Arrays- Part 2



Character String



Introduction

e Astringis an array of characters.
— Individual characters are stored in memory in ASCII code.

— A string is represented as a sequence of characters
terminated by the null (‘\0’) character.

— Because C stores a string as an array, the name of the
string is a pointer to the beginning of the string.

“Hello” > ‘ H ‘ e ‘ I ‘ I ‘ 0 “\0"

— Cimplements strings logically, not physically. The physical
structure of a string is the array in which C stores the
string.



Declaring String Variables

* Astring is declared like any other array:
char string-name [size];

— size determines the number of characters in string_name.

* We must provide enough room for the maximum number of
characters in a string. However, if we don’t fill the string, C
puts the null character in the middle of the string and ignores
the remaining spaces in the array.

Part of the array,
but not part of the
string

char str[1l]; |Glolo|d| [D|a y\d? ?)




String Literals

String literals, aka “string constants”, are sequences of
characters enclosed in double quotes.

C automatically creates a null-delimited string array when it
encounters characters in double quotes.

Referencing a string literal:

| | h "Hello"[ 0] |H|<e—"Hello"
#include <stdio.h> "Hello"T 1 ,
int main (void) | — "Hello’[ 1] e I ‘>_<
{ / "Hello"[ 2] [ ] e
printf ("%c\n", "Hello"[1l]; "Hello"[ 3] ||
returrll 0; "Hello"[ 4] |0
} // main '
"Hello"[ 5] \O




Declaring Strings

* We can declare strings as a character array with a
length of maximum characters needed + 1.
char name[21];

 We can also declare a string as a pointer. However, in
this case, unlike the first method, C doesn’t allocate
memory for the string:
char* pName;

 We must allocate memory for strings before we use
them!



Initializing Strings

 We can initialize by assigning a string literal:
char myString[13] = “Hello World!”;
char myString[] = “Hello World!”;

* Assigning a string literal to a pointer:
char* pMyString = “Hello World!”;

* We can also initialize a string as an array of
characters (however, this isn’t used too often, as it is
cumbersome).



Strings & The Assighnment Operator

 The name of a string is a pointer constant to
the first character in the character array. As
such, we need to take great care when
assigning values to a string.

* The following results in an error:
char strl[6] = “Hello”;
char str2[6];

str2 = strl; //Results in Error



Reading Strings

* Two different cases will be considered:
— Reading words
— Reading an entire line



Reading “words”

e scanf can be used with the “%s” format
specification.
char name[30];

scanf (“%s”, name);

— The ampersand (&) is not required before the
variable name with “%s”.

— The problem here is that the string is taken to
be upto the first white space (blank, tab,
carriage return, etc.)

* |f we type “Rupak Biswas”
* name will be assigned the string “Rupak”



Reading a “line of text”

* |n many applications, we need to read in an
entire line of text (including blank spaces).

* We can use the getchar() (or scanf (“%c”, ...)
for the purpose.



char line[81], ch;

int ¢c=0;
do { h
C.h = getchar(); Read characters
line[c] = ch; > until CR (‘\n’) is
\ C+t; encountered
. I= '\ n’)
while (ch != ‘\n’); _
c=c-1; } Make it a valid
line[c] = ‘\0’; string




Reading a line :: Alternate Approach

char line[81];

scanf (“%[ ABCDEFGHIJKLMNOPQRSTUVWXYZ]”, line);

Reads a string containing uppercase
characters and blank spaces

char line[81];

scanf (“%[*\n]”, line);

Reads a string containing any characters



The gets () Function

* The gets () function (from stdio) takes a
string from standard input and assigns it to a
character array. It replaces the \n with \0.

* Tousegets():
gets (myString) ;

* The gets () functionincludes no way to
check the length of the input string!



Writing Strings to the Screen

* We can use printf with the “%s” format
specification.

char name[50];

printf (“\n %s”, name);



Processing Character Strings

* There exists a set of C library functions for
character string manipulation.

— strcpy :: string copy
— strlen :: string length
— strcmp :: string comparison
— strtcat :: string concatenation
* |tis required to include the following
#include <string.h>



Copying strings

* We cannot simply assign one string to another
due to the that strings are character arrays!

 strcpy () Works very much like a string
assignment operator.

strcpy (destinationString, sourceString);
 Examples:

strcpy (city, “Calcutta”);

strcpy (city, mycity);



strlen()

Counts and returns the number of characters
In a string.

len = strlen (string); /* Returns an integer */

— The null character (‘\O’) at the end is not counted.
— Counting ends at the first null character.



char city[15];
Int n;

strcpy (city, “Calcutta”);
n = strlen (city);

n is assigned 8

Spring 2012 Programming and Data Structure

19



Comparing Strings: strcmp()

Compares two character strings.
int strcmp (strl, str2);

If the two strings are equal, strcmp () returns O.

If strl is greater than str2, strcmp () returns a
positive number.

If strlislessthan str2, strcmp () returns a
negative number.



Comparing Strings

Stops at end
of string

s1|A[B[c| [c|o]m|P|A[N]Y|\0|

fPrerrrttertnt

BEEEREEREEEREE
s2 |A|B|c| [c|o|m|P|A[N]Y|\0]

| s1 equals s2 I

Stops at Stops at
not equal not equal

s1 [A[B[C]_[C[O[M[P[AIN[Y]\0] s1|A[BIC| [CIO[R[P[\O[ | | |

tritt trittett
AERR AR RN
so [ABICLTVNeTe] [ [ ] s2[ABICL ICIOMPIANYJ

| 'C' < .. sllesss?2 I | 'R'>'M' . sigreater s2 I

strcmp (s1,s2)




Combining Strings: strcat()

* Joins or concatenates two strings together.
strcat (stringl, string2);
— string2 is appended to the end of string1.

— The null character at the end of stringl is
removed, and string2 is joined at that point.

* Example: ——|Aalm]i|t] [

strcpy (namel, “Amit “),____, [RTo [y [
strcpy (name2, “Roy”);
strcat (namel, narn\(EZﬁ‘A‘m‘ ifef [rfofy [l

Spring 2012 Programming and Data Structure 22



/* Read a line of text and count the number of uppercase letters */
#include <stdio.h>

#include <string.h> ‘ Include header for string processing

main()

{

char line[81]; | Character Array for String |

int i, n, count=0;

printf(“Input the line \n”); - .
scanf (“%[~\n]”, line); ‘ Reading a line of text ‘

n = strlen (line); | Computing string length |
for (i=0; i<n; i++)

{ if (isupper (line[il) Checking whether a character

count++; Is Uppercase

}

printf (“\n The number of uppercase letters in the string %s is %d”,
line, count);




 We have seen that an array variable can store
a list of values.

 Many applications require us to store a table

of values. | _ _ |
Subject1 Subject2 Subject3 Subject4 Subject5
Student 1 75 82 90 65 76
Student 2 68 75 80 70 72
Student 3 88 74 85 76 80
Student 4 50 65 68 40 70

Spring 2012

Two Dimensional Arrays

Programming and Data Structure

24



Contd.

* The table contains a total of 20 values, five in
each line.

— The table can be regarded as a matrix consisting of
four rows and five columns.

e Callows us to define such tables of items by
using two-dimensional arrays.



Declaring 2-D Arrays

e General form:

type array_name [row_size][column_size];

 Examples:
int marks[4][5];
float sales[12][25];
double matrix[100][100];

Spring 2012 Programming and Data Structure

26



Accessing Elements of a 2-D Array

e Similar to that for 1-D array, but use two
indices.

— First indicates row, second indicates column.

— Both the indices should be expressions which
evaluate to integer values.

e Examples:
x[m][n] = 0;

clil[k] += ali][j] * b[jl[k];
a = sqrt (a[j*3][k]);




How is a 2-D array is stored in memory?

e Starting from a given memory location, the elements
are stored row-wise in consecutive memory

locations.
e X: starting address of the array in memory

e ¢: number of columns
* k: number of bytes allocated per array element

ali][j] is allocated memory location at
address x+ (i *c+j) *k

a[0]0] a[0][1] a[0]2] a[O][3] a[1][0] a[1][1] a[1][2] a[1][3] a[2][0] a[2][1] a[2][2] a[2][3]

Row 0O Row 1 Row 2



How to read the elements of a 2-D
array?

* By reading them one element at a time
for (i=0; i<nrow; i++)
for (j=0; j<ncol; j++)
scanf (“%f”, &alil[jl);
 The ampersand (&) is necessary.

e The elements can be entered all in one line or
in different lines.



How to print the elements of a 2-D
array?

* By printing them one element at a time.
for (i=0; i<nrow; i++)
for (j=0; j<ncol; j++)
printf (“\n %f”, a[i][j]);
— The elements are printed one per line.

for (i=0; i<nrow; i++)
for (j=0; j<ncol; j++)
printf (“%f”, a[i][jl);
— The elements are all printed on the same line.

Spring 2012 Programming and Data Structure 30



Contd.

for (i=0; i<nrow; i++)
{
printf (“\n”);
for (j=0; j<ncol; j++)
printf (“%f ”, a[illjl);
}

— The elements are printed in matrix form.

Spring 2012 Programming and Data Structure

31



Example: Matrix Addition

int main() {
int a[100][100], b[100][100],
c[100][100], p, 9, m, n;

scanf (“%d %d”, &m, &n);

for (p=0; p<m; p++)
for (q=0; q<n; q++)
scanf (“%d”, &a[p][q]);

for (p=0; p<m; p++)
for (q=0; gq<n; g++)
scanf (“%d”, &b[p][al);

for (p=0; p<m; p++)
for (q=0; g<n; g++)
c[plal = alpllq] +
b[pllal;

for (p=0; p<m; p++)

{
printf (“\n”);

for (q=0; q<n; q++)
printf (“%f ”, a[p][a]);




Passing Arrays to a Function

An array name can be used as parameter of a function,
which is effectively the address of the first element.

When an array is passed to a function, the values of the
array elements are not passed to the function.

— The array name is interpreted as the address of the
first array element.

— The formal argument therefore becomes a pointer to
the first array element.

— When an array element is accessed inside the function,
the address is calculated using the formula stated
before.

— Changes made inside the function are thus also
reflected in the calling program.



Passing 2-D Arrays

Similar to that for 1-D arrays.

— The array contents are not copied into the function.
— Rather, the address of the first element is passed.

For calculating the address of an element in a 2-D
array, we need:

— The starting address of the array in memory.

— Number of bytes per element.

— Number of columns in the array.

The above three pieces of information must be
known to the function.



Example Usage

#include <stdio.h>
int main() {

int a[15][25],
b[15]25];

add (a, b, 15, 25);

void add (x, y, rows, cols)

int x[][25], y[1[25];
int rows, cols;

{

}

/ We can also write
int x[15][25], y[15][25];

Number of columns




Example: Transpose of a matrix

void transpose (int x[][100], int n)

{

int p,q,

for (p=0; p<n; p++)
for (q=0; q<n; q++)

{

}

t = x[pllal;
x[plla] = x[allpl;
x[a]lp] = t;

10 20 30

40 50 60

a|100][100
70 80 90 100]1100]

ﬂ ‘transpose(a,B)

10 20 30
40 50 60
70 80 90




The Correct Version

void transpose (int x[][100], n)

{

int p, q;

for (p=0; p<n; p++)
for (q=p; q<n; q++)

{

}

t=x
x[p]

x[q]

p]
q]
p]

[a];

=x[a]lpl;
:t;

10 20 30
40 50 60
70 80 90

4

10 40 70
20 50 80
30 60 90



