
Arrays- Part 2

Spring 2012 Programming and Data Structure 1

Character String

Spring 2012 Programming and Data Structure 2

Introduction

• A string is an array of characters.

– Individual characters are stored in memory in ASCII code.

– A string is represented as a sequence of characters
terminated by the null (‘\0’) character.

– Because C stores a string as an array, the name of the
string is a pointer to the beginning of the string.

– C implements strings logically, not physically. The physical
structure of a string is the array in which C stores the
string.

Spring 2012 Programming and Data Structure 3

„\0‟leH ol“Hello”

Declaring String Variables

• A string is declared like any other array:

char string-name [size];

– size determines the number of characters in string_name.

• We must provide enough room for the maximum number of
characters in a string. However, if we don’t fill the string, C
puts the null character in the middle of the string and ignores
the remaining spaces in the array.

Spring 2012 Programming and Data Structure 4

String Literals

• String literals, aka “string constants”, are sequences of
characters enclosed in double quotes.

• C automatically creates a null-delimited string array when it
encounters characters in double quotes.

• Referencing a string literal:

Declaring Strings

• We can declare strings as a character array with a
length of maximum characters needed + 1.
char name[21];

• We can also declare a string as a pointer. However, in
this case, unlike the first method, C doesn’t allocate
memory for the string:
char* pName;

• We must allocate memory for strings before we use
them!

Initializing Strings

• We can initialize by assigning a string literal:
char myString[13] = “Hello World!”;

char myString[] = “Hello World!”;

• Assigning a string literal to a pointer:
char* pMyString = “Hello World!”;

• We can also initialize a string as an array of
characters (however, this isn’t used too often, as it is
cumbersome).

Strings & The Assignment Operator

• The name of a string is a pointer constant to
the first character in the character array. As
such, we need to take great care when
assigning values to a string.

• The following results in an error:
char str1[6] = “Hello”;

char str2[6];

str2 = str1; //Results in Error

Reading Strings

• Two different cases will be considered:

– Reading words

– Reading an entire line

Spring 2012 Programming and Data Structure 9

Reading “words”

• scanf can be used with the “%s” format
specification.

char name[30];
:
:
scanf (“%s”, name);

– The ampersand (&) is not required before the
variable name with “%s”.

– The problem here is that the string is taken to
be upto the first white space (blank, tab,
carriage return, etc.)
• If we type “Rupak Biswas”
• name will be assigned the string “Rupak”

Spring 2012 Programming and Data Structure 10

Reading a “line of text”

• In many applications, we need to read in an
entire line of text (including blank spaces).

• We can use the getchar() (or scanf (“%c”, …)
for the purpose.

Spring 2012 Programming and Data Structure 11

Spring 2012 Programming and Data Structure 12

char line[81], ch;
int c=0;
:
:
do {

ch = getchar();
line[c] = ch;
c++;

}
while (ch != ‘\n’);

c = c – 1;
line*c+ = ‘\0’;

Read characters
until CR (‘\n’) is
encountered

Make it a valid
string

Reading a line :: Alternate Approach

Spring 2012 Programming and Data Structure 13

char line[81];
:

scanf (“%* ABCDEFGHIJKLMNOPQRSTUVWXYZ+”, line);

char line[81];
:

scanf (“%*^\n+”, line);

Reads a string containing uppercase

characters and blank spaces

Reads a string containing any characters

The gets() Function

• The gets() function (from stdio) takes a
string from standard input and assigns it to a
character array. It replaces the \n with \0.

• To use gets():
gets(myString);

• The gets() function includes no way to
check the length of the input string!

Writing Strings to the Screen

• We can use printf with the “%s” format
specification.

char name[50];

:

:

printf (“\n %s”, name);

Spring 2012 Programming and Data Structure 15

Processing Character Strings

• There exists a set of C library functions for
character string manipulation.

– strcpy :: string copy

– strlen :: string length

– strcmp :: string comparison

– strtcat :: string concatenation

• It is required to include the following

#include <string.h>

Spring 2012 Programming and Data Structure 16

Copying strings

• We cannot simply assign one string to another
due to the that strings are character arrays!

• strcpy () Works very much like a string
assignment operator.

strcpy (destinationString, sourceString);

• Examples:

strcpy (city, “Calcutta”);

strcpy (city, mycity);

Spring 2012 Programming and Data Structure 17

strlen()

• Counts and returns the number of characters
in a string.

len = strlen (string); /* Returns an integer */

– The null character (‘\0’) at the end is not counted.

– Counting ends at the first null character.

Spring 2012 Programming and Data Structure 18

Spring 2012 Programming and Data Structure 19

char city[15];

int n;

:

:

strcpy (city, “Calcutta”);

n = strlen (city);

n is assigned 8

Comparing Strings: strcmp()

• Compares two character strings.

int strcmp (str1, str2);

• If the two strings are equal, strcmp() returns 0.
• If str1 is greater than str2, strcmp() returns a

positive number.
• If str1 is less than str2, strcmp() returns a

negative number.

Spring 2012 Programming and Data Structure 20

Comparing Strings

Combining Strings: strcat()

• Joins or concatenates two strings together.
strcat (string1, string2);

– string2 is appended to the end of string1.

– The null character at the end of string1 is
removed, and string2 is joined at that point.

• Example:
strcpy (name1, “Amit “);

strcpy (name2, “Roy“);

strcat (name1, name2);

Spring 2012 Programming and Data Structure 22

„\0‟yoR

„\0‟imA t

„\0‟yoR

imA t

Spring 2012 Programming and Data Structure 23

/* Read a line of text and count the number of uppercase letters */
#include <stdio.h>
#include <string.h>
main()
{

char line[81];
int i, n, count=0;
printf(“Input the line \n”);
scanf (“%*^\n+”, line);
n = strlen (line);
for (i=0; i<n; i++)

{
if (isupper (line[i]))

count++;
}

printf (“\n The number of uppercase letters in the string %s is %d”,
line, count);

}

Include header for string processing

Character Array for String

Reading a line of text

Computing string length

Checking whether a character

is Uppercase

Two Dimensional Arrays

• We have seen that an array variable can store
a list of values.

• Many applications require us to store a table
of values.

Spring 2012 Programming and Data Structure 24

75 82 90 65 76

68 75 80 70 72

88 74 85 76 80

50 65 68 40 70

Student 1

Student 2

Student 3

Student 4

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Contd.

• The table contains a total of 20 values, five in
each line.

– The table can be regarded as a matrix consisting of
four rows and five columns.

• C allows us to define such tables of items by
using two-dimensional arrays.

Spring 2012 Programming and Data Structure 25

Declaring 2-D Arrays

• General form:

type array_name [row_size][column_size];

• Examples:

int marks[4][5];

float sales[12][25];

double matrix[100][100];

Spring 2012 Programming and Data Structure 26

Accessing Elements of a 2-D Array

• Similar to that for 1-D array, but use two
indices.
– First indicates row, second indicates column.

– Both the indices should be expressions which
evaluate to integer values.

• Examples:
x[m][n] = 0;

c[i][k] += a[i][j] * b[j][k];

a = sqrt (a[j*3][k]);

Spring 2012 Programming and Data Structure 27

How is a 2-D array is stored in memory?

• Starting from a given memory location, the elements
are stored row-wise in consecutive memory
locations.

• x: starting address of the array in memory

• c: number of columns

• k: number of bytes allocated per array element

a[i][j] is allocated memory location at

address x + (i * c + j) * k

Spring 2012 Programming and Data Structure 28

a[0]0] a[0][1] a[0]2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] a[2][0] a[2][1] a[2][2] a[2][3]

Row 0 Row 1 Row 2

How to read the elements of a 2-D
array?

• By reading them one element at a time

for (i=0; i<nrow; i++)

for (j=0; j<ncol; j++)

scanf (“%f”, &a*i][j]);

• The ampersand (&) is necessary.

• The elements can be entered all in one line or
in different lines.

Spring 2012 Programming and Data Structure 29

How to print the elements of a 2-D
array?

• By printing them one element at a time.
for (i=0; i<nrow; i++)

for (j=0; j<ncol; j++)

printf (“\n %f”, a*i][j]);

– The elements are printed one per line.

for (i=0; i<nrow; i++)

for (j=0; j<ncol; j++)

printf (“%f”, a*i][j]);

– The elements are all printed on the same line.

Spring 2012 Programming and Data Structure 30

Contd.

for (i=0; i<nrow; i++)

{

printf (“\n”);

for (j=0; j<ncol; j++)

printf (“%f ”, a*i][j]);

}

– The elements are printed in matrix form.

Spring 2012 Programming and Data Structure 31

Example: Matrix Addition

Spring 2012 Programming and Data Structure 32

int main() {
int a[100][100], b[100][100],

c[100][100], p, q, m, n;

scanf (“%d %d”, &m, &n);

for (p=0; p<m; p++)
for (q=0; q<n; q++)

scanf (“%d”, &a*p+*q+);

for (p=0; p<m; p++)
for (q=0; q<n; q++)

scanf (“%d”, &b*p+*q+);

for (p=0; p<m; p++)
for (q=0; q<n; q++)

c[p]q] = a[p][q] +
b[p][q];

for (p=0; p<m; p++)
{

printf (“\n”);

for (q=0; q<n; q++)

printf (“%f ”, a*p+*q+);

}

}

Passing Arrays to a Function

• An array name can be used as parameter of a function,
which is effectively the address of the first element.

• When an array is passed to a function, the values of the
array elements are not passed to the function.

– The array name is interpreted as the address of the
first array element.

– The formal argument therefore becomes a pointer to
the first array element.

– When an array element is accessed inside the function,
the address is calculated using the formula stated
before.

– Changes made inside the function are thus also
reflected in the calling program.

Spring 2012 Programming and Data Structure 34

Passing 2-D Arrays

• Similar to that for 1-D arrays.

– The array contents are not copied into the function.

– Rather, the address of the first element is passed.

• For calculating the address of an element in a 2-D
array, we need:

– The starting address of the array in memory.

– Number of bytes per element.

– Number of columns in the array.

• The above three pieces of information must be
known to the function.

Spring 2012 Programming and Data Structure 35

Example Usage

Spring 2012 Programming and Data Structure 36

#include <stdio.h>
int main() {

int a[15][25],
b[15]25];

:
:
add (a, b, 15, 25);
:

}

void add (x, y, rows, cols)
int x[][25], y[][25];
int rows, cols;
{

:
}

We can also write

int x[15][25], y[15][25];

Number of columns

Example: Transpose of a matrix

Spring 2012 Programming and Data Structure 37

void transpose (int x[][100], int n)
{

int p, q;

for (p=0; p<n; p++)
for (q=0; q<n; q++)

{
t = x[p][q];
x[p][q] = x[q][p];
x[q][p] = t;

}
}

10 20 30

40 50 60

70 80 90

10 20 30

40 50 60

70 80 90

transpose(a,3)

a[100][100]

The Correct Version

Spring 2012 Programming and Data Structure 38

void transpose (int x[][100], n)
{

int p, q;

for (p=0; p<n; p++)
for (q=p; q<n; q++)

{
t = x[p][q];
x[p][q] = x[q][p];
x[q][p] = t;

}
}

10 20 30

40 50 60

70 80 90

10 40 70

20 50 80

30 60 90

