
CS13002 Programming and Data Structures, Spring 2005

Class test 2

Total points: 30 April 05, 2005 Total time: 1 hour

Roll no: Name: Section:

Write your answers in the question paper itself. You may use extra blank sheets for rough work,
but your answers must fit in the respective spaces provided. Answer all questions.

1. Suppose that we have got a two-dimensional array A = (aij) with m rows and n columns. Let the one-
dimensional row-major representation of A be stored in the array B = (bi) of size mn. Assume that
indexing in the arrays is zero-based.

(a) Given a pair of indices i, j for the matrix A, the element aij is stored as bk, where (5)

k = (in terms of i, j,m, n).

(b) Given an index k in the array B, the element bk corresponds to the element aij in A, where (5)

i = and j = (in terms of k,m, n).

2. Let A be a square (n × n) matrix. We want to compute the matrix B = A − A t and store this matrix in
A itself. Here At denotes the transpose of the matrix A. Write a function that accepts A and computes B
without using an additional array. You are not allowed to use any extra variables other than two indices i
and j. Assume that ROWDIM and COLDIM are the storage dimensions and n× n is the actual dimension of A.
Note that if A = (aij) and B = (bij), then bij = aij − aji and bji = aji − aij for all indices i, j. (10)

void matFunc (int A[ROWDIM][COLDIM] , int n)
{

int i,j;

}

— Page 1 of 2 —

3. You are given a linked list. Your task is to create two new linked lists, the first of which should contain the
1st, 3rd, 5th, . . . elements and the second the 2nd, 4th, 6th, . . . elements of the input list. The following
code segment provides a solution. Fill in the blanks to complete the segment. Evaluation of your answer
will depend on overall correctness.

The function createLists assumes that there is a dummy node at the beginning of each list (input as well
as output). The input list is headed by the pointer head. Odd-numbered elements are to be stored in the
list headed by the pointer oddhead, and the even-numbered elements are to be stored in the list headed by
the pointer evenhead. Assume that the input pointer head already points to a properly allocated list with a
dummy node at the beginning. Assume also that both oddhead and evenhead are already allocated memory
only for the dummy nodes. We number the elements of the input list from 1. (10)

/* First define a structure for a node in the list */
typedef struct nodeTag {

int data;
/* Declare the self-referencing pointer */

next;
} node;

void createLists (node *head , node *oddhead , node *evenhead)
{

node *src, *dest1, *dest2;
int flag = 1;

/* Initialize the source and destination pointers to point to the dummy nodes */
src = head; dest1 = oddhead; dest2 = evenhead;

/* As long as the source list is not fully traversed */

while () {
if (flag == 1) { /* Insert in the odd list */

/* Allocate memory for a new node */

/* Advance the destination pointer by one node */

/* Copy data from source */

} else { /* Insert in the even list */
/* Allocate memory for a new node */

/* Advance the destination pointer by one node */

/* Copy data from source */

}
src = src -> next; /* Look at the next node in the input */
if (flag == 1) flag = 2; else flag = 1; /* Switch the destination */

}
dest1 -> next = dest2 -> next = NULL; /* Terminate the destination lists */

}

— Page 2 of 2 —

