
CS11001 Programming and Data Structures, Autumn 2010

End-semester Test

Maximum marks: 100 November 2010 Total time: 3 hours

Roll no: Name: Section:

Write your answers in the question paper itself. Be brief andprecise. Answer allquestions.
Do your rough work on supplementary sheets. Write your final answers in the spaces provided.

Not all blanks carry equal marks. Evaluation will depend on the overall correctness.

(To be filled in by the examiners)
Question No 1 2 3 4 5 6 Total

Marks

1. For each of the following parts, mark the correct answer. Mark like this: (B) (16)

(a) What is the output of the following program?

main()
{

char str[30] = "This is PDS test";
printf("%d", fun(str));

}

int fun(char *x)

{

char *ptr = x;

while (*ptr != ’\0’) ptr++;

return (ptr - x);

}

(A) 4 (B) 16 (C) 17 (D) 30

(b) What is the output of the following program?

main()

{

int array[10] = { 20, 18, 16, 14, 12, 10, 8, 6, 4, 2 };

int *ptr;

ptr = array;

printf("%d,%d", *ptr + 2, *(ptr + 2));

}

(A) 16,16 (B) 20,16 (C) 22,16 (D) 22,22

(c) Consider the following declaration:int (*A)[20]; If A points to the memory locationx, which
memory location doesA+1 point to? Assume thatsizeof(int) = 4.

(A) x + 80 (B) x + 20 (C) x + 4 (D) Does not depend onx

— Page 1 of 9 —

(d) Each of the following choices declares two variablesA andB. Identify the pair in whichA andB do not
have compatible organizations in memory.

(A) int *A, B[MAX]; (B) int *A[MAX], **B; (C) int (*A)[MAX], **B;

(D) int (*A)[MAX], B[MAX][MAX];

(e) In a machine with32-bit integers and32-bit addresses, what issizeof(node), wherenode is defined
as follows:

typedef struct _tag {

int a[8];

double b[16];

char c[32];

struct _tag *next;

} node;

(A) 384 (B) 196 (C) 132 (D) 60

(f) Consider the following recursive function:

unsigned int f (unsigned int n)

{

if (n <= 2) return 1;

return f(n-3) + f(n-1);

}

What is the maximum height to which the recursion stack growswhen the outermost call isf(10)? Assume
that the stack is empty just before this outermost call.

(A) 5 (B) 9 (C) 13 (D) 32

(g) The total number of comparisons needed for bubble sorting anarray of sizen is:

(A) O(n2) (B) O(n log n) (C) O(n) (D) None of the above

(h) What is the output of the following program?

struct node {
int cval;
struct node *next;

}

main()

{

struct node N1, N2, N3;

N1.cval = 1; N2.cval = 10; N3.cval = 100;

N1.next = &N2; N2.next = &N3; N3.next = &N1;

printf("%d,%d", N2.next -> cval, N2.next -> next -> cval);

}

(A) 1,10 (B) 1,100 (C) 10,100 (D) 100,1

— Page 2 of 9 —

2. Consider the following way to compute the maximum in an arrayA of sizen. First, divide the array in two
equal (or almost equal) halves. Then, recursively compute the maximums in the two halves. Finally, return
the larger of these two recursively computed maximum values.

(a) Complete the following function which uses the above idea for finding the maximum in an array. (6)

int max (int A[], int n)

{

int m1, m2;

if (n == 1) return ;

/* Make two recursive calls. Do not assume that n is even. */

m1 = max(,); /* left half */

m2 = max(,); /* right half */

return ;

}

(b) How is the function called from themain() function on an arrayA of sizen? (1)

(c) Deduce the running time ofmax() on an array of sizen. For simplicity, you may assume thatn is a
power of2, that is,n = 2t for some integert > 0. Express the running time in the Big-Oh notation. (7)

— Page 3 of 9 —

3. A convex polygon is a simple polygon in which all interior angles are less that1800. In this exercise, you
are required to compute the area of a convex polygon.

(a) Define a data typepoint consisting of double-precision floating-point fieldsx andy. (2)

typedef struct { } ;

Next, define a static array ofMAX structures of typepoint as the data typecpolygon. Note that a convex
polygon is to be stored in an array of points as a counterclockwise sequence of the vertices of the polygon.(2)

#define MAX 1000

typedef cpolygon ;

(b) Complete the following function that accepts a convex polygon and three indicesi, j, k representing
verticesPi, Pj , Pk of the polygon stored in the input array. The function computes and returns the area of
the trianglePiPjPk using the formula

√

s(s − a)(s − b)(s − c), wherea, b, c are the lengths of the three
sides of the triangle ands = (a + b + c)/2 is the semi-perimeter of the triangle. You may use math library
functions. (6)

double triangleArea (cpolygon P, int i, int j, int k)
{

double a, b, c, s; /* Do not use any other variable */

/* Compute the lengths of the sides */

a = ;

b = ;

c = ;

/* Compute the semi-perimeter */

s = ;

/* Return the area */

return ;

}

(c) In order to compute the area of a convex polygon, we first
triangulate the polygon as demonstrated in the adjacent figure. The
area of each triangle is computed by the function of Part (b).The
sum of these areas is returned as the area of the input polygon.

P

P
P

P

P

P

0

1

2

P3

P4

5

6

7

(5)

double polygonArea (cpolygon P, int n)

{

int i;

double area = ;

for (i= ; i<= ; ++i) area += ;

return area;

}

— Page 4 of 9 —

4. You are given anm × n arrayA of integers, each row of which is a sorted list of sizen. Your task is to
merge them sorted lists and store the merged list in a one-dimensional array B. It is given that each row
does not contain repetition(s) of integers, that is, then integers in each sorted list are distinct from one
another. However, integers may be repeated in different rows. During the merging step, you must remove
all these repetitions.

Complete the following function to achieve this task. The function uses an array ofm indices, where the
i-th index is used for reading from thei-th row (0 6 i 6 m − 1). The function starts by initializing each
of these read indices to point to the beginning of the corresponding row. Subsequently, inside a loop, it
computes the minimum of them elements pointed to by these indices. The minimum is then written to the
output array. Note, however, that during the computation ofthis minimum, we do not need to consider those
rows all of whose elements have already been written to the output arrayB. Finally, for all rows containing
this minimum element at the current read index positions, the index values are incremented. The function is
supposed to return the total number of elements written to the output arrayB. An example is given below. (15)

1 3 4 7 9

1 3 4 5

A[0]

A[1]

A[2]

B4 8 9 1516

3 5 7 1013

#define INFINITY 123456789

int merge (int B[], int A[][MAX], int m, int n)

/* A is the input two-dimensional array of size m × n.

B is the output array whose size is to be returned. */

{

int index[MAX], i, k, min; /* Do not use other variables */

for (i=0; i< ; ++i) index[i] = ;

k = ; /* k is for writing to B[] */

while (1) { /* Let us decide to return inside this loop */

min = INFINITY; /* Initialize min to a suitably large value */

/* Write a loop for computing the minimum */

for () {

if

min = ;

}

/* If all input arrays are fully processed, return the size of B */

/* Otherwise, write the computed minimum to B */

/* Advance all relevant indices */

for () {

if

;

}

}

}

— Page 5 of 9 —

5. In this exercise, we deal with linked lists. First, considerthe list headed by the pointerL1 (see the figure
below). There is no dummy node at the beginning. The first element in the list is22. Subsequently, if a
node stores the integern, the next node stores the integern − ⌊√n⌋. This means that we have a list of
monotonically decreasing integers. The list terminates after the node containing the value0.

01246

9121620

811141822L

L

1

2

Define a node in the list in the usual way:

typedef struct _node {

int data;

struct _node *next;

} node;

(a) Write a function to create a single list likeL1 as explained above. The list starts with a supplied integer
valuen, and subsequently uses the above formula for the subsequentnodes. (6)

node *genSeq1 (int n)

{

node *L, *p;

/* Create the fist node to store n */

L = ;

/* Initialize the running pointer p for subsequent insertions */

p = ;

while () { /* As long as n is not reduced to zero */

/* Compute the next value of n */

n -= ;

/* Allocate memory */

/* Store n in the new node, and advance */

}

/* Terminate the list */

return L; /* Return the header */

}

(b) Now, we create another list to be headed byL2 (see the above figure). This second list starts with
another value (like20), and contains nodes storing integer values satisfying thesame formula used in the
first list. After some iterations, two lists must encounter acommon value (6 in the example of the above
figure). From this node onwards, the second list follows the same nodes and links as the first list. Complete
the following C function to create the second list. The header L1 to the first list is passed to this function.
Also, the starting valuen for the second list is passed. (8)

— Page 6 of 9 —

node *genSeq2 (node *L1, int n)

{

node *L2, *p1, *p2;

/* Skip values in the first list larger than n */

p1 = L1; while () p1 = p1 -> next;

/* If n is already present in the first list */

if () return ;

/* Create the fist node in the second list to store n */

L2 = ;

;

/* Initialize the running pointer p for subsequent insertions */

p2 = ;

while (1) { /* Let us decide to return inside the loop */

n -= ; /* Next value of n */

/* p1 skips all values in the first list, larger than the current n */

while p1 = p1 -> next;

if () { /* n found in first list */

; /* Adjust the second list */

return ; /* Return header to second list */

}

/* n not found in first list, so create a new node in second list */

}

}

(c) Complete the following function that, given the headersL1 andL2 as input, returns a pointer to the
first common node in these two lists. (6)

node *getIntersection (node *L1, node *L2)

{

node *p1, *p2;

p1 = ; p2 = ; /* Initialize pointers */

while (1) { /* Return inside the loop */

/* If the common node is located, return an appropriate pointer */

if () return ;

/* else if p1 points to a larger integer than p2 */

else if () ;

else ;

}

}

— Page 7 of 9 —

6. You have anm × n maze of rooms. Each adjacent pair of rooms has a door that allows passage between
the rooms. At some point of time some of the doors are locked, the rest are open. A mouse sits at room
number(s, t), and there is fabulous food for the mouse at room number(u, v). Your task is to determine
whether there exists a route for the mouse from room(s, t) to room(u, v) through the open doors. The idea
is to start a search at room no(s, t), then investigate adjacent rooms(s1, t1), . . . , (sk, tk) that can be reached
from (s, t), and then those adjacent rooms that can be reached from each(si, ti), and so on.

i,j

i,j

0,01,02,03,0 4,05,0

0,11,1 2,1 3,1 5,14,1

0,21,2 2,23,2 4,25,2

0,31,3 2,33,3 4,3 5,3

0,4 1,4 2,43,44,45,4

ji,

H

H

V Vi+1, j

i,j+1

In order to set up the notations about indices, look at the above figure. The rooms are numbered(i, j), where
i grows horizontally (along thex direction), andj grows in the vertical direction (along they axis). The
four walls of the(i, j)-th room are numbered as shown to the right of the maze. If a horizontal or vertical
wall has an open door, we indicate this by the value1; otherwise, we use the value0. That is,Hi,j = 1 if
the horizontal door connecting the rooms(i, j − 1) and(i, j) is open;Hi,j = 0 otherwise. Similarly,Vi,j

is 1 or 0 depending upon whether the vertical door between the rooms(i − 1, j) and(i, j) is open or not.
This numbering scheme also applies to the walls of the boundary of the maze. However, we assume that
the mouse cannot go out of the house, that is, all the walls on the boundary are closed.H is available as an
m×(n+1) array, whereasV is available as an(m+1)×n array. In the example shown above, Room(3, 1)
is reachable from Room(2, 4), but Room(1, 2) is not reachable from Room(2, 4).

We use a stack to implement the search (from(s, t) to (u, v) given the arraysH andV). Since there is no
need to revisit a room during the search, we maintain anm × n array of flags in order to keep track of the
rooms that are visited—the value1 means “visited”, and0 means “not visited so far”. The stack contains a
list of rooms, that is, it is capable of storing pairs of indices(i, j). The stack ADT is supplied as follows.

S = init(); /* Create an empty stack */

S = push(S,i,j); /* Push the pair (i, j) to the top of the stack S */

S = pop(S); /* Pop an element (a pair) from the top of the stack */

(i,j) = top(S); /* Return the top (i, j) of the stack S */

isEmpty(S); /* Returns true if and only if the stack S is empty */

(a) Fill out the followingmain() function that pushes the source room(s, t) to an initially empty stack,
and subsequently calls the search function with appropriate arguments. (5)

main ()

{

stack S;

int m, n, s, t, u, v, H[MAX][MAX], V[MAX][MAX], visited[MAX][MAX], status;

/* Assume that m, n, s, t, u, v, H[][], V[][] and visited[][] are

appropriately initialized here. You do not have to write these. */

. . .

S = ; /* Initialize the stack S */

S = push(S, ,); /* Push source room to stack */

visited[][] = 1; /* Mark source room as visited */

status = search(m,n,s,t,u,v,H,V,visited,S); /* Call the search function */

printf("Search %s\n", (status == 1) ? "successful" : "unsuccessful");

}

— Page 8 of 9 —

(b) Complete the search function whose skeleton is provided below. The function returns1 if the
destination node is ever reached. Otherwise, it returns0. (15)

int search (int m, int n, int s, int t, int u, int v,

int H[][MAX], int V[][MAX], int visited[][MAX], stack S)

/* m × n is the size of the maze, (s, t) is the source node,

(u, v) is the destination node, H[][] and V[][] are door arrays,

visited[][] is the array to store which nodes are visited so far,

and S is the stack to be used in the search. */

{

pair room; /* pair is a structure of two integer values x and y */

int i, j;

/* So long as the stack is not empty */

while () {

room = ; /* Read the top element from the stack */

i = room.x; j = room.y ; /* Retrieve x and y coordinates of room */

/* Delete the top from the stack */

/* If (i, j) is the destination node, return success */

if () return ;

/* Otherwise, look at the four adjacent rooms one by one */

/* Left room: If left door is open and left room is not yet visited */

if () {

/* Push left room to the stack and mark left room as visited */

S = push(S, ,);

visited[][] = ;

}

/* Analogously process the adjacent room to the right */

/* Process the adjacent room at the bottom */

/* Process the adjacent room at the top */

}

return ;

}

— Page 9 of 9 —

