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Abstract—The variant of recurrent neural networks (RNN)
such as long short-term memory (LSTM) is successful in se-
quence modelling such as automatic speech recognition (ASR)
framework. However the decoded sequence is prune to have false
substitutions, insertions and deletions. We exploit the spectral
flatness measure (SFM) computed on the magnitude linear pre-
diction (LP) spectrum to detect two broad manners of articulation
namely sonorants and obstruents. In this paper, we modify the
posteriors generated at the output layer of LSTM according to
the manner of articulation detection. The modified posteriors
are given to the conventional decoding graph to minimize the
false substitutions and insertions. The proposed method decreased
the phone error rate (PER) by nearly 0.7 % and 0.3 %
when evaluated on core TIMIT test corpus as compared to
the conventional decoding involved in the deep neural networks
(DNN) and the state of the art LSTM respectively.

Keywords—phoneme posteriors, spectral flatness measure
(SFM), sonorant detection rate (SDR), phone recognition

I. INTRODUCTION

In recent years, deep neural networks (DNNs) combined
with hidden Markov models (HMM) have become the dom-
inant approach in acoustic modeling [1]. Based on increased
computation power and quantity of data, substantial error rate
reduction has been achieved for speech recognition tasks [2].
Recurrent neural networks (RNNs) as well as Long Short-
Term Memory RNNs (LSTM RNNs) [3] are more suitable
for sequence tasks such as sequence modeling and prediction,
and have been helpful to improve robustness in ASR [4] .

The use of signal processing techniques in identifying
discriminative information in speech signal has provided an
insight to improve recognition performance [5]. In order to au-
tomatically segment speech into broad manner of articulation,
it is essential to derive discriminative information particular to
different manner of articulation [6]. Sonorants are the class of
speech sounds that is produced with continuous, non-turbulent
airflow in the vocal tract. Sonorants include vowels, semi-
vowels and nasals. We exploit the spectral flatness measure
(SFM) computed on the magnitude linear prediction (LP)
spectrum for sonorant detection and use this information in
ASR framework.The speech frames that are detected as sono-
rants are given to a sparse matrix generator where the values
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are high for sonorant IDs and low for obstruent phoneme
IDs. The posteriors generated from the DNN/LSTM acoustic
models (AM) are multiplied by the sparse matrix output
and normalized to obtain modified posteriors. The modified
posteriors are given to the conventional decoding graph to
minimize the false substitutions and insertions.

II. BACKGROUND

The conventional method of decoding a test speech utter-
ance is as illustrated in Figure 1 (a). The speech utterance
is represented using standard features such as mel frequency
cepstral co-efficients (MFCC) or feature space maximum like-
lihood linear regression (fMLLR) transformation [7].

Fig. 1: Block diagram of (a) Baseline Decoding Mechanism
in ASR (b) Proposed posterior modification framework

In order to arrive at phone likelihoods [8], we will first sum
the pdf-id posteriors p(i|x) and priors p(i), where i denotes a
pdf-id, over all pdf-ids that contribute to the same base phone,
independent of HMM state, phone context, etc:

p(f |x) =
∑
i∈f

(p(i)|x); p(f) =
∑
i∈f

p(i) (1)

where i ∈ f indicates the mapping of pdf-id i to base
phone f . The decoder computes the most likely word sequence
w = w1...wM for the observed speech signal, represented as
sequence of acoustic feature vectors x = x1...xT :

ŵ = argmax
w

(p(x|w)p(w)) (2)

The finite-state transducer (FST) framework provides well
studied graph operations [9] which can be effectively used
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for speech decoding. The decoding graph is represented as
a weighted finite-state transducer (WFST) [10] that can be
constructed using Eq (3).

HCLG = min(det(H ◦ (C ◦ (L ◦G)))) (3)

where for the case of phoneme recognition, G is a phoneme
grammar, L is a lexicon, C is the context dependency specifi-
cation and H transforms sequences of senones (tied triphone
states) to triphones. ◦ represents the composition operator.

A. Motivation

We believe that most of the sonorant sounds are produced
using relatively less constricted vocal-tract shape and glottal vi-
bration. This results in regions of regular structure having high
energy and high degree of periodicity. Hence it is necessary
to capture the manner of articulation transitions in the decoder
to minimize falsely decoded phoneme sequences. The current
research is focussed purely on acoustic model (AM) or lattice
modification or embedding discriminative information to the
features and retraining the AM. It is also important to observe
the manner of articulation in the test utterance and adopt to
modify the state of the art LSTM posteriors. We believe that
the focus on explicitly modifying the DNN/LSTM posteriors
by embedding manner of articulation knowledge is limited.
Hence in our work we attempt to impose some restrictions in
generating the posteriors according to the manner of articula-
tion knowledge and focus in that direction.

III. PROPOSED WORK

The fundamental blocks of the proposed posterior modifi-
cation mechanism is illustrated in Figure 1 (b).

A. Manner of Articulation Detection

The block diagram for the proposed sonorant detection
framework is shown in Figure 2 . Here the speech signal
is analysed at short time intervals and for each frame the
pth order LPC is obtained. The LP spectrum is obtained by
calculating the frequency response of the all pole digital filter
where the denominator coefficients involve the LPCs. SFM

Fig. 2: Block diagram of the proposed sonorant detection
framework
[11] is calculated on the magnitude of the LP spectrum for
each frame using the Eq. (4) where X(k)

SFM =
exp( 1

N

∑k=N−1
k=0 |X(k)|)

1
N

∑k=N−1
k=0 |X(k)|

(4)

is the magnitude of LP spectrum, k varies from 0 to N-1 and N
being the number of FFT points. Sonorants and non-sonorants
are identified by the appropriate choice of SFM threshold.

B. Sparse Matrix Generator

Let us consider ten context independent acoustic models
obtained for the phonemes /aa/S, /ax/S, /b/O, /el/S, /iy/S, /ih/S,
/p/O, /s/O, /sh/O and /z/O for illustration. Here the phoneme
/X/S and /Y/O indicate that the model /X/ belongs to sonorant

manner and /Y/ belong to obstruent respectively. Let the
decoded sequence for some speech utterance be “p iy ax el”
which was supposed to be decoded as “p iy p el”. This resulted
in one substitution error where /p/ is substituted as /ax/. The
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Fig. 3: (a) Baseline Posterior (b) Modified Posterior generated
for the decoded sequence

posteriors for four segments of speech is shown as a gray
scale image in Figure 3 (a). Higher the posterior for a speech
segment, the darker (black) is the plot. From the figure, the
posterior probability of /ax/ phone is more than that of /p/.
Hence the final decoded utterance decodes as /ax/.

Sparse matrix is generated as per the manner of articulation
knowledge embedded in speech segment. The size of sparse
matrix is m × n where m is the number of segments in the
decoded sequence, n is the number of phoneme models or the
number of nodes at the output layer of DNN/LSTM.

M =

⎡
⎢⎣
0 0 1 0 0 0 1 1 1 1
1 1 0 1 1 1 0 0 0 0
0 0 1 0 0 0 1 1 1 1
1 1 0 1 1 1 0 0 0 0

⎤
⎥⎦

In this example, the size of sparse matrix is 4 × 10. If the
segment of speech belongs to sonorant manner then the index
of sonorant IDs are made ‘1’ else they are highlighted by
‘0’. Since the first and third segments of speech are assumed
to be of obstruent manner, they should have same sparse
values. The raw posteriors generated at the output layer are
multiplied by the sparse matrix and normalized to obtain the
modified posteriors. Figure 3 (b) shows the representation of
the modified posteriors. We can observe that the third segment
in the figure has only the posteriors related to obstruent
manner. Hence the sonorant posteriors are forced to zero in
the third segment as indicated by white regions in Figure 3
(b) . Now the system decodes the third segment from only
the obstruent manner. In such a way, the sonorant identities
being falsely decoded as non-sonorants are minimized using
proposed method.

IV. EXPERIMENTS

All phone recognition experiments are performed on the
training set and evaluated on the test set of the TIMIT 1 corpus.

A. Variation of SFM on sonorants and obstruents

Figure 4 shows the plot of magnitude LP spectrum obtained
at different frequency and its corresponding SFM for the class
of sonorants (a) and non-sonorants (b). SFM variation on the

1https://catalog.ldc.upenn.edu/ldc93s1
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Fig. 4: Illustration of the SFM value on LP spectrum for (a)
sonorants and (b) non-sonorants

magnitude spectrum varies for sonorants /aa/, /r/ and /m/ and
non-sonorants /f/, /jh/ and /k/ is illustrated. It is observed that
the SFM values per frame of sonorants phonemes /aa/, /r/
and /m/ is found to be 0.25, 0.18 and 0.35 and that for non-
sonorants phonemes /f/, /jh/ and /k/ is found to be 0.7, 0.62 and
0.85 respectively. Since the class of sonorants doesn’t undergo
any constrictions in the vocal tract, the magnitude LP spectrum
is relatively smoother and hence the SFM on these segments
produces low values. In contrast, high constriction (for plosive
/k/ and affricate /jh/) and noise information (for fricatives /f/)
play dominant role for the obstruent sound production. As a
result the SFM for non-sonorants has high values for noise-
dominated regions which have a relatively flat spectrum.

The sonorant detection rate (SDR) is calculated using

%SDR =
Tp+Tn

Tp+Fp+Fn+Tn
where Tp, Tn, Fp and Fn are the

true-positive, true-negative, false-positive and false-negative
rates respectively. Tp for sonorants correctly identified as
sonorants, Tn for obstruents incorrectly identified as sonorants,
Fp for obstruents correctly identified as obstruents and Fn for
sonorants incorrectly identified as obstruents. The detection
rate is obtained for different SFM threshold varied from 0.1
to 1.0 in steps of 0.01. Since the SFM value of 0.5 showed
maximum detection rate of 0.943 on test set of TIMIT, we fix
this as the sonorant-obstruent discriminating index. This is to
say that a speech frame whose SFM value is lesser than 0.50
is treated as sonorant else its an obstruent.

B. Sonorant detection framework in ASR

We used Pytorch-kaldi 2 for running the experiments on
LSTM. The DNN part is managed by pytorch, while feature
extraction, label computation, and decoding are performed
with the kaldi toolkit [12].

1) System Details: The architecture adopted for the ex-
periments consisted of multiple bi-LSTM recurrent layers
[3], which were stacked together prior to the final softmax
context-dependent classifier. We studied the impact of sonorant
detection framework in ASR under different cases.

• Case-1: We trained the ASR system using HMM-
GMM, DNN and LSTMs on MFCC+Δ +ΔΔ . The
performance is evaluated on the baseline models.

• Case-2: The raw posteriors generated at the output
layer of DNN/LSTM are multiplied by the sparse ma-
trix and normalized to obtain the modified posteriors.
The performance of the system (%PER) is measured
on the modified posteriors.

2https://github.com/mravanelli/pytorch-kaldi/

V. RESULTS AND DISCUSSION

In this section the performance of the sonorant detector and
its impact in ASR performance is discussed.

A. Performance of the sonorant detector

The phone level TIMIT alignments are used to find the
SDR for a particular phoneme. Higher the value of SDR
indicates that all the frames in the expected alignment belongs
to the class of sonorants; lower values indicate that SFM values
of those frames are greater than threshold and hence they
belong to the class of non-sonorants.
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Fig. 5: Sonorant detection rate on different phonemes (a) Vow-
els (b) Semi-vowels and Nasals (c) Fricatives and Affricates
(d) Stops

Figure 5 shows the SDR for (a) vowels, (b) semi-vowels
and nasals, (c) fricatives, affricates and (d) stop consonants. It
is observed that the SFM works well in detection of sonorants
except for the fact that some of the non-sonorants show mixed
characteristics. The voiced weaker fricatives such as /v/ and
/dh/ and the voiced weaker stops such as /b/ and /g/ show the
% SDR more than 20%. This is to say that 20% of weaker
fricatives and stop consonants are falsely detected as sonorants.
We believe that this false indication is due to the influence of
vowels in their neighbouring context, low level voicing and
also the duration of these phonemes is quite less. The overall
SDR obtained on the core test set of TIMIT is 0.95. The further
reduction and analysis of falsely detected phonemes is one of
the future scopes of the paper.

B. Phoneme Recognition after sonorant detection

The DNN is initialized with stacked restricted Boltzmann
machines (RBMs) that are pretrained in a greedy layerwise
fashion [13]. The baseline LSTM models had 1945 pdf-ids,
hence the fully connected layer dimension is 1945× (512×2)
(Bi-LSTM). Table I shows the performance of the context in-
dependent HMM-GMM , DNN and the state-of-the-art LSTM
systems studied under different case studies indicating the
number of deletions (D), substitutions (S) and insertions (I)
errors. %Corr and %Acc are calculated using (N-S-I)/N and
(N-D-S-I)/N respectively where N is the number of phonemes
in the expected test transcriptions.

In order to visualize the 2D embeddings, a test utterance
(dr1/faks0/sa1.wav - “She had your dark suit in greasy wash
water all year”) from the test set of TIMIT is considered. The
test utterance is divided into short segment of 20 ms with 10
ms overlap and relevant MFCC+Δ+ΔΔ feature is extracted.
There are 14 unique labels from the test utterance (/sh/, /iy/,
/hv/, /ae/, /cl/, /d/, /y/, /er/, /k/, /s/, /aa/, r/, /w/ and /l/) and is
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TABLE I: Overall PER obtained using HMM-GMM and DNN
with different case studies

System Cases D S I % Corr % Acc % PER

HMM-GMM
Case-1 686 1422 239 77 67.5 32.5
Case-2 686 1400 217 77.6 68.1 31.9

DNN

Case-1
780 1241 188 80.2 69.4 30.6 (1-H)
693 1140 217 81.2 71.6 28.4 (2-H)
643 1097 195 82.1 73.2 26.8 (3-H)

Case-2
758 1191 181 81 70.5 29.5 (1-H)
686 1097 217 81.8 72.3 27.7 (2-H)
635 1054 188 82.8 74 26.1 (3-H)

Bi-LSTM
Case-1 218 707 166 87.2 84.9 15.1
Case-2 218 690 159 88.2 85.2 14.8

used for reference. t-Stochastic Neighbourhood Embedding (t-
SNE) receives the high dimensional features and converts into
2 dimension [14]. Figure 6 (a) shows the 2D Visualization of
DNN output layer activations obtained for MFCC+Δ + ΔΔ
feature at individual phoneme level. The features that belong
to sonorants (yellow) or obstruents (blue) are highlighted in
Figure 6 (b). Figure 7 (a) shows the 2D Visualization of
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Fig. 6: 2D Visualization of DNN output layer activations for
MFCC+Δ + ΔΔ feature (a) Distribution of phonemes (b)
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Fig. 7: 2D Visualization of DNN output layer activations
modified using proposed method (a) Distribution of phonemes
(b) sonorant-obstruent scatter

DNN output layer activations modified using proposed method
for MFCC+Δ+ΔΔ feature at individual phoneme level. The
features that belong to sonorants (yellow) or obstruents (blue)
are highlighted in Figure 7 (b). DNNs tries to cluster phonemes
of similar category and will discriminate them from other.
From the figure it can be observed that the degree of overlap
among sonorants and obstruents is reduced as compared to that
of Figure 6 (b).

DNNs can provide only limited temporal modeling and can
only model the data within the window and are unsuited to
handle different speaking rates and longer term dependencies.
By contrast, LSTM contain cycles that feed the network
activations from a previous time step as inputs to the network
to influence predictions at the current time step. Hence LSTMs
outperform over DNNs. However, the context information
captured in LSTM doesn’t explicitly consider the manner of

articulation knowledge present in the test frames. Hence when
we embed the manner of articulation detection knowledge
in modifying the LSTM posteriors, false substitutions and
insertions are further reduced.

VI. CONCLUSION

In this paper, automatic detection of sonorants based on
spectral flatness measure is discussed. Sonorant detection
scheme is applied to modify the LSTM posteriors at the
ASR decoder. The modified posteriors are given to the con-
ventional decoding graph to minimize the false substitutions
and insertions. The proposed method decreased the phone
error rate (PER) by nearly 0.7 % and 0.3 % when evaluated
on core TIMIT test corpus as compared to the conventional
decoding involved in the DNN and the state of the art LSTM
respectively.

In future, we wish to gather the different manners of
articulation knowledge in re-training LSTM.
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