Dynamic Memory

Allocation

"
Problem with Arrays

m Sometimes

Amount of data cannot be predicted beforehand
Number of data items keeps changing during program
execution
m Example: Seach for an element in an array of N elements
m One solution: find the maximum possible value of N and
allocate an array of N elements
Wasteful of memory space, as N may be much smaller
IN some executions
Example: maximum value of N may be 10,000, but a

particular run may need to search only among 100
elements

m Using array of size 10,000 always wastes memory

IN Most cases X

Better Solution

m Dynamic memory allocation

Know how much memory is needed after the program
IS run
s Example: ask the user to enter from keyboard

Dynamically allocate only the amount of memory
needed

m C provides functions to dynamically allocate
memory

malloc, calloc, realloc

" J
Memory Allocation Functions

m malloc

Allocates requested number of bytes and returns a
pointer to the first byte of the allocated space

m calloc

Allocates space for an array of elements, initializes
them to zero and then returns a pointer to the
memory.

m free

Frees previously allocated space.
m realloc

Modifies the size of previously allocated space.
m We will only do malloc and free

S
Allocating a Block of Memory

m A block of memory can be allocated using the
function malloc

Reserves a block of memory of specified size
and returns a pointer of type void

The return pointer can be type-casted to any
pointer type

m General format:

type *p;
p = (type *) malloc (byte size);

o
Example
p = (int *) malloc(100 * sizeof(int));

A memory space equivalent to 100 times
the size of an int bytes Is reserved

The address of the first byte of the
allocated memory is assigned to the
pointer p of type int

400 bytes of space

" A
Contd.

m cptr = (char *) malloc (20);

Allocates 20 bytes of space for the pointer cptr
of type char

B sptr = (struct stud *) malloc(10*sizeof(struct
stud));

Allocates space for a structure array of 10
elements. sptr points to a structure element of
type struct stud

Always use sizeof operator to find number of bytes for
a data type, as it can vary from machine to machine,

" A
Points to Note

m malloc always allocates a block of
contiguous bytes

The allocation can fall if sufficient
contiguous memory space is not available

If It fails, malloc returns NULL

If ((p = (int *) malloc(100 * sizeof(int))) == NULL)
{

printf (\n Memory cannot be allocated”);
exit();
}

=
Using the malloc’d Array

m Once the memory is allocated, it can be used with
pointers, or with array notation

m Example:
Int *p, n, I;
scanf(“%d”, &n);
p = (int *) malloc (n * sizeof(int));
for (iI=0; I<n; ++i)
scanf(“%d”, &pli]);

The n integers allocated can be accessed as *p, *(p+1),
*(p+2),..., *(p+n-1) or just as p[0], p[1], p[2], ...,p[n-1]

" J
Example

int main(Q)

{
int i,N;
float *height;
float sum=0,avg;

printf(""Input no. of students\n');
scanf("'%d", &N);

height = (Float *)
malloc(N * sizeof(float));

printf("Input heights for %d
students \n"",N);

for (1=0; iI<N; i++)

scant ("%f'", &height[1]);

Tor(1=0;1<N;i1++)
sum += height[i];

avg = sum / (float) N;

printf(""Average height = %f \n",

avg);
free (height);
return O;

10

" B
Releasing the Allocated Space:
free

m An allocated block can be returned to the
system for future use by using the free function
m General syntax:
free (ptr);
where ptr is a pointer to a memory block which
has been previously created using malloc
m Note that no size needs to be mentioned for the
allocated block, the system remembers it for
each pointer returned

11

Can we allocate only arrays?

m malloc can be used to allocate memory for
single variables also

p = (int *) malloc (sizeof(int));

Allocates space for a single int, which can be
accessed as *p

m Single variable allocations are just special
case of array allocations

Array with only one element

12

S
malloc()-ing array of structures

typedef struct{
char name[20];
int roll;
float SGPA[8], CGPA;
} person;

void main()
{
person *student;
int i,j,n;
scanf("%d", &n);
student = (person *)malloc(n*sizeof(person));
for (i=0; i<n; i++) {
scanf("%s", student[i].name);
scanf("%d", &student[i].roll);
for(j=0;j<8;j++) scanf("%f", &student[i].SGPA[j]);
scanf("%f", &student[i].CGPA);
}

13

Static array of/pointers

{

#define N 20
#define M 10
int main()

char word[N], *w[M];

inti, n;

scanf("%d",&n);

for (i=0; i<n; ++i) {
scanf("%s", word);
wli] = (char *) malloc ((strlen(word)+1)*sizeof(char));
strcpy (w[i], word) ;

}

for (i=0; i<n; i++) printf("w[%d] = %s \n",i,w[i]);

return O;

14

Static array of/pointers

{

#define N 20
#define M 10
int main()

char word[N], *w[M];

inti, n;

scanf("%d",&n);

for (i=0; i<n; ++i) {
scanf("%s", word);
wli] = (char *) malloc ((strlen(word)+1)*sizeof(char));
strcpy (w[i], word) ;

}

for (i=0; i<n; i++) printf("w[%d] = %s \n",i,w[i]);

return O;

Output
4
Tendulkar
Sourav
Khan
India

w[0] = Tendulkar
w[1] = Sourav
w[2] = Khan

w[3] = India

15

How it will look like

w N O

W

vy v v Vv

\O

\O

Al |

\O

\O

16

W
Pointers to Pointers

m Pointers are also variables (storing addresses),
so they have a memory location, so they also
nave an address

m Pointer to pointer — stores the address of a
pointer variable

int x = 10, *p, **q;

P = &X;

q = &p;

printf(“%d %d %d”, X, *p, *(*q));

will print 10 10 10 (since *q = p)

17

=
Allocating Pointer to Pointer

Int **p;
p = (int **) malloc(3 * sizeof(int *));

p[O]
p [int** b int* >

p[]_] INt > jpp

p[2] [Int* —>

" S .
Dynamic Arrays of pointers

/

int main() /
{

char word[20], **w; /* “**w” is a pointer to a pointer array */
inti, n;
scanf("'%d"",&n);
w = (char **) malloc (n * sizeof(char *));
for (i=0; i<n; ++i) {
scanf(*'%s"", word);
w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));
strcpy (w[i], word) ;

}
for (i=0; i<n; i++) printf(""w[%d] = %s \n"" i, w[i]);

return O;

}

19

Dynamic Arrays of pointers

/

{

int main()

/

char word[20], **w; /* “**w” is a pointer to a pointer array */
inti, n;
scanf("'%d"",&n);
w = (char **) malloc (n * sizeof(char *));
for (i=0; i<n; ++i) {
scanf(*'%s"", word);
w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));
strcpy (w[i], word) ;

}
for (i=0; i<n; i++) printf(""w[%d] = %s \n"" i, w[i]);

return O;

Output

5
India

Australia

Kenya
NewZealand
SriLanka

w[0] = India

w[1] = Australia
w[2] = Kenya

w[3] = NewZealand
w[4] = SriLanka

20

How this will look like

AN WO DN - O

vV V. v v VY
nliZlx] | >

\O

\O

\O

\O

\O

21

