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Polygons and Visibility

Figure: Polygon with holes Figure: Polygon without holes

Definition (Visibility of a Point)

Any point z ∈ P is said to be visible from another point g ∈ P if
the line segment zg does not intersect the exterior of P.
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Art Gallery Problem

The art gallery problem (AGP) enquires about the least number of
guards that are sufficient to ensure that an art gallery is fully
guarded, assuming that a guard’s field of view covers 360◦ as well
as an unbounded distance.

An art gallery can be viewed as an n-sided polygon P (with or
without holes) and guards as points in P.

Guards may be allowed to be placed anywhere within P (point
guards), or they may be allowed to be placed only on the vertices
of P (vertex guards).

Victor Klee (1973) → How many point guards or vertex guards are
always sufficient to guard a simple polygon having n vertices?
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Sufficient Number of Guards

Theorem ( Chvatal (1975), Fisk (1978) )

For guarding a simple polygon with n vertices, bn3c point guards or
vertex guards are sufficient and sometimes necessary.

Figure: A polygon where b n3c point guards or vertex guards are necessary.
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Art Gallery Problem - Hardness Results

Definition (Decision Version of the Art Gallery Problem)

Given a polygon P and a number k as input, can the polygon P be
guarded with k or fewer guards?

Hardness results known for the decision version of AGP:

Proved to be NP-complete for vertex guards (Lee and Lin).

Proved to be NP-complete for point guards (Aggarwal).

Proved to be APX-complete (Eidenbenz, Stamm and
Widmayer), implying that no PTAS can exist for AGP.

Specifically for polygons with holes, AGP cannot be
approximated to within a factor of Ω(ln n) (Eidenbenz,
Stamm and Widmayer).
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Art Gallery Problem - Approximation Algorithms

For computing the minimum number of guards, the following
approximation algorithms exist:

O(log n)-approximation algorithm for vertex and edge guards
by Ghosh in 1987 via a reduction to set cover.

O(log OPT )-approximation pseudopolynomial time algorithm
for point guards and perimeter guards by Deshpande et al.

O(log OPT )-approximation randomized algorithm with fully
polynomial expected running time by Efrat and Har-Peled.

O(log log OPT )-approximation algorithm for perimeter guards
by King and Kirkpatrick in 2011 by using ε-nets.

Conjecture (Ghosh (1987))

There exist polynomial time algorithms with a constant
approximation ratio for vertex guarding polygons without holes.
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Importance of this Work

Presents a practical iterative algorithm for the Art Gallery
Problem with point guards, which finds a sequence of
decreasing upper bounds and increasing lower bounds for the
optimal value.

As evidence of effectiveness of the proposed algorithm,
presents results showing that for every one of more than 1440
benchmark polygons of various classes gathered from the
literature with up to a thousand vertices, optimal solutions are
attained in just a few minutes of computing time.

This work is unprecedented since, despite several decades of
extensive investigation on the AGP, all previously published
algorithms were unable to handle instances of that size and
often failed to prove optimality for a significant fraction of the
instances tested.
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Visibility Polygon

Definition (Visibility Polygon)

The visibility polygon of a point p ∈ P, denoted by Vis(p), is the
set of all points in P that are visible from p.

The edges of Vis(p) are called visibility edges, and they are said to
be proper for p if and only they are not contained in any edge of P.
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Visibility Polygon
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Atomic Visibility Polygons
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Atomic Visibility Polygons

Definition (Atomic Visibility Polygons)

The geometric arrangement defined by the visibility edges of the
points in S partitions P into a collection of convex polygonal faces
called Atomic Visibility Polygons or simply AVPs.

Clearly, the edges of an AVP are either portions of edges of P or
portions of proper visibility edges for points of S .
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Atomic Visibility Polygons
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Atomic Visibility Polygons - Light and Shadow

AVPs can be classified according to their visibility properties
relative to the points of S .

Definition (Light and Shadow AVPs)

We say that an AVP F is a light (shadow) AVP if there exists a
subset T of S such that F is (is not) visible from any point in T
and the only proper visibility edges that spawn F emanate from
points in T .
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Atomic Visibility Polygons
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Discretized Versions of AGP - AGPFC

In the Art Gallery Problem With Fixed Guard Candidates
(AGPFC), one is given a finite set of points C ⊂ P, and the
question consists of selecting the minimum number of guards in C
that are sufficient to cover the entire polygon.

A special case of the AGPFC is obtained when the elements of C
are restricted to the vertices of P, in which case we call it the Art
Gallery Problem With Vertex Guards (AGPVG).
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Discretized Versions of AGP - AGPW

In the Art Gallery Problem With Witnesses (AGPW), one is given
a finite set of points W ⊂ P, and the problem consists in finding
the minimum number of guards in P that are sufficient to cover all
points in W .

Clearly, coverage of W does not ensure that of P. A polygon P to
be witnessable if there exists a finite witness set W ⊂ P satisfying
the property that any set of guards that covers W also covers the
entire polygon P.
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Discretized Versions of AGP - AGPWFC

If both the witness set and the guard candidate set are required to
be finite, then the corresponding discretization leads to a hybrid of
the last two problems, which we will denote by AGPWFC.

It is worth noting that the latter problem can easily be cast as a
Set Cover Problem (SCP) in which the elements of W have to be
covered using the subsets comprised of the witness points that are
covered by the candidate guards.
Despite being NP-hard, large instances of the SCP can be solved
quite efficiently using modern integer programming solvers.
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Notations used in the Algorithm

Let V denote the set of vertices of the input polygon P and
assume that |V | = n.

Given a finite set S of points in P, we denote by Arr(S) the
arrangement defined by the visibility edges of the points in S .

Let CU (S) be a set comprised of one point from the interior of
each uncovered region induced by S in P.

We denote by VL(S) the set of vertices of the light AVPs of
Arr(S).

We denote by CS(S) the set of centroids of the shadow AVPs
of Arr(S).
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Notations used in the Algorithm

Let D and C denote, respectively, a finite witness set and a
finite candidate guard set.

Let AGPW (D) indicate the AGP with witness set D.

Let AGPFC (C ) indicate the AGP with candidate guard set C .

Lastly, AGPWFC (D,C ) refers to the AGP with witness set D
and candidate guard set C .
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Computing Lower Bounds

Theorem

Let D be a finite subset of points in P. Then, there exists an
optimal solution for AGPW (D) where each guard belongs to a
light AVP of Arr(D).

Corollary

An optimal solution for AGPW (D) can be obtained simply by
solving AGPWFC (D,VL(D)).

Corollary

Since D is a subset of points of P, the optimum of AGPW (D) is a
lower bound for the optimum value of the AGP on P.
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Computing Upper Bounds

Theorem

Let D and C be two finite subsets of P, such that C covers P.
Assume that G (D,C ) is an optimal solution for AGPWFC (D,C ).
If G (D,C ) covers P, then G (D,C ) is also an optimal solution for
AGPFC (C ).

Corollary

Since C is a subset of points of P, |G (D,C )| is an upper bound for
the optimum value of the AGP on P.

Suppose |G (D,C )| is not a valid upper bound for the AGP.
Then, the witness set D is updated to D ∪ CU (G (D,C )).
This process is repeated until G (D,C ) covers P.
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Pseudocode for the Algorithm
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Initial Witness Set

All-Vertices (AV)

Convex-Vertices (CV)

Chwa-Points (CP)
(midpoints of all reflex-reflex edges and all convex vertices
from convex-reflex edges)

Chwa-Extended (CE)
(the same points as in CP plus all reflex vertices from
convex-reflex edges)
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Experimental Results

All tests were conducted using a single desktop PC featuring
an Intel CoreTM i7-2600 at 3.40 GHz, 8 GB of RAM and
running under GNU/Linux 3.2.0.

CGAL and XPRESS libraries were used in the C++
implementation.

All tests were run in isolation, meaning that no other
processes were executed at the same time on the machine.
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Experimental Results

Figure: Comparison with the method of Kroller et al.
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Experimental Results

Figure: Comparison with the method of Bottino et al.
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Thank You!
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