
Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 1

Pointers
Part 1

Introduction

• Whenever we declare a variable, the system
allocates memory to store the value of the
variable.
– Since every byte in memory has a unique address, this

location will also have its own (unique) address.

• Every stored data item occupies one or more
contiguous memory cells.
– The number of memory cells required to store a data

item depends on its type (char, int, double, etc.).

• A pointer is a variable that represents the
location (rather than the value) of a data item.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 2

Example

• Consider the statement

 int xyz = 50;

– This statement instructs the compiler to allocate a location
for the integer variable xyz, and put the value 50 in that
location.

– Suppose that the address location chosen is 1380.

50 1380 xyz

Variable name
(identity to the
programmer)

Memory address
(identity to the
system)

content

Example

50 1380 xyz

Variable name
(identity to the
programmer)

Memory address
(identity to the
system)

content

Access Protocol
1. During execution of the program, the system always associates

the name xyz with the address 1380

2. Since memory addresses are simply numbers, they can be
assigned to some variables which can be stored in memory.

3. The value 50 can be accessed by using either the name xyz or
the address 1380.

Remember

scanf(“%d”,&xyz);
xyz=50;
printf(“%d”,xyz);

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 3

Pointers

– Variables that hold memory addresses are called
pointers.

– Since a pointer is a variable, its value is also stored
in some memory location.

p = &xyz;

50 1380

xyz

1380 2545

p

Variable Value Address

 xyz 50 1380

 p 1380 2545

Example
#include <stdio.h>

int main()

{

 char a='A';

 int b=100;

 long int c=100;

 float d=100.0;

 double e=100.0;

 printf("a: size is %d, address is %x and content is %c\n", sizeof(a), &a,a);

 printf("b: size is %d, address is %x and content is %d\n", sizeof(b), &b,b);

 printf("c: size is %d, address is %x and content is %ld\n", sizeof(c), &c, c);

 printf("d: size is %d, address is %x and content is %f\n", sizeof(d), &d, d);

 printf("e: size is %d, address is %x and content is %lf\n", sizeof(e), &e, e);

 return 0;

}

Returns no. of bytes required
for data type representation

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 4

Example Output
a: size is 1, address is a11e251f and content is A

b: size is 4, address is a11e2518 and content is 100

c: size is 8, address is a11e2510 and content is 100

d: size is 4, address is a11e250c and content is 100.000000

e: size is 8, address is a11e2500 and content is 100.000000

Higher Address

a11e251f

Accessing the Address of a Variable

• The address of a variable can be determined
using the ‘&’ operator.
– The operator ‘&’ immediately preceding a

variable returns the address of the variable.

• Example:
 int xyz;

 p = &xyz; // the address of xyz is assigned to p.

What is the data type of p?

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 5

Declaration of pointer

• int xyz;

• int *p;

• p=&xyz;

• printf(“%d”,xyz); is equivalent to printf(“%d”,*p);

• So xyz and *p can be used for same purpose.

• Both can be declared simultaneously.
– Example:

• int xyz,*p;

Summary

int *p;

Data Type Pointer Variable

Data Type

• Pointer must have a data type. That is the data
type of the variable whose address will be stored.
– int xyz, *p; // p is the pointer to data of type int.

– float abc, *p1; // p1 is the pointer to data of type float.

– long int pqr, *p2; // p2 is the pointer to data of type long int.

Remember
int x;
float *a;
a=&x; // NOT ALLOWED

NOTE

int *ptr and int* ptr are same.

However the first one helps you to
declare in one statement:
int *ptr, var1;

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 6

Example

#include <stdio.h>
int main()
{
 int a, b;
 int c = 5;
 int *p;

 a = 4 * (c + 5) ;

 p = &c;
 b = 4 * (*p + 5) ;
 printf (“a=%d b=%d \n”, a, b);

 return 0;
}

Equivalent

Example
#include <stdio.h>
int main()
{
 int x, y;
 int *ptr;

 x = 10 ;
 ptr = &x ;
 y = *ptr ;
 printf (“%d is stored in location %u \n”, x, &x) ;
 printf (“%d is stored in location %u \n”, *&x, &x) ;
 printf (“%d is stored in location %u \n”, *ptr, ptr) ;
 printf (“%d is stored in location %u \n”, y, &*ptr) ;
 printf (“%u is stored in location %u \n”, ptr, &ptr) ;
 printf (“%d is stored in location %u \n”, y, &y) ;

 *ptr = 25;
 printf (“\nNow x = %d \n”, x);
 return 0;
}

*&xx

ptr=&x;
&x&*ptr

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 7

Output:

10 is stored in location 3599592540
10 is stored in location 3599592540
10 is stored in location 3599592540
10 is stored in location 3599592540
3599592540 is stored in location 3599592528
10 is stored in location 3599592536

Now x = 25

Address of x: 3599592540

Address of y: 3599592536

Address of ptr: 3599592528

Example Output

Dereferencing Pointers

• Dereferencing is an operation performed to access and
manipulate data contained in the memory location.

• A pointer variable is said to be dereferenced when the
unary operator *, in this case called the indirection
operator, is used like a prefix to the pointer variable or
pointer expression.

• An operation performed on the dereferenced pointer
directly affects the value of the variable it points to.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 8

Example
#include<stdio.h>
int main()
{
 int *iptr, var1, var2;
 iptr=&var1;
 *iptr=25;
 *iptr += 10;
 printf(“variable var1 contains %d\n”,var1);
 var2=*iptr;
 printf(“variable var2 contains %d\n”,var2);
 iptr=&var2;
 *iptr += 20;
 printff(“variable var2 now has %d\n”,var2);
 return 0;
}

Example

Thus the two use of * are to be noted.
 int *p for declaring a pointer variable
 *p=10 is for indirection to the value in the address pointed
 by the variable p.

This power of pointers is often useful, where direct access via
variables is not possible.

variable var1 contains 35
variable var2 contains 35
variable var2 now has 55

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 9

Typecasting

• Typecasting is mostly not required in a well
written C program. However, you can do this as
follows:
– char c = '5‘

– char *d = &c;

– int *e = (int*)d;

– Remember (sizeof(char) != sizeof(int))

Typecasting

• void pointers

– Pointers defined to be of specific data type cannot hold
the address of another type of variable.

– It gives syntax error on compilation. Else use a void pointer
(which is a general purpose pointer type), which can point
to variables of any data type.

– But while dereferencing, we need an explicit type cast.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 10

Example

#include<stdio.h>

int main()

{

 float pi=3.14128;

 int num=100;

 void *p;

 p=π

 printf(“First p points to a float variable and access pi=%.5f\n",
 *((float *)p));

 p=#

 printf("Then p points to an integer variable and access num=%d\n",

 *((int *)p));

 return 0;

}

Output

First p points to a float variable and access pi=3.14128
Then p points to an integer variable and access num=100

Pointers to Pointers

• Pointer is a type of data in C
– hence we can also have pointers to pointers

• Pointers to pointers offer flexibility in handling
arrays, passing pointer variables to functions, etc.

• General format:
– <data_type> **<ptr_to_ptr>;
 <ptr_to_ptr> is a pointer to a pointer pointing to a data object
of the type <data_type>

• This feature is often made use of while passing two
or more dimensional arrays to and from different
functions.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 11

Example
#include<stdio.h>

int main()

{

 int *iptr;

 int **ptriptr;

 int data;

 iptr=&data;

 ptriptr=&iptr;

 *iptr=100;

 printf("variable 'data' contains %d\n",data);

 **ptriptr=200;

 printf("variable 'data' contains %d\n",data);

 data=300;

 printf("variable 'data' contains %d\n",**ptriptr);

 return 0;

}

Output

variable 'data' contains 100
variable 'data' contains 200
variable 'data' contains 300

Examples of pointer arithmetic

int a=10, b=5, *p, *q;

p=&a;

q=&b;

printf("*p=%d,p=%x\n",*p,p);

p=p-b;

printf("*p=%d,p=%x\n",*p,p);

printf("a=%d, address(a)=%x\n",a,&a);

Output:

*p=10, p=24b3f6ac

*p=4195592, p=24b3f698

a=10, address(a)=24b3f6ac

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 12

Examples of pointer arithmetic
#include<stdio.h>

int main()

{

 int a=10, b=5, *p, *q;

 p=&a; q=&b;

 printf("*p=%d,p=%x\n",*p,p);

 p=p-b;

 p=p+a;

 printf("*p=%d,p=%x\n",*p,p);

 p=p-a;

 printf("*p=%d,p=%x\n",*p,p);

 p=p+b;

 printf("*p=%d,p=%x\n",*p,p);

 printf("Size of int: %d\n",sizeof(int));

 return 0;

}

Output

*p=10,p=c9b2bdc
*p=0,p=c9b2bf0
*p=4195651,p=c9b2bc8
*p=10,p=c9b2bdc
Size of int: 4

If a pointer p is to a type, d_type,
when incremented by i, the new
address p points to is:
current_address+i*sizeof(d_type)

Similarly for decrementation

Subtraction of Pointers
#include<stdio.h>

main()

{

 int *p, *q;

 float *f, *g;

 q=p+1;

 g=f+1;

 printf("%d\n",(int *)q-(int *)p);

 printf("%d\n",(float *)g-(float *)f);

}

When two pointers are subtracted, the results are of type size_t

Both the printf statement outputs 1.

 Even though the numerical values of the pointers differ by 4 in case
 of integers/float, this difference is divided by the size of the type
 being pointed to.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 13

Invalid Pointer Arithmetic

• p=-q;
• p<<=1;
• p=p+q;
• p=p+q+a;
• p=p*q;
• p=p*a;
• p=p/q;
• p=p/b;
• p=a/p;
• &235

Pointers and Arrays

• When an array is declared,

– The compiler allocates a base address and sufficient
amount of storage to contain all the elements of the array
in contiguous memory locations.

– The base address is the location of the first element (index
0) of the array.

– The compiler also defines the array name as a constant
pointer to the first element.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 14

Pointers and Arrays
• The elements of an array can be efficiently accessed by using a

pointer.

• Array elements are always stored in contiguous memory space.

• Consider an array of integers and an int pointer:
– #define MAXSIZE 10

– int A[MAXSIZE], *p;

• The following are legal assignments for the pointer p:
– p = A; /* Let p point to the 0-th location of the array A */

– p = &A[0]; /* Let p point to the 0-th location of the array A */

– p = &A[1]; /* Let p point to the 1-st location of the array A */

– p = &A[i]; /* Let p point to the i-th location of the array A */

• Whenever p is assigned the value &A[i], the value *p refers to the
array element A[i].

Pointers and Arrays
• Pointers can be incremented and decremented by integral values.

• After the assignment p = &A[i]; the increment p++ (or ++p) lets p one
element down the array, whereas the decrement p-- (or --p) lets p
move by one element up the array. (Here "up" means one index less,
and "down" means one index more.)

• Similarly, incrementing or decrementing p by an integer value n lets p
move forward or backward in the array by n locations. Consider the
following sequence of pointer arithmetic:
– p = A; /* Let p point to the 0-th location of the array A */

– p++; /* Now p points to the 1-st location of A */

– p = p + 6; /* Now p points to the 8-th location of A */

– p += 2; /* Now p points to the 10-th location of A */

– --p; /* Now p points to the 9-th location of A */

– p -= 5; /* Now p points to the 4-rd location of A */

– p -= 5; /* Now p points to the (-1)-nd location of A */

Remember:
Increment/
Decrement is by
data type not by
bytes.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 15

Pointers and Arrays

• Oops! What is a negative location in an array?

• Like always, C is pretty liberal in not securing its array boundaries.

• As you may jump ahead of the position with the largest legal index,
you are also allowed to jump before the opening index (0).

• Though C allows you to do so, your run-time memory management
system may be unhappy with your unhealthy intrusion and may cause
your program to have a premature termination (with the error
message "Segmentation fault").

• It is the programmer's duty to ensure that his/her pointers do not
roam around in prohibited areas.

Example
• Consider the declaration:

 int *p;

 int x[5] = {1, 2, 3, 4, 5} ;

– Suppose that the base address of x is 2500, and each
integer requires 4 bytes.

 Element Value Address

 x[0] 1 2500

 x[1] 2 2504

 x[2] 3 2508

 x[3] 4 2512

 x[4] 5 2516

– Relationship between p and x:
p = &x[0] = 2500
p+1 = &x[1] = 2504
p+2 = &x[2] = 2508
p+3 = &x[3] = 2512
p+4 = &x[4] = 2516

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 16

Accessing Array elements

#include<stdio.h>
int main()
{
 int iarray[5]={1,2,3,4,5};
 int i, *ptr;
 ptr=iarray;
 for(i=0;i<5;i++) {
 printf(“iarray[%d] (%x): %d\n",i,ptr,*ptr);
 ptr++;
 }
 return 0;
}

Output

iarray[0] (f4c709d0): 1
iarray[1] (f4c709d4): 2
iarray[2] (f4c709d8): 3
iarray[3] (f4c709dc): 4
iarray[4] (f4c709e0): 5

Accessing Array elements

#include<stdio.h>
int main()
{
 int iarray[5]={1,2,3,4,5};
 int i, *ptr;
 ptr=iarray;
 for(i=0;i<5;i++) {
 printf(“iarray[%d] (%x): %d\n",i,ptr,*ptr);
 ptr++;
 printf(“iarray[%d] (%x): %d\n",i, (iarray+i),*(iarray+i));
 }
 return 0;
}

NOTE

1. The name of the array is the

starting address (base address)
of the array.

2. It is the address of the first
element in the array.

3. Thus it can be used as a normal
pointer, to access the other
elements in the array.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 17

More examples

#include<stdio.h>

int main()

{

 int i;

 int a[5]={1,2,3,4,5}, *p = a;

 for(i=0;i<5;i++,p++) {

 printf("%d %d",a[i],*(a+i));

 printf(" %d %d %d\n",*(i+a),i[a],*p);

 }

 return 0;

}

Output

1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5

Passing Pointers to a Function

• Pointers are often passed to a function as arguments.
– Allows data items within the calling program to be accessed

by the function, altered, and then returned to the calling
program in altered form.

– Called call-by-reference (or by address or by location).

• Normally, arguments are passed to a function by
value.
– The data items are copied to the function.

– Changes are not reflected in the calling program.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 18

Swapping two numbers

void main()

{

int i, j;

scanf(“%d %d”, &i, &j);

printf(“After swap: %d %d”,i,j);

swap(i,j);

printf(“After swap: %d %d”,i,j);

}

void swap(int a, int b)
{
 int temp = a;
 a = b;
 b = temp;
}

void swap(int *a, int *b)
{
 int temp = *a;
 *a = *b;
 *b = temp;
}

swap(&i,&j);

scanf Revisited

 int x, y ;

 printf (“%d %d %d”, x, y, x+y) ;

• What about scanf ?

 scanf (“%d %d %d”, x, y, x+y);

 scanf (“%d %d”, &x, &y);

NO

YES

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 19

Example: Sort 3 integers

• Three-step algorithm:

1. Read in three integers x, y and z

2. Put smallest in x

• Swap x, y if necessary; then swap x, z if necessary.

3. Put second smallest in y

• Swap y, z if necessary.

Hints

#include <stdio.h>
int main()
{
 int x, y, z ;
 ………..
 scanf(“%d %d %d”, &x, &y, &z) ;
 if (x > y) swap (&x, &y);
 if (x > z) swap (&x, &z);
 if (y > z) swap (&y, &z) ;
 ………..
}

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 20

Passing Arrays to a Function

• An array name can be used as an argument to a
function.
– Permits the entire array to be passed to the function.

– Array name is passed as the parameter, which is effectively the
address of the first element.

• Rules:
– The array name must appear by itself as argument, without brackets

or subscripts.

– The corresponding formal argument is written in the same manner.

• Declared by writing the array name with a pair of empty brackets.

• Dimension or required number of elements to be passed as

 a separate parameter.

Example: function to find average

#include <stdio.h>
int main()
{
 int x[100], k, n ;
 scanf (“%d”, &n) ;
 for (k=0; k<n; k++)
 scanf (“%d”, &x[k]) ;
 printf (“\nAverage is %f”, avg (x, n));
 return 0;
}

float avg (int array[],int size)
{
 int *p, i , sum = 0;

 p = array ;

 for (i=0; i<size; i++)
 sum = sum + *(p+i);

 return ((float) sum / size);
}

int *array

p[i]

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 21

The Actual Mechanism

• When an array is passed to a function, the values
of the array elements are not passed to the
function.

– The array name is interpreted as the address of the first

array element.

– The formal argument therefore becomes a pointer to the
first array element.

– When an array element is accessed inside the function, the
address is calculated using the formula stated before.

– Changes made inside the function are thus also reflected in
the calling program.

Structures Revisited

• Recall that a structure can be declared as:
struct stud {

 int roll;

 char dept_code[25];

 float cgpa;

 };

struct stud a, b, c;

• And the individual structure elements can be
accessed as:

a.roll , b.roll , c.cgpa , etc.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 22

Arrays of Structures

• We can define an array of structure records as

 struct stud class[100] ;

• The structure elements of the individual
records can be accessed as:

 class[i].roll

 class[20].dept_code

 class[k++].cgpa

Example: Sorting by Roll Numbers

#include <stdio.h>
struct stud
{
 int roll;
 char dept_code[25];
 float cgpa;
 };

void main()
{
 struct stud class[100], t;
 int j, k, n;

 scanf (“%d”, &n);
 /* no. of students */

for (k=0; k<n; k++)
 scanf (“%d %s %f”, &class[k].roll,
 class[k].dept_code, &class[k].cgpa);
 for (j=0; j<n-1; j++)
 for (k=j+1; k<n; k++)
 {
 if (class[j].roll > class[k].roll)
 {
 t = class[j] ;
 class[j] = class[k] ;
 class[k] = t;
 }
 }
 for (k=0; k<n; k++)
 printf ("%d %s %f", class[k].roll,
 class[k].dept_code, class[k].cgpa);
}

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 23

Pointers and Structures

• You may recall that the name of an array stands
for the address of its zero-th element.
– Also true for the names of arrays of structure

variables.

• Consider the declaration:
struct stud {

 int roll;

 char dept_code[25];

 float cgpa;

 };

struct stud class[100], *ptr;

– The name class represents the address of the zero-th
element of the structure array.

– ptr is a pointer to data objects of the type struct stud.

• The assignment
ptr = class ;

 will assign the address of class[0] to ptr.

• When the pointer ptr is incremented by one (ptr++)
– The value of ptr is actually increased by sizeof(stud).

– It is made to point to the next record.

Pointers and Structures

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 24

• Once ptr points to a structure variable, the
members can be accessed as:
 ptr –> roll ;

 ptr –> dept_code ;

 ptr –> cgpa ;

– The symbol “–>” is called the arrow operator.

Pointers and Structures

Example
#include <stdio.h>

typedef struct {
 float real;
 float imag;
 } COMPLEX;

void swap_ref(COMPLEX *a, COMPLEX *b)
{
 COMPLEX tmp;
 tmp=*a;
 *a=*b;
 *b=tmp;
}

void print(COMPLEX *a)
{
 printf("(%f,%f)\n",a->real,a->imag);
}

void main()
{
 COMPLEX x={10.0,3.0}, y={-20.0,4.0};

 print(&x); print(&y);
 swap_ref(&x,&y);
 print(&x); print(&y);
}

Output

(10.000000,3.000000)
(-20.000000,4.000000)
(-20.000000,4.000000)
(10.000000,3.000000)

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 25

A Warning

• When using structure pointers, we should take care
of operator precedence.

– Member operator “.” has higher precedence than “*”.

• ptr –> roll and (*ptr).roll mean the same thing.

• *ptr.roll will lead to error.

– The operator “–>” enjoys the highest priority
among operators.

• ++ptr –> roll will increment roll, not ptr.

• (++ptr) –> roll will do the intended thing.

Structures and Functions

• A structure can be passed as argument to a
function.

• A function can also return a structure.

• The process shall be illustrated with the help
of an example.

– A function to add two complex numbers.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 26

Example: complex number addition
#include <stdio.h>
struct complex {
 float re;
 float im;
 };
struct complex add (struct complex x, struct complex y)
{
 struct complex t;
 t.re = x.re + y.re ;
 t.im = x.im + y.im ;
 return (t) ;
}

void main()
{
 struct complex a, b, c;
 scanf (“%f %f”, &a.re, &a.im);
 scanf (“%f %f”, &b.re, &b.im);
 c = add (a, b) ;
 printf (“\n %f %f”, c.re, c.im);
}

Complex number addition using pointers
#include <stdio.h>
struct complex {
 float re;
 float im;
 };
void add (struct complex *x, struct complex *y, struct complex *t)
{
 t->re = x->re + y->re ;
 t->im = x->im + y->im ;
}
void main()
{
 struct complex a, b, c;
 scanf (“%f %f”, &a.re, &a.im);
 scanf (“%f %f”, &b.re, &b.im);
 add (&a, &b, &c) ;
 printf (“\n %f %f”, c,re, c.im);
}

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 27

Dynamic Memory Allocation

Basic Idea

• Many a time we face situations where data is dynamic in
nature.

– Amount of data cannot be predicted beforehand.

– Number of data item keeps changing during program execution.

• Such situations can be handled more easily and
effectively using dynamic memory management
techniques.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 28

Basic Idea

• C language requires the number of elements in an
array to be specified at compile time.

– Often leads to wastage or memory space or program
failure.

• Dynamic Memory Allocation

– Memory space required can be specified at the time of
execution.

– C supports allocating and freeing memory dynamically
using library routines.

Memory Allocation Process in C

Local variables

Free memory

Global variables

Instructions

Permanent
storage area

Stack

Heap

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 29

Memory Allocation Process in C

• The program instructions and the global variables are
stored in a region known as permanent storage area.

• The local variables are stored in another area called
stack.

• The memory space between these two areas is
available for dynamic allocation during execution of
the program.
– This free region is called the heap.

– The size of the heap keeps changing

Memory Allocation Functions

• malloc
– Allocates requested number of bytes and returns a

pointer to the first byte of the allocated space.

• calloc
– Allocates space for an array of elements, initializes

them to zero and then returns a pointer to the
memory.

• free
 Frees previously allocated space.

• realloc
– Modifies the size of previously allocated space.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 30

malloc()

• A block of memory can be allocated using the
function malloc.

– Reserves a block of memory of specified size and
returns a pointer of type void.

– The return pointer can be assigned to any pointer
type.

• General format:

 ptr = (type *) malloc (byte_size) ;

malloc()

• Examples

 p = (int *) malloc (100 * sizeof (int)) ;

• A memory space equivalent to “100 times the size of
an int” bytes is reserved.

• The address of the first byte of the allocated memory is
assigned to the pointer p of type int.

p

400 bytes of space

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 31

malloc()

cptr = (char *) malloc (20) ;

• Allocates 10 bytes of space for the pointer cptr of type
char.

sptr=(struct stud *)malloc (10 * sizeof (struct stud));

Determines the number of
bytes required to store
one structure data type
viz., stud.

Point to Note

• malloc always allocates a block of contiguous
bytes.

– The allocation can fail if sufficient contiguous
memory space is not available.

– If it fails, malloc returns NULL.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 32

Example: malloc()

 printf("Input heights for %d students \n", N);
 for(i=0;i<N;i++)
 scanf("%f",&height[i]);

 for(i=0;i<N;i++)
 sum+=height[i];

 avg=sum/(float) N;

 printf("Average height= %f \n", avg);
}

#include <stdio.h>
#include <stdlib.h>
void main()
{
 int i,N;
 float *height;
 float sum=0,avg;

 printf("Input the number of students. \n");
 scanf("%d",&N);

 height=(float *)malloc(N * sizeof(float));

Output

Input the number of students.
5
Input heights for 5 students
23 24 25 26 27
Average height= 25.000000

calloc()

The C library function

– void *calloc(size_t nitems, size_t size)

 allocates the requested memory and returns a
pointer to it.

Allocates a block of memory for an array of nitems
elements, each of them size bytes long, and initializes
all its bits to zero.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 33

calloc() or malloc()

• malloc() takes a single argument (memory required
in bytes), while calloc() needs two arguments.

• malloc() does not initialize the memory allocated,
while calloc() initializes the allocated memory to
ZERO.

• calloc() allocates a memory area, the length will be
the product of its parameters.

Example: calloc()

Output

Amount of numbers to be entered: 5
Enter number #1: 23
Enter number #2: 31
Enter number #3: 23
Enter number #4: 45
Enter number #5: 32
You have entered: 23 31 23 45 32

#include <stdio.h> /* printf, scanf, NULL */
#include <stdlib.h> /* calloc, exit, free */

int main ()
{
 int i,n;
 int * pData;

 printf ("Amount of numbers to be entered: ");
 scanf ("%d",&i);

 pData = (int*) calloc (i,sizeof(int));
 if (pData==NULL) exit (1);
 for (n=0;n<i;n++) {
 printf ("Enter number #%d: ",n+1);
 scanf ("%d",&pData[n]);
 }
 printf ("You have entered: ");
 for (n=0;n<i;n++)
 printf ("%d ",pData[n]);

 free (pData);
 return 0;
}

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 34

Releasing the Used Space

• When we no longer need the data stored in a block of
memory, we may release the block for future use.

• How?

– By using the free() function.

• General format:

 free (ptr) ;

 where ptr is a pointer to a memory block which has been
already created using malloc() / calloc() / realloc().

Altering the Size of a Block

• Sometimes we need to alter the size of some
previously allocated memory block.
– More memory needed.
– Memory allocated is larger than necessary.

• How?
– By using the realloc() function.

• If the original allocation is done by the statement
 ptr = malloc (size) ;

 then reallocation of space may be done as
 ptr = realloc (ptr, newsize) ;

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 35

Altering the Size of a Block

– The new memory block may or may not begin at
the same place as the old one.

• If it does not find space, it will create it in an entirely
different region and move the contents of the old block
into the new block.

– The function guarantees that the old data remains
intact.

– If it is unable to allocate, it returns NULL . But, it
does not free the original block.

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
 int *pa, *pb, n;
/* allocate an array of 10 int */
 pa = (int *)malloc(10 * sizeof *pa);
 if(pa) {
 printf("%zu bytes allocated. Storing ints: ", 10*sizeof(int));
 for(n = 0; n < 10; ++n)
 printf("%d ", pa[n] = n);
 }

 pb = (int *)realloc(pa, 1000000 * sizeof *pb); // reallocate array to a larger size
 if(pb) {
 printf("\n%zu bytes allocated, first 10 ints are: ", 1000000*sizeof(int));
 for(n = 0; n < 10; ++n)
 printf("%d ", pb[n]); // show the array
 free(pb);
 } else { // if realloc failed, the original pointer needs to be freed
 free(pa);
 }
 return 0;
}

Example: realloc()
Output

40 bytes allocated. Storing ints: 0 1 2 3 4 5 6 7 8 9
4000000 bytes allocated, first 10 ints are: 0 1 2 3 4 5 6 7 8 9

