
Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 1

CS11001/CS11002
Programming and Data Structures

(PDS) (Theory: 3-0-0)

Class Teacher: Pralay Mitra
 Jayanta Mukhopadhyay
 Soumya K Ghosh

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Example 1: SUM = 12 + 22 + 32 + N2

START

READ N

SUM = 0

COUNT = 1

SUM = SUM + COUNT*COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YES NO

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 2

Example 1: SUM = 12 + 22 + 32 + N2

#include <stdio.h>

int main()
{
 int sum, count, N;
 printf("Enter the value of N: ");
 scanf("%d",&N);
 sum=0;
 count=1;
 while(count<=N) {
 sum+=count*count;
 count++;
 }
 printf("Sum is: %d\n",sum);
 return 0;
}

Example 2: SUM = 1*2 + 2*3 + 3*4 + to N terms

START

READ N

SUM = 0

COUNT = 1

SUM = SUM + COUNT * (COUNT+1)

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YES NO

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 3

Example 2: SUM = 1*2 + 2*3 + 3*4 + to N terms

#include <stdio.h>

int main()
{
 int sum, count, N;
 printf("Enter the value of N: ");
 scanf("%d",&N);
 sum=0;
 for(count=1;count<=N;count++) {
 sum+=count*(count+1);
 }
 printf("Sum is: %d\n",sum);
 return 0;
}

Example 3: Computing ex series up to N terms

START

READ X, N

TERM = 1

SUM = 0

COUNT = 1

SUM = SUM + TERM

TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YES NO

0 !

n
x

n

x
e

n







Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 4

Example 3: Computing ex series up to N terms
#include <stdio.h>

int main()
{
 int count, N;
 float x, term, sum;

 printf("Enter the number of terms: ");
 scanf("%d",&N);
 printf("Enter the value of x: ");
 scanf("%f",&x);
 term=1.0;
 sum=0.0;
 count=1;
 while(count<=N) {
 sum+=term;
 term*=x/count;
 count++;
 }
 printf("e^x series upto %d terms is: %10.6f\n",N,sum);
 return 0;
}

Example 4: Computing ex series up to 4 decimal places

START

READ X

TERM = 1

SUM = 0

COUNT = 1

SUM = SUM + TERM

TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS

TERM < 0.0001?
OUTPUT SUM

STOP

YES NO

0 !

n
x

n

x
e

n







Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 5

Example 3: Computing ex series up to N terms

#include <stdio.h>

int main()
{
 int count;
 float x, term, sum;

 printf("Enter the value of x: ");
 scanf("%f",&x);
 term=1.0;
 sum=0.0;
 count=1;
 while(term>0.0001) {
 sum+=term;
 term*=x/count;
 count++;
 }
 printf("e^x series upto 4 decimal places: %10.6f\n",sum);
 return 0;
}

Example 5: computing standard
deviation

1

1 2
()

N

i

iN
x 



 

1

1 N

i
iN

x


 

The Steps
1. Read N
2. Read Xi

3. Compute Mean
4. Compute Standard Deviation

The Problem

Suppose we have 10 numbers to handle.

Or 20.

Or 100.

How to tackle this problem?

Solution: Use arrays.

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 6

Arrays

Basic Concept

• Many applications require multiple data items that
have common characteristics.

– In mathematics, we often express such groups of data
items in indexed form:

• x1, x2, x3, …, xn

• Why are arrays essential for some applications?

– Take an example.

– Finding the minimum of a set of numbers.

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 7

Arrays

• Homogenous data types

• All the data items constituting the group share
the same name.

int x[10];

• Individual elements are accessed by specifying
the index.

x[0] x[1] x[2] x[9]

x is a 10-element one

dimensional array

Declaring Arrays

• Like variables, the arrays that are used in a
program must be declared before they are used.

• General syntax:
• type array-name [size];

• type specifies the type of element that will be contained in
the array (int, float, char, etc.)

• size is an integer constant which indicates the maximum
number of elements that can be stored inside the array.

int marks[5]; /* marks is an array containing a maximum of 5 integers. */

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 8

More examples

• Examples:

 int x[10];

 char line[80];

 float points[150];

 char name[35];

• If we are not sure of the exact size of the array, we can
define an array of a large size.

 int marks[50];

 though in a particular run we may only be using, say, 10 elements.

This is not allowed

int n;
int marks[n];

How an array is stored in memory?

• Starting from a given memory location, the successive array
elements are allocated space in consecutive memory locations.

• Let

x: starting address of the array in memory

k: number of bytes allocated per array element

– Element a[i] :: allocated memory location at address x + i*k

• First array index assumed to start at zero.

a

x x+k x+2k

Array

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 9

Accessing Array Elements

• A particular element of the array can be accessed by
specifying two things:
– Name of the array.
– Index (relative position) of the element in the array.

• In C, the index of an array starts from zero.

• Example:
– An array is defined as int x[10];
– The first element of the array x can be accessed as x[0], fourth

element as x[3], tenth element as x[9], etc.

• The array index must evaluate to an integer between 0
and n-1 where n is the number of elements in the array.
 a[x+2] = 25;
 b[3*x-y] = a[10-x] + 5;

A Warning

• In C, while accessing array elements, array
bounds are not checked.

• Example:
int marks[5];

:

:

marks[8] = 75;

– The above assignment would not necessarily cause an
error.

– Rather, it MAY result in unpredictable program results.

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 10

Initialization of Arrays

• General form:
 type array_name[size] = { list of values };

• Examples:
 int marks[5] = {72, 83, 65, 80, 76};

 char name[4] = {‘A’, ‘m’, ‘i’, ‘t’};

• Some special cases:
– If the number of values in the list is less than the

number of elements, the remaining elements are
automatically set to zero.

float total[5] = {24.2, -12.5, 35.1};

 total[0]=24.2, total[1]=-12.5, total[2]=35.1, total[3]=0,
total[4]=0

Initialization of Arrays

– The size may be omitted. In such cases the
compiler automatically allocates enough space for
all initialized elements.

 int flag[] = {1, 1, 1, 0};

 char name[] = {‘A’, ‘m’, ‘i’, ‘t’};

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 11

Example 6: Find the minimum of a set of 10 numbers

#include <stdio.h>

main()

{

 int a[10], i, min;

 printf(“Give 10 values \n”);

 for (i=0; i<10; i++)

 scanf (“%d”, &a[i]);

 min = 99999;

 for (i=0; i<10; i++)

 {

 if (a[i] < min)

 min = a[i];

 }

 printf (“\n Minimum is %d”, min);

}

Array

declaration

Accessing

Array Element

Reading

Array Element

#include <stdio.h>

#define SIZE 10

int main()

{

 int a[SIZE], i, min;

 printf(“Give 10 values \n”);

 for (i=0; i<size; i++)

 scanf (“%d”, &a[i]);

 min = 99999;

 for (i=0; i<size; i++)

 {

 if (a[i] < min)

 min = a[i];

 }

 printf (“\n Minimum is %d”, min);

 return 0;

}

Alternate

Version 1

Change only one

 line to change the

problem size

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 12

#include <stdio.h>

int main()

{

 int a[100], i, min, n;

 printf(“Give number of elements (n) \n”);

 scanf (“%d”, &n); /* Number of elements */

 printf(“Input all n integers \n”);

 for (i=0; i<n; i++)

 scanf (“%d”, &a[i]);

 min = 99999;

 for (i=0; i<n; i++)

 {

 if (a[i] < min)

 min = a[i];

 }

 printf (“\n Minimum is %d”, min);

 return 0;

}

Alternate

Version 2

Define an array of

large size and use

only the required

number of elements

if(n>100) printf(“Array size error!!!”);

Example 7:
Computing

GPA

#include <stdio.h>

#define nsub 6

main()

{

 int grade_pt[nsub], cred[nsub], i,

 gp_sum=0, cred_sum=0, gpa;

printf(“Input gr. points and credits for six subjects \n”);

 for (i=0; i<nsub; i++)

 scanf (“%d %d”, &grade_pt[i], &cred[i]);

 for (i=0; i<nsub; i++)

 {

 gp_sum += grade_pt[i] * cred[i];

 cred_sum += cred[i];

 }

 gpa = gp_sum / cred_sum;

 printf (“\n Grade point average: is %d”, gpa);

}

Handling two arrays

at the same time

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 13

Things you cannot do

 int a[10], b[10];

You cannot

• use = to assign one array variable to another

 a = b; /* a and b are arrays */

• use == to directly compare array variables

 if (a = = b) ………..

• directly scanf or printf arrays

 printf (“……”, a);

Array in
memory

Accessing Array

int a[25],b[25];

• How to copy the elements of one array to another?

– By copying individual elements
for (j=0; j<25; j++)

 a[j] = b[j];

• By reading them one element at a time

for (j=0; j<25; j++)

 scanf (“%f”, &a[j]);

– The ampersand (&) is necessary.

– The elements can be entered all in one line or in different
lines.

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 14

Accessing Array

int a[25];

• Printing Array (array elements)
• By printing them one element at a time.

 for (j=0; j<25; j++)

 printf (“\n %f”, a[j]);

– The elements are printed one per line.

 printf (“\n”);

 for (j=0; j<25; j++)

 printf (“ %f”, a[j]);

– The elements are printed all in one line (starting with
a new line).

Example 5: computing standard
deviation

2

1

1 2
()

N

i

iN
x 



 

1

1 N

i
iN

x


 

The Steps
1. Read N
2. Read Xi

3. Compute Mean
4. Compute Standard Deviation

Do it now!!!

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 15

Exercise Problem

• A shop stores n different types of items. Given
the number of items of each type sold during
a given month, and the corresponding unit
prices, compute the total monthly sales.

STRING

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 16

STRINGS

• Array of characters

• The size of array must be predefined.

• Usually one extract character is required to store the
null character.

• The null character (‘\0’) indicates the end of
data/string.

STRINGS Library Functions

• Header file is string.h

• Syntax

– #include <string.h>

• Most frequently used library function:

– strcmp (to compare between two strings)

– strcat (to concatenate one string after another)

– strcpy (to copy one string to another)

– strlen (determines the length of a string)

– ……

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 17

strcmp

• #include <string.h>

• int strcmp(const char *s1, const char *s2);

– The strcmp() function compares the two strings s1 and s2.
It returns an integer less than, equal to, or greater than
zero if s1 is found, respectively, to be less than, to match,
or be greater than s2.

• int strncmp(const char *s1, const char *s2, size_t n);

strcat

• #include <string.h>

• char *strcat(char *dest, const char *src);

– The strcat() function appends the src string to the dest
string, overwriting the null byte ('\0') at the end of dest,
and then adds a terminating null byte. The strings may not
overlap, and the dest string must have enough space for
the result.

• char *strncat(char *dest, const char *src, size_t n);

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 18

strcpy

• #include <string.h>

• char *strcpy(char *dest, const char *src);

The strcpy() function copies the string pointed to by src,
including the terminating null byte ('\0'), to the buffer
pointed to by dest. The strings may not overlap, and
the destination string dest must be large enough to
receive the copy.

• char *strncpy(char *dest, const char *src, size_t n);

Example 8: Check whether a text is a palindrome or not

• WOW

• MOM

• NOON

• LEVEL

• ANNA

• ROTOR

• ROTATOR

R O T R O T A

R R ==

R O T R O T A

O O ==

R O T R O T A

T T ==

R O T R O T A

A

R O T R O T A

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 19

Example 8: Check whether a text is a palindrome or not

#include <stdio.h>

#define MAXLEN 100

main()

{

 char text[MAXLEN];

 int i=0,j,len;

 scanf("%s",text);

 while(text[i++]!='\0'); /* count the length of the text */

 len=i-1; /* length is excluding null character */

 printf("Length of the text is %d\n",len);

 i=0;

 j=len-1;

 while(text[i]==text[j]) {

 i++;

 j--;

 if(i>j)

 break;

 }

 (i>j)? printf("%s is a palindrome.\n",text) : printf("%s is NOT a palindrome.\n",text);

}

Example 9: Palindrome testing for case sensitive cases

• Wow

• Mom

• Noon

• Level

• Anna

• Rotor

• Rotator

1. Check is it a lower case character?
2. If yes convert to upper case.
3. How?

1. If character is between 65 and
90 (including) then it is in upper
case.

2. If character is between 97 and
122 (including) then it is in
lower case.

3. Subtract 97-65=32
4. Check for palindrome or execute the

same code.

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 20

Exercise 1: Multiple Word Palindromes

• Was it a cat I saw?

• No lemon, no melon

• Borrow or rob?

• ….

Searching an Array:
Linear and Binary Search

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 21

Searching

• Check if a given element (key) occurs in the
array.

Linear Search

• Basic idea:
– Start at the beginning of the array.

– Inspect every element to see if it matches the key.

• Time complexity:
– A measure of how long an algorithm takes to run.

– If there are n elements in the array:
• Best case:

 match found in first element (1 search operation)

• Worst case:

 no match found, or match found in the last element (n search operations)

• Average:

 (n + 1) / 2 search operations

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 22

/* If key appears in a[0..size-1], print its location pos, where a[pos] == key. Else print unsuccessful search */

#include <stdio.h>

int main()

{

 int size,a[100],key,i,pos;

 printf("Enter the number of elements: ");

 scanf("%d",&size);

 printf("Enter the elements: ");

 for(i=0;i<size;i++)

 scanf("%d",&a[i]);

 printf("Enter the key element: ");

 scanf("%d",&key);

 for(pos=-1,i=0;i<size;i++) { /* initializing pos as unsuccessful search*/

 if(a[i]==key) {

 pos=i;

 break;

 }

 }

 if(pos==-1)

 printf("Unsuccessful search\n");

 else

 printf("The element is present at %d position\n",pos+1);

 return 0;

}

Linear
Search

/* If key appears in a[0..size-1], print its location pos, where a[pos] == key. Else print unsuccessful search */

#include <stdio.h>

#include <stdlib.h> /* for exit() function */

#define SIZE 100

void main()

{

 int size,a[SIZE],key,i,pos;

 printf("Enter the number of elements: ");

 scanf("%d",&size);

 if(size>SIZE) { /* size is a variable, SIZE is not!! */

 printf("Array Size error!!! I am exiting \n");

 exit(0);

 }

 printf("Enter the elements: ");

 for(i=0;i<size;i++)a

 scanf("%d",&a[i]);

 printf("Enter the key element: ");

 scanf("%d",&key);

 for(pos=-1,i=0;i<size;i++) { /* initializing pos as unsuccessful search*/

 if(a[i]==key) {

 pos=i;

 break;

 }

 }

 (pos==-1)? printf("Unsuccessful search\n"):printf("The element is present at %d position\n",pos+1);

}

Linear
Search

1. If function type is void then
nothing is to be returned
from the function.

2. It is always good to assign a
return data type (including
void) with each function.

3. exit() will exit from the
program without executing
remaining statements of
the program. This needs
stdlib.h as header file.

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 23

Linear Search

 int x[]= {12,-3,78,67,6,50,19,10} ;

• Trace the following calls :

search 6;

search 5;

Returns 5

Unsuccessful search

Linear Search

• Basic idea:
– Start at the beginning of the array.

– Inspect every element to see if it matches the key.

• Time complexity:
– A measure of how long an algorithm takes to run.

– If there are n elements in the array:
• Best case:

 match found in first element (1 search operation)

• Worst case:

 no match found, or match found in the last element (n search operations)

• Average:

 (n + 1) / 2 search operations

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 24

 int x[]= {-3,6,10,11,12,19,50,67,78} ;

• Trace the following calls :

search 6;

search 5;

Search on Sorted List

 int x[]= {12,-3,78,67,6,50,19,10,11} ;

Binary Search

• In every step, we reduce the number of
elements to search in by half.

• Binary search works if the array is sorted.

– Look for the target in the middle.

– If you don’t find it, you can ignore half of the
array, and repeat the process with the other half.

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 25

The Basic Strategy

• What do we want?

– Look at [(L+R)/2]. Move L or R to the middle
depending on test.

– Repeat search operation in the reduced interval.

0

x:

n-1

L R

x[m]>key

no yes

Elements in Ascending order

m

<=key

L R

>key

R L

Binary Search
/* If key appears in x[0..size-1], prints its location pos where

x[pos]==key. If not found, print -1 */

int main ()

{

 int x[100],size,key;

 int L, R, mid;

 _________________;

 while (____________)

 {

 __________________;

 }

 _________________ ;

}

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 26

The basic search iteration
/* If key appears in x[0..size-1], prints its location pos where x[pos]==key. If

not found, print -1 */

int main ()
{
 int x[100],size,key;
 int L, R, mid;
 _________________;
 while (____________)
 {
 mid = (L + R) / 2;
 if (x[mid] > key)
 R = mid;
 else L = mid;
 }
 _________________ ;
}

Loop termination
/* If key appears in x[0..size-1], prints its location pos where x[pos]==key. If

not found, print -1 */

int main ()

{

 int x[100],size,key;

 int L, R, mid;

 _________________;

 while (L+1 != R)

 {

 mid = (L + R) / 2;

 if (x[mid] <= key)

 L = mid;

 else R = mid;

 }

 _________________ ;

}

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 27

Print result
/* If key appears in x[0..size-1], prints its location pos where x[pos]==key. If

not found, print -1 */

int main ()
{
 int x[100],size,key;
 int L, R, mid;
 _________________;
 while (L+1 != R)
 {
 mid = (L + R) / 2;
 if (x[mid] <= key)
 L = mid;
 else R = mid;
 }
 if (L >= 0 && x[L] = = key) printf(“%d”,L);
 else printf(“-1”);
}

Initialization
/* If key appears in x[0..size-1], prints its location pos where x[pos]==key. If not

found, print -1 */

int main ()
{
 int x[100],size,key;
 int L, R, mid;
_________________;
 L = -1; R = size;
 while (L+1 != R)
 {
 mid = (L + R) / 2;
 if (x[mid] <= key)
 L = mid;
 else R = mid;
 }
 if (L >= 0 && x[L] = = key) printf(“%d”,L);
 else printf(“-1”);
}

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 28

Complete C Program
/* If key appears in x[0..size-1], prints its location pos where x[pos]==key. If not found, print -1 */

void main ()

{

 int x[100],size,key;

 int L, R, mid;

 printf("Enter the number of elements: ");

 scanf("%d",&size);

 printf("Enter the elements: ");

 for(i=0;i<size;i++)

 scanf("%d",&a[i]);

 printf("Enter the key element: ");

 scanf("%d",&key);

 L = -1; R = size;

 while (L+1 != R) {

 mid = (L + R) / 2;

 if (x[mid] <= key)

 L = mid;

 else R = mid;

 }

 if (L >= 0 && x[L] = = key) printf(“%d”,L);

 else printf(“-1”);

}

Binary Search Examples

-17 -5 3 6 12 21 45 63 50

Trace :

 binsearch 3;

 binsearch 145;

 binsearch 45;

Sorted array

L= -1; R= 9; x[4]=12;

L= -1; R=4; x[1]= -5;

L= 1; R=4; x[2]=3;

L=2; R=4; x[3]=6;

L=2; R=3; return L;

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 29

Is it worth the trouble ?

• Suppose there are 1000 elements.

• Ordinary search

– If key is a member of x, it would require 500 comparisons
on the average.

• Binary search

– after 1st compare, left with 500 elements.

– after 2nd compare, left with 250 elements.

– After at most 10 steps, you are done.

What is best case?
What is worst case?

Time Complexity

• If there are n elements in the array.
– Number of searches required:

 log2n

• For n = 64 (say)
– Initially, list size = 64.

– After first compare, list size = 32.

– After second compare, list size = 16.

– After third compare, list size = 8.

– …….

– After sixth compare, list size = 1.

log264 = 6

2k= n,

Where k is the number of steps.

Pralay Mitra Autumn 2016;; CSE@IITKGP

Programming and Data Structure 30

Homework

Modify the algorithm by
checking equality with x[mid].

Download example programs

Copy paste the following link in the web browse:

http://cse.iitkgp.ac.in/~pralay/teaching/2016a/pds/

