
1

Dynamic Memory
Allocation

2

Problem with Arrays
Sometimes

Amount of data cannot be predicted beforehand
Number of data items keeps changing during program
execution

Example: Seach for an element in an array of N elements
One solution: find the maximum possible value of N and
allocate an array of N elements

Wasteful of memory space, as N may be much smaller
in some executions
Example: maximum value of N may be 10,000, but a
particular run may need to search only among 100
elements

Using array of size 10,000 always wastes memory
in most cases

3

Better Solution

Dynamic memory allocation
Know how much memory is needed after the program
is run

Example: ask the user to enter from keyboard

Dynamically allocate only the amount of memory
needed

C provides functions to dynamically allocate
memory

malloc, calloc, realloc

4

Memory Allocation Functions
malloc

Allocates requested number of bytes and returns a
pointer to the first byte of the allocated space

calloc
Allocates space for an array of elements, initializes
them to zero and then returns a pointer to the
memory.

free
Frees previously allocated space.

realloc
Modifies the size of previously allocated space.

We will only do malloc and free

5

Allocating a Block of Memory

A block of memory can be allocated using the
function malloc

Reserves a block of memory of specified size
and returns a pointer of type void
The return pointer can be type-casted to any
pointer type

General format:
type *p;
p = (type *) malloc (byte_size);

6

Example
p = (int *) malloc(100 * sizeof(int));

A memory space equivalent to 100 times
the size of an int bytes is reserved
The address of the first byte of the
allocated memory is assigned to the
pointer p of type int

p

400 bytes of space

7

Contd.
cptr = (char *) malloc (20);

Allocates 20 bytes of space for the pointer cptr
of type char

sptr = (struct stud *) malloc(10*sizeof(struct
stud));

Allocates space for a structure array of 10
elements. sptr points to a structure element of
type struct stud

Always use sizeof operator to find number of bytes for
a data type, as it can vary from machine to machine

8

Points to Note
malloc always allocates a block of
contiguous bytes

The allocation can fail if sufficient
contiguous memory space is not available
If it fails, malloc returns NULL

if ((p = (int *) malloc(100 * sizeof(int))) == NULL)
{

printf (“\n Memory cannot be allocated”);
exit();

}

9

Using the malloc’d Array
Once the memory is allocated, it can be used with
pointers, or with array notation
Example:

int *p, n, i;
scanf(“%d”, &n);
p = (int *) malloc (n * sizeof(int));
for (i=0; i<n; ++i)

scanf(“%d”, &p[i]);

The n integers allocated can be accessed as *p, *(p+1),
*(p+2),…, *(p+n-1) or just as p[0], p[1], p[2], …,p[n-1]

10

Example
printf("Input heights for %d
students \n",N);
for (i=0; i<N; i++)
scanf ("%f", &height[i]);

for(i=0;i<N;i++)
sum += height[i];

avg = sum / (float) N;

printf("Average height = %f \n",
avg);

free (height);
return 0;

}

int main()
{
int i,N;
float *height;
float sum=0,avg;

printf("Input no. of students\n");
scanf("%d", &N);

height = (float *)
malloc(N * sizeof(float));

11

Releasing the Allocated Space:
free

An allocated block can be returned to the
system for future use by using the free function
General syntax:

free (ptr);
where ptr is a pointer to a memory block which
has been previously created using malloc
Note that no size needs to be mentioned for the
allocated block, the system remembers it for
each pointer returned

12

Can we allocate only arrays?

malloc can be used to allocate memory for
single variables also

p = (int *) malloc (sizeof(int));
Allocates space for a single int, which can be
accessed as *p

Single variable allocations are just special
case of array allocations

Array with only one element

13

malloc()-ing array of structures
typedef struct{

char name[20];
int roll;
float SGPA[8], CGPA;

} person;
void main()
{

person *student;
int i,j,n;
scanf("%d", &n);
student = (person *)malloc(n*sizeof(person));
for (i=0; i<n; i++) {

scanf("%s", student[i].name);
scanf("%d", &student[i].roll);
for(j=0;j<8;j++) scanf("%f", &student[i].SGPA[j]);
scanf("%f", &student[i].CGPA);

}
}

14

Static array of pointers
#define N 20
#define M 10
int main()
{

char word[N], *w[M];
int i, n;
scanf("%d",&n);
for (i=0; i<n; ++i) {

scanf("%s", word);
w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));
strcpy (w[i], word) ;

}
for (i=0; i<n; i++) printf("w[%d] = %s \n",i,w[i]);
return 0;

}

15

Static array of pointers
#define N 20
#define M 10
int main()
{

char word[N], *w[M];
int i, n;
scanf("%d",&n);
for (i=0; i<n; ++i) {

scanf("%s", word);
w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));
strcpy (w[i], word) ;

}
for (i=0; i<n; i++) printf("w[%d] = %s \n",i,w[i]);
return 0;

}

4
Tendulkar
Sourav
Khan
India
w[0] = Tendulkar
w[1] = Sourav
w[2] = Khan
w[3] = India

Output

16

w
0
1
2
3

9

How it will look like

T e n d u l k a r \0

S o u r a v \0

K h a n \0

I n d i a \0

17

Pointers to Pointers
Pointers are also variables (storing addresses),
so they have a memory location, so they also
have an address
Pointer to pointer – stores the address of a
pointer variable

int x = 10, *p, **q;
p = &x;
q = &p;
printf(“%d %d %d”, x, *p, *(*q));

will print 10 10 10 (since *q = p)

18

Allocating Pointer to Pointer

int **p;
p = (int **) malloc(3 * sizeof(int *));

p

p[2]
p[1]

p[0]
int ** int *

int *

int *

19

Dynamic Arrays of pointers

int main()
{
char word[20], **w; /* “**w” is a pointer to a pointer array */
int i, n;
scanf("%d",&n);
w = (char **) malloc (n * sizeof(char *));
for (i=0; i<n; ++i) {

scanf("%s", word);
w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));
strcpy (w[i], word) ;

}
for (i=0; i<n; i++) printf("w[%d] = %s \n",i, w[i]);
return 0;

}

20

Dynamic Arrays of pointers

int main()
{
char word[20], **w; /* “**w” is a pointer to a pointer array */
int i, n;
scanf("%d",&n);
w = (char **) malloc (n * sizeof(char *));
for (i=0; i<n; ++i) {

scanf("%s", word);
w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));
strcpy (w[i], word) ;

}
for (i=0; i<n; i++) printf("w[%d] = %s \n",i, w[i]);
return 0;

}

5
India
Australia
Kenya
NewZealand
SriLanka
w[0] = India
w[1] = Australia
w[2] = Kenya
w[3] = NewZealand
w[4] = SriLanka

Output

21

w 0
1
2
3
4

How this will look like

I n d i a \0

S r i L a n k a \0

A u s t r a l I a \0

K e n y a \0

N e w Z e a l a n d \0

