, p_v(z))$, not visible already from guards currently in S, such that they do not become visible even if new guards are placed at $p_u(z)$ and $p_v(z)$.

Let z' be the next vertex along the clockwise scan that is not visible from any guard already in S.

An Inapproximability Result 0000

A Better Strategy for Guarding All Vertices

Case 2a - Not every unmarked vertex of $bd_c(p_u(z'), z')$ is visible from $p_u(z')$ or $p_v(z')$.

An Inapproximability Result 0000

A Better Strategy for Guarding All Vertices

Case 2a - Not every unmarked vertex of $bd_c(p_u(z'), z')$ is visible from $p_u(z')$ or $p_v(z')$.

 $B = B \cup \{z\}$; $S = S \cup \{p_u(z), p_v(z)\}$; z = x

An Approximation Algorithm

An Inapproximability Result 0000

A Better Strategy for Guarding All Vertices

Case 2b - Every unmarked vertex of $bd_c(p_u(z'), z')$ is visible from $p_u(z')$ or $p_v(z')$.

An Inapproximability Result 0000

A Better Strategy for Guarding All Vertices

Case 2b - Every unmarked vertex of $bd_c(p_u(z'), z')$ is visible from guards at $p_u(z')$ or $p_v(z')$.

 $B = B \cup \{\}$; $S = S \cup \{\}$; z = z'

An Approximation Algorithm

An Inapproximability Result 0000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Approximation Ratio of our Algorithm

Lemma

$$|B| \leq 2|S_{opt}|.$$

Approximation Ratio of our Algorithm

Lemma

$$|B| \leq 2|S_{opt}|.$$

Proof.

There exists a bipartite graph $G = (B \cup S_{opt}, E)$ such that: (a) the degree of each vertex in B is exactly 1, and, (b) the degree of each vertex in S_{opt} is at most 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Approximation Ratio of our Algorithm

Lemma

$$|B| \leq 2|S_{opt}|.$$

Proof.

There exists a bipartite graph $G = (B \cup S_{opt}, E)$ such that: (a) the degree of each vertex in B is exactly 1, and, (b) the degree of each vertex in S_{opt} is at most 2.

Lemma

 $|S| \leq 4|S_{opt}|.$

Approximation Ratio of our Algorithm

Lemma

$$|B| \leq 2|S_{opt}|.$$

Proof.

There exists a bipartite graph $G = (B \cup S_{opt}, E)$ such that: (a) the degree of each vertex in B is exactly 1, and, (b) the degree of each vertex in S_{opt} is at most 2.

Lemma

 $|S| \leq 4|S_{opt}|.$

Proof.

• |S| = 2|B|

•
$$|B| \leq 2|S_{opt}|$$

Therefore, $|S| = 2|B| \le 4|S_{opt}|$.

An Inapproximability Result 0000

Insufficiency of Guards in S to Cover all Interior Points

Figure: All vertices are visible from the guard set $S = \{p_u(z), p_v(z)\}$, but all points in the triangular interior region $x_1x_2x_3$ are invisible.

An Inapproximability Result 0000

Insufficiency of Guards in S to Cover all Interior Points

Figure: All vertices are visible from the guard set $S = \{p_u(z), p_v(z)\}$, but all points in the triangular interior region $x_1x_2x_3$ are invisible.

NOTE: One of the sides x_1x_2 of the triangle $x_1x_2x_3$ is a part of the polygonal edge a_1a_2 . In fact, for any such invisible region, one of the sides must always be part of a polygonal edge.

An Inapproximability Result 0000

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Insufficiency of Guards in S to Cover all Interior Points

Figure: Multiple invisible regions exist within the polygon that are not visible from the guard set $S = \{p_u(z), p_v(z)\}$.

An Inapproximability Result 0000

Placement of More Guards to Cover all Interior Points

Figure: Multiple invisible regions exist within the polygon that are not visible from the guard set $S = \{p_u(z), p_v(z)\}.$

Lemma

It is possible to choose an additional set of guards S' to cover all invisible regions such that $|S'| \leq 2|S_{opt}|$.

An Approximation Algorithm

An Inapproximability Result 0000

Approximation Ratio of our Algorithm

Theorem

Our algorithm has an approximation ratio of 6.

Proof.

The final guard set returned by our algorithm is $|S \cup S'|$.

$$egin{aligned} |S \cup S'| &= |S| + |S'| \ &\leq 4|S_{opt}| + 2|S_{opt}| \ &= 6|S_{opt}| \end{aligned}$$

An Approximation Algorithm

An Inapproximability Result 0000

Running Time of our Algorithm

Theorem

For a weak visibility polygon P having n vertices, the running time of our algorithm is $\mathcal{O}(n^2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Running Time of our Algorithm

Theorem

For a weak visibility polygon P having n vertices, the running time of our algorithm is $\mathcal{O}(n^2)$.

Proof.

• Computation of SPT(u) and SPT(v) takes $\mathcal{O}(n)$ time.

Running Time of our Algorithm

Theorem

For a weak visibility polygon P having n vertices, the running time of our algorithm is $\mathcal{O}(n^2)$.

- Computation of SPT(u) and SPT(v) takes $\mathcal{O}(n)$ time.
- Computation of guard set S takes $\mathcal{O}(n^2)$ time.

Running Time of our Algorithm

Theorem

For a weak visibility polygon P having n vertices, the running time of our algorithm is $\mathcal{O}(n^2)$.

- Computation of SPT(u) and SPT(v) takes $\mathcal{O}(n)$ time.
- Computation of guard set S takes $\mathcal{O}(n^2)$ time.
- Computation of guard set S' also takes $\mathcal{O}(n^2)$ time.

Running Time of our Algorithm

Theorem

For a weak visibility polygon P having n vertices, the running time of our algorithm is $\mathcal{O}(n^2)$.

- Computation of SPT(u) and SPT(v) takes $\mathcal{O}(n)$ time.
- Computation of guard set S takes $\mathcal{O}(n^2)$ time.
- Computation of guard set S' also takes $\mathcal{O}(n^2)$ time.
- Hence, the overall running time of our algorithm is $\mathcal{O}(n^2)$.

A Known Inapproximability Result

Theorem (Eidenbenz, Stamm and Widmayer (1998))

For polygons with holes, there cannot exist a polynomial time algorithm for AGP with an approximation ratio better than $((1 - \epsilon)/12) \ln n$ for any $\epsilon > 0$, unless $NP \subseteq TIME(n^{\mathcal{O}(\log \log n)})$.

A Known Inapproximability Result

Theorem (Eidenbenz, Stamm and Widmayer (1998))

For polygons with holes, there cannot exist a polynomial time algorithm for AGP with an approximation ratio better than $((1-\epsilon)/12) \ln n$ for any $\epsilon > 0$, unless $NP \subseteq TIME(n^{\mathcal{O}(\log \log n)})$.

The above theorem utilizes the following result by Feige -

Theorem (Feige (1998))

Set Cover cannot be approximated to within a factor of $(1 - \epsilon) \ln n$ for every $\epsilon > 0$ unless $NP \subseteq TIME(n^{\mathcal{O}(\log \log n)})$.

An Inapproximability Result 000

Our Inapproximability Result

A modification of their reduction leads us to the following result -

Theorem

For weak visibility polygons with holes, there cannot exist a polynomial time algorithm for the vertex guarding problem with an approximation ratio better than $((1 - \epsilon)/12) \ln n$ for any $\epsilon > 0$, unless $NP \subseteq TIME(n^{\mathcal{O}(\log \log n)})$.

An Inapproximability Result 0000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Our Inapproximability Result

A very recent result by Dinur and Steurer -

Theorem (Dinur and Steurer (2014))

Set Cover cannot be approximated to within a factor of $(1 - \epsilon) \ln n$ for every $\epsilon > 0$ unless NP = P.

Our Inapproximability Result

A very recent result by Dinur and Steurer -

Theorem (Dinur and Steurer (2014))

Set Cover cannot be approximated to within a factor of $(1 - \epsilon) \ln n$ for every $\epsilon > 0$ unless NP = P.

With this strengthening of Feige's quasi-NP-hardness, our inapproximability result gets improved to -

Theorem

For weak visibility polygons with holes, there cannot exist a polynomial time algorithm for the vertex guarding problem with an approximation ratio better than $((1 - \epsilon)/12) \ln n$ for any $\epsilon > 0$, unless NP = P.

Thank You!