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Dynamic Memory 
Allocation
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Problem with Arrays
Sometimes

Amount of data cannot be predicted beforehand
Number of data items keeps changing during program 
execution

Example: Seach for an element in an array of N elements
One solution: find the maximum possible value of  N and 
allocate an array of N elements

Wasteful of memory space, as N may be much smaller 
in some executions
Example:  maximum value of N may be 10,000, but a 
particular run may need to search only among 100 
elements

Using array of size 10,000 always wastes memory 
in most cases 
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Better Solution

Dynamic memory allocation
Know how much memory is needed after the program 
is run

Example: ask the user to enter from keyboard

Dynamically allocate only the amount of memory 
needed

C provides functions to dynamically allocate 
memory

malloc, calloc, realloc
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Memory Allocation Functions
malloc

Allocates requested number of bytes and returns a 
pointer to the first byte of the allocated space

calloc
Allocates space for an array of elements, initializes 
them to zero and then returns a pointer to the 
memory.

free
Frees previously allocated space.

realloc
Modifies the size of previously allocated space.

We will only do malloc and free
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Allocating a Block of Memory

A block of memory can be allocated using the 
function malloc

Reserves a block of memory of specified size 
and returns a pointer of type void
The return pointer can be type-casted to any 
pointer type

General format:
type *p;
p =  (type *) malloc (byte_size);
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Example
p = (int *) malloc(100 * sizeof(int));

A memory space equivalent to 100 times 
the size of an int bytes is reserved
The address of the first byte of the 
allocated memory is assigned to the 
pointer p of type int

p

400 bytes of space
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Contd.
cptr = (char *) malloc (20);

Allocates 20 bytes of space for the pointer cptr
of type char

sptr = (struct stud *) malloc(10*sizeof(struct
stud));

Allocates space for a structure array of 10 
elements. sptr points to a structure element of 
type struct stud

Always use sizeof operator to find number of bytes for 
a data type, as it can vary from machine to machine
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Points to Note
malloc always allocates a block of 
contiguous bytes

The allocation can fail if sufficient 
contiguous memory space is not available
If it fails, malloc returns NULL

if  ((p = (int *) malloc(100 * sizeof(int))) == NULL)
{

printf (“\n Memory cannot be allocated”);
exit();

}
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Using the malloc’d Array
Once the memory is allocated, it can be used with 
pointers, or with array notation
Example:

int *p, n, i;
scanf(“%d”, &n);
p = (int *) malloc (n * sizeof(int));
for (i=0; i<n; ++i)

scanf(“%d”, &p[i]);

The n integers allocated can be accessed as *p, *(p+1), 
*(p+2),…, *(p+n-1) or just as p[0], p[1], p[2], …,p[n-1]
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Example
printf("Input heights for %d 
students \n",N);
for (i=0; i<N; i++)
scanf ("%f", &height[i]);

for(i=0;i<N;i++)
sum += height[i];

avg = sum / (float) N;

printf("Average height = %f \n",
avg);

free (height);
return 0;

}

int main()
{
int i,N;
float *height;
float sum=0,avg;

printf("Input no. of students\n");
scanf("%d", &N);

height = (float *) 
malloc(N * sizeof(float));
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Releasing the Allocated Space: 
free

An allocated block can be returned to the 
system for future use by using the free function
General syntax:

free (ptr);
where ptr is a pointer to a memory block which 
has been previously created using malloc
Note that no size needs to be mentioned for the 
allocated block, the system remembers it for 
each pointer returned
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Can we allocate only arrays?

malloc can be used to allocate memory for 
single variables also

p = (int *) malloc (sizeof(int));
Allocates space for a single int, which can be 
accessed as *p

Single variable allocations are just special 
case of array allocations

Array with only one element
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malloc( )-ing array of structures
typedef struct{   

char name[20];
int roll;
float SGPA[8], CGPA;

} person;
void main()
{  

person *student;
int i,j,n;
scanf("%d", &n);
student = (person *)malloc(n*sizeof(person));
for (i=0; i<n; i++) {

scanf("%s", student[i].name);
scanf("%d", &student[i].roll);
for(j=0;j<8;j++) scanf("%f", &student[i].SGPA[j]);
scanf("%f", &student[i].CGPA);

}
}
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Static array of pointers
#define  N   20
#define  M  10
int main()
{ 

char word[N], *w[M];
int i, n;
scanf("%d",&n);
for (i=0; i<n; ++i) {

scanf("%s", word);
w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));
strcpy (w[i], word) ;

}
for (i=0; i<n; i++) printf("w[%d] = %s \n",i,w[i]);
return 0;

}
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Static array of pointers
#define  N   20
#define  M  10
int main()
{ 

char word[N], *w[M];
int i, n;
scanf("%d",&n);
for (i=0; i<n; ++i) {

scanf("%s", word);
w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));
strcpy (w[i], word) ;

}
for (i=0; i<n; i++) printf("w[%d] = %s \n",i,w[i]);
return 0;

}

4
Tendulkar
Sourav
Khan
India
w[0] = Tendulkar
w[1] = Sourav
w[2] = Khan
w[3] = India

Output
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w
0
1
2
3

9

How it will look like

T e n d u l k a r \0

S o u r a v \0

K h a n \0

I n d i a \0
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Pointers to Pointers
Pointers are also variables (storing addresses), 
so they have a memory location, so they also 
have an address
Pointer to pointer – stores the address of a 
pointer variable

int x = 10, *p, **q;
p = &x;
q = &p;
printf(“%d %d  %d”, x, *p, *(*q));

will print 10  10 10 (since *q = p)
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Allocating Pointer to Pointer

int **p;
p = (int **) malloc(3 * sizeof(int *));

p

p[2]
p[1]

p[0]
int ** int *

int *

int *



19

Dynamic Arrays of pointers

int main()
{
char word[20], **w;  /*  “**w” is a pointer to a pointer array */
int i, n;
scanf("%d",&n);
w = (char **) malloc (n * sizeof(char *));
for (i=0; i<n; ++i) {

scanf("%s", word);
w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));
strcpy (w[i], word) ;

}
for (i=0; i<n; i++) printf("w[%d] = %s \n",i, w[i]);
return 0;

}
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Dynamic Arrays of pointers

int main()
{
char word[20], **w;  /*  “**w” is a pointer to a pointer array */
int i, n;
scanf("%d",&n);
w = (char **) malloc (n * sizeof(char *));
for (i=0; i<n; ++i) {

scanf("%s", word);
w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));
strcpy (w[i], word) ;

}
for (i=0; i<n; i++) printf("w[%d] = %s \n",i, w[i]);
return 0;

}

5
India
Australia
Kenya
NewZealand
SriLanka
w[0] = India
w[1] = Australia
w[2] = Kenya
w[3] = NewZealand
w[4] = SriLanka

Output
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w 0
1
2
3
4

How this will look like

I n d i a \0

S r i L a n k a \0

A u s t r a l I a \0

K e n y a \0

N e w Z e a l a n d \0


