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Character String
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Introduction

• A string is an array of characters.

– Individual characters are stored in memory in ASCII code.

– A string is represented as a sequence of characters 
terminated by the null (‘\0’) character.

– Because C stores a string as an array, the name of the 
string is a pointer to the beginning of the string.

– C implements strings logically, not physically. The physical 
structure of a string is the array in which C stores the 
string.
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Declaring String Variables

• A string is declared like any other array:

char  string-name [size];

– size determines the number of characters in string_name.

• We must provide enough room for the maximum number of 
characters in a string. However, if we don’t fill the string, C 
puts the null character in the middle of the string and ignores 
the remaining spaces in the array.
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String Literals

• String literals, aka “string constants”, are sequences of 
characters enclosed in double quotes.

• C automatically creates a null-delimited string array when it 
encounters characters in double quotes.

• Referencing a string literal:



Declaring Strings

• We can declare strings as a character array with a 
length of maximum characters needed + 1. 
char name[21];

• We can also declare a string as a pointer. However, in 
this case, unlike the first method, C doesn’t allocate 
memory for the string:
char* pName;

• We must allocate memory for strings before we use 
them!



Initializing Strings

• We can initialize by assigning a string literal:
char myString[13] = “Hello World!”;

char myString[] = “Hello World!”;

• Assigning a string literal to a pointer:
char* pMyString = “Hello World!”;

• We can also initialize a string as an array of 
characters (however, this isn’t used too often, as it is 
cumbersome).



Strings & The Assignment Operator

• The name of a string is a pointer constant to 
the first character in the character array. As 
such, we need to take great care when 
assigning values to a string. 

• The following results in an error:
char str1[6] = “Hello”;

char str2[6];

str2 = str1; //Results in Error



Reading Strings

• Two different cases will be considered:

– Reading words

– Reading an entire line
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Reading “words”

• scanf can be used with the “%s” format 
specification.

char   name[30];
:
:
scanf (“%s”, name);

– The ampersand (&) is not required before the 
variable name with “%s”.

– The problem here is that the string is taken to 
be upto the first white space (blank, tab, 
carriage return, etc.)
• If we type  “Rupak Biswas”
• name will be assigned the string “Rupak”
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Reading a “line of text”

• In many applications, we need to read in an 
entire line of text (including blank spaces).

• We can use the getchar() (or scanf (“%c”, …)
for the purpose.
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char   line[81], ch;
int c=0;
:
:
do {

ch = getchar();
line[c] = ch;
c++;

}
while  (ch != ‘\n’);

c = c – 1;
line*c+ = ‘\0’;

Read characters 
until CR (‘\n’) is 
encountered

Make it a valid 
string



Reading a line :: Alternate Approach
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char   line[81];
:

scanf (“%* ABCDEFGHIJKLMNOPQRSTUVWXYZ+”, line);

char   line[81];
:

scanf (“%*^\n+”, line);

Reads a string containing uppercase

characters and blank spaces

Reads a string containing any characters



The gets() Function

• The gets() function (from stdio) takes a 
string from standard input and assigns it to a 
character array. It replaces the \n with \0.

• To use gets():
gets(myString);

• The gets() function includes no way to 
check the length of the input string!



Writing Strings to the Screen

• We can use printf with the “%s” format 
specification.

char name[50];

:

:    

printf (“\n %s”, name);
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Processing Character Strings

• There exists a set of C library functions for 
character string manipulation.

– strcpy ::  string copy

– strlen ::  string length

– strcmp ::  string comparison

– strtcat ::  string concatenation

• It is required to include the following

#include  <string.h>
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Copying strings

• We cannot simply assign one string to another 
due to the that strings are character arrays!

• strcpy () Works very much like a string 
assignment operator.

strcpy (destinationString, sourceString);

• Examples:

strcpy (city, “Calcutta”);

strcpy (city, mycity);
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strlen()

• Counts and returns the number of characters 
in a string.

len =  strlen (string);   /* Returns an integer */

– The null character (‘\0’) at the end is not counted.

– Counting ends at the first null character.
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char  city[15];

int n;

:

:

strcpy (city, “Calcutta”);

n = strlen (city);

n is assigned 8



Comparing Strings: strcmp()

• Compares two character strings.

int strcmp (str1, str2);

• If the two strings are equal, strcmp() returns 0.
• If str1 is greater than str2, strcmp() returns a 

positive number.
• If str1 is less than str2, strcmp() returns a 

negative number.
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Comparing Strings



Combining Strings: strcat()

• Joins or concatenates two strings together.
strcat (string1, string2);

– string2 is appended to the end of string1.

– The null character at the end of string1 is 
removed, and string2 is joined at that point.

• Example:
strcpy (name1, “Amit “);

strcpy (name2, “Roy“);

strcat (name1, name2);
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/* Read a line of text and count the number of uppercase letters */
#include  <stdio.h>
#include  <string.h>
main()
{

char  line[81];
int i, n, count=0;
printf(“Input the line \n”);
scanf (“%*^\n+”, line);
n = strlen (line);
for  (i=0; i<n; i++)

{
if  (isupper (line[i]))

count++;
}

printf (“\n The number of uppercase letters in the string %s is %d”,
line, count);

}

Include header for string processing

Character Array for String

Reading a line of text

Computing string length

Checking whether a character

is Uppercase



Two Dimensional Arrays

• We have seen that an array variable can store 
a list of values.

• Many applications require us to store a table
of values.
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75 82 90 65 76

68 75 80 70 72

88 74 85 76 80

50 65 68 40 70

Student 1

Student 2

Student 3

Student 4

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5



Contd.

• The table contains a total of 20 values, five in 
each line.

– The table can be regarded as a matrix consisting of 
four rows and five columns.

• C allows us to define such tables of items by 
using two-dimensional arrays.
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Declaring 2-D Arrays

• General form:

type   array_name [row_size][column_size];

• Examples:

int marks[4][5];

float  sales[12][25];

double  matrix[100][100];
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Accessing Elements of a 2-D Array

• Similar to that for 1-D array, but use two 
indices.
– First indicates row, second indicates column.

– Both the indices should be expressions which 
evaluate to integer values.

• Examples:
x[m][n] = 0;

c[i][k] += a[i][j] * b[j][k];

a = sqrt (a[j*3][k]); 

Spring 2012 Programming and Data Structure 27



How is a 2-D array is stored in memory?

• Starting from a given memory location, the elements 
are stored row-wise in consecutive memory 
locations.

• x: starting address of the array in memory

• c: number of columns

• k: number of bytes allocated per array element

a[i][j] is allocated memory location at  

address  x + (i * c + j) * k
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How to read the elements of a 2-D 
array?

• By reading them one element at a time

for  (i=0; i<nrow; i++)

for  (j=0; j<ncol; j++)

scanf (“%f”, &a*i][j]);

• The ampersand (&) is necessary.

• The elements can be entered all in one line or 
in different lines.
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How to print the elements of a 2-D 
array?

• By printing them one element at a time.
for  (i=0; i<nrow; i++) 

for  (j=0; j<ncol; j++)

printf (“\n %f”, a*i][j]);

– The elements are printed one per line.

for  (i=0; i<nrow; i++) 

for  (j=0; j<ncol; j++)

printf (“%f”, a*i][j]);

– The elements are all printed on the same line.
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Contd.

for  (i=0; i<nrow; i++)

{

printf (“\n”);

for  (j=0; j<ncol; j++)

printf (“%f   ”, a*i][j]);

}

– The elements are printed  in matrix form.
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Example: Matrix Addition
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int main() {
int a[100][100], b[100][100],

c[100][100], p, q, m, n;

scanf (“%d %d”, &m, &n); 

for  (p=0; p<m; p++)
for  (q=0; q<n; q++)

scanf (“%d”, &a*p+*q+);

for  (p=0; p<m; p++)
for  (q=0; q<n; q++)

scanf (“%d”, &b*p+*q+);

for  (p=0; p<m; p++)
for  (q=0; q<n; q++)

c[p]q] = a[p][q] +    
b[p][q];

for  (p=0; p<m; p++)
{

printf (“\n”);

for  (q=0; q<n; q++)

printf (“%f   ”, a*p+*q+);

}

}



Passing Arrays to a Function

• An array name can be used as parameter of a function, 
which is effectively the address of the first element.

• When an array is passed to a function, the values of the 
array elements are not passed to the function.

– The array name is interpreted as the address of the 
first array element.

– The formal argument therefore becomes a pointer to 
the first array element.

– When an array element is accessed inside the function, 
the address is calculated using the formula stated 
before.

– Changes made inside the function are thus also 
reflected in the calling program.
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Passing 2-D Arrays

• Similar to that for 1-D arrays.

– The array contents are not copied into the function.

– Rather, the address of the first element is passed.

• For calculating the address of an element in a 2-D 
array, we need:

– The starting address of the array in memory.

– Number of bytes per element.

– Number of columns in the array.

• The above three pieces of information must be 
known to the function.
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Example Usage
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#include  <stdio.h>
int main() {

int a[15][25],  
b[15]25];

:
:
add (a, b, 15, 25);
:

}

void  add (x, y, rows, cols)
int x[][25], y[][25];
int rows, cols;
{

:
}

We can also write

int  x[15][25], y[15][25];

Number of columns



Example: Transpose of a matrix
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void  transpose (int x[][100], int n)
{

int p, q;

for  (p=0; p<n; p++)
for  (q=0; q<n; q++)

{
t = x[p][q];
x[p][q] = x[q][p];
x[q][p] = t;

}
}

10 20   30

40 50   60

70   80   90

10 20   30

40 50   60

70   80   90

transpose(a,3)

a[100][100]



The Correct Version
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void  transpose (int x[][100], n)
{

int p, q;

for  (p=0; p<n; p++)
for  (q=p; q<n; q++)

{
t = x[p][q];
x[p][q] = x[q][p];
x[q][p] = t;

}
}

10 20   30

40 50   60

70   80   90

10 40   70

20  50   80

30  60   90


