
Introduction

Title page

CS11001/CS11002 Programming and Data Structures
Autumn/Spring Semesters

Introduction

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Last modified: July 8, 2010

Introduction

Syllabus

Syllabus

Introduction to digital computers
Basic programming constructs

Variables and simple data types
Assignments
Input/output
Conditions and branching
Loops and iteration
Iterative searching and sorting algorithms

Advanced programming constructs
Functions and recursion
Recursive sorting algorithms
Arrays and strings
Structures
Pointers and dynamic memory allocation

Introduction

Syllabus

Syllabus

Introduction to digital computers

Basic programming constructs
Variables and simple data types
Assignments
Input/output
Conditions and branching
Loops and iteration
Iterative searching and sorting algorithms

Advanced programming constructs
Functions and recursion
Recursive sorting algorithms
Arrays and strings
Structures
Pointers and dynamic memory allocation

Introduction

Syllabus

Syllabus

Introduction to digital computers
Basic programming constructs

Variables and simple data types
Assignments
Input/output
Conditions and branching
Loops and iteration
Iterative searching and sorting algorithms

Advanced programming constructs
Functions and recursion
Recursive sorting algorithms
Arrays and strings
Structures
Pointers and dynamic memory allocation

Introduction

Syllabus

Syllabus

Introduction to digital computers
Basic programming constructs

Variables and simple data types
Assignments
Input/output
Conditions and branching
Loops and iteration
Iterative searching and sorting algorithms

Advanced programming constructs
Functions and recursion
Recursive sorting algorithms
Arrays and strings
Structures
Pointers and dynamic memory allocation

Introduction

Syllabus

Syllabus (contd.)

Performance analysis of programs
Data structures

Abstract data types
Ordered lists
Stacks and queues

Programming language: C

Introduction

Syllabus

Syllabus (contd.)

Performance analysis of programs

Data structures
Abstract data types
Ordered lists
Stacks and queues

Programming language: C

Introduction

Syllabus

Syllabus (contd.)

Performance analysis of programs
Data structures

Abstract data types
Ordered lists
Stacks and queues

Programming language: C

Introduction

Syllabus

Syllabus (contd.)

Performance analysis of programs
Data structures

Abstract data types
Ordered lists
Stacks and queues

Programming language: C

Introduction

References

On C

Textbooks and references

Use any standard textbook on ANSI C

Do not use books written on specific C compilers (Turbo C, gcc)

1 Brian W. Kernighan and Dennis M. Ritchie, The C
Programming Language, Prentice Hall of India.

2 E. Balaguruswamy, Programming in ANSI C, Tata
McGraw-Hill.

3 Byron Gottfried, Schaum’s Outline of Programming with C,
McGraw-Hill.

4 P. Dey and M. Ghosh, Programming in C, Oxford University
Press.

Introduction

References

On C

Textbooks and references

Use any standard textbook on ANSI C

Do not use books written on specific C compilers (Turbo C, gcc)

1 Brian W. Kernighan and Dennis M. Ritchie, The C
Programming Language, Prentice Hall of India.

2 E. Balaguruswamy, Programming in ANSI C, Tata
McGraw-Hill.

3 Byron Gottfried, Schaum’s Outline of Programming with C,
McGraw-Hill.

4 P. Dey and M. Ghosh, Programming in C, Oxford University
Press.

Introduction

References

On C

Textbooks and references

Use any standard textbook on ANSI C

Do not use books written on specific C compilers (Turbo C, gcc)

1 Brian W. Kernighan and Dennis M. Ritchie, The C
Programming Language, Prentice Hall of India.

2 E. Balaguruswamy, Programming in ANSI C, Tata
McGraw-Hill.

3 Byron Gottfried, Schaum’s Outline of Programming with C,
McGraw-Hill.

4 P. Dey and M. Ghosh, Programming in C, Oxford University
Press.

Introduction

References

On C

Textbooks and references

Use any standard textbook on ANSI C

Do not use books written on specific C compilers (Turbo C, gcc)

1 Brian W. Kernighan and Dennis M. Ritchie, The C
Programming Language, Prentice Hall of India.

2 E. Balaguruswamy, Programming in ANSI C, Tata
McGraw-Hill.

3 Byron Gottfried, Schaum’s Outline of Programming with C,
McGraw-Hill.

4 P. Dey and M. Ghosh, Programming in C, Oxford University
Press.

Introduction

References

On data structures

Textbooks and references

5 Seymour Lipschutz, Data Structures, Schaum’s Outlines
Series, Tata McGraw-Hill.

6 Ellis Horowitz, Satraj Sahni and Susan Anderson-Freed,
Fundamentals of Data Structures in C, W. H. Freeman and
Company.

7 R. G. Dromey, How to Solve it by Computer, Prentice-Hall
of India.

8 http://cse.iitkgp.ac.in/∼pds/notes/
9 http://cse.iitkgp.ac.in/∼pds/notes/swf/

Introduction

References

On data structures

Textbooks and references

5 Seymour Lipschutz, Data Structures, Schaum’s Outlines
Series, Tata McGraw-Hill.

6 Ellis Horowitz, Satraj Sahni and Susan Anderson-Freed,
Fundamentals of Data Structures in C, W. H. Freeman and
Company.

7 R. G. Dromey, How to Solve it by Computer, Prentice-Hall
of India.

8 http://cse.iitkgp.ac.in/∼pds/notes/
9 http://cse.iitkgp.ac.in/∼pds/notes/swf/

Introduction

References

On data structures

Textbooks and references

5 Seymour Lipschutz, Data Structures, Schaum’s Outlines
Series, Tata McGraw-Hill.

6 Ellis Horowitz, Satraj Sahni and Susan Anderson-Freed,
Fundamentals of Data Structures in C, W. H. Freeman and
Company.

7 R. G. Dromey, How to Solve it by Computer, Prentice-Hall
of India.

8 http://cse.iitkgp.ac.in/∼pds/notes/
9 http://cse.iitkgp.ac.in/∼pds/notes/swf/

Introduction

Marks distribution

Marks distribution

Two class tests: 10× 2 = 20
Mid-semester test: 30
End-semester test: 50

Final marks of a student: M = m × α, where

m = Total marks obtained in 100, and
α = Classes attended / Total number of classes.

Introduction

Marks distribution

Marks distribution

Two class tests: 10× 2 = 20

Mid-semester test: 30
End-semester test: 50

Final marks of a student: M = m × α, where

m = Total marks obtained in 100, and
α = Classes attended / Total number of classes.

Introduction

Marks distribution

Marks distribution

Two class tests: 10× 2 = 20
Mid-semester test: 30

End-semester test: 50

Final marks of a student: M = m × α, where

m = Total marks obtained in 100, and
α = Classes attended / Total number of classes.

Introduction

Marks distribution

Marks distribution

Two class tests: 10× 2 = 20
Mid-semester test: 30
End-semester test: 50

Final marks of a student: M = m × α, where

m = Total marks obtained in 100, and
α = Classes attended / Total number of classes.

Introduction

Marks distribution

Marks distribution

Two class tests: 10× 2 = 20
Mid-semester test: 30
End-semester test: 50

Final marks of a student: M = m × α, where

m = Total marks obtained in 100, and
α = Classes attended / Total number of classes.

Introduction

Marks distribution

Marks distribution

Two class tests: 10× 2 = 20
Mid-semester test: 30
End-semester test: 50

Final marks of a student: M = m × α, where

m = Total marks obtained in 100, and

α = Classes attended / Total number of classes.

Introduction

Marks distribution

Marks distribution

Two class tests: 10× 2 = 20
Mid-semester test: 30
End-semester test: 50

Final marks of a student: M = m × α, where

m = Total marks obtained in 100, and
α = Classes attended / Total number of classes.

Introduction

Test schedule (tentative)

Tentative schedule of theory tests

Class Test 1: First week of September/February

Mid-semester Test: As per institute schedule

Class Test 2: First week of November/April

End-Semester Test: As per institute schedule

Two or three lab tests are conducted by respective lab instructors

Introduction

Test schedule (tentative)

Tentative schedule of theory tests

Class Test 1: First week of September/February

Mid-semester Test: As per institute schedule

Class Test 2: First week of November/April

End-Semester Test: As per institute schedule

Two or three lab tests are conducted by respective lab instructors

Introduction

Test schedule (tentative)

Tentative schedule of theory tests

Class Test 1: First week of September/February

Mid-semester Test: As per institute schedule

Class Test 2: First week of November/April

End-Semester Test: As per institute schedule

Two or three lab tests are conducted by respective lab instructors

Introduction

Test schedule (tentative)

Tentative schedule of theory tests

Class Test 1: First week of September/February

Mid-semester Test: As per institute schedule

Class Test 2: First week of November/April

End-Semester Test: As per institute schedule

Two or three lab tests are conducted by respective lab instructors

Introduction

Test schedule (tentative)

Tentative schedule of theory tests

Class Test 1: First week of September/February

Mid-semester Test: As per institute schedule

Class Test 2: First week of November/April

End-Semester Test: As per institute schedule

Two or three lab tests are conducted by respective lab instructors

Introduction

Test schedule (tentative)

Tentative schedule of theory tests

Class Test 1: First week of September/February

Mid-semester Test: As per institute schedule

Class Test 2: First week of November/April

End-Semester Test: As per institute schedule

Two or three lab tests are conducted by respective lab instructors

Introduction

Coverage schedule

Tentative schedule for coverage

Before Class Test 1: Until “iterations” (all loop constructs)

Before MidSem Test: Until “introduction to pointers”

Before Class Test 2: Until “linked structures”

Before EndSem Test: Everything

Introduction

Coverage schedule

Tentative schedule for coverage

Before Class Test 1: Until “iterations” (all loop constructs)

Before MidSem Test: Until “introduction to pointers”

Before Class Test 2: Until “linked structures”

Before EndSem Test: Everything

Introduction

Coverage schedule

Tentative schedule for coverage

Before Class Test 1: Until “iterations” (all loop constructs)

Before MidSem Test: Until “introduction to pointers”

Before Class Test 2: Until “linked structures”

Before EndSem Test: Everything

Introduction

Coverage schedule

Tentative schedule for coverage

Before Class Test 1: Until “iterations” (all loop constructs)

Before MidSem Test: Until “introduction to pointers”

Before Class Test 2: Until “linked structures”

Before EndSem Test: Everything

Introduction

Coverage schedule

Tentative schedule for coverage

Before Class Test 1: Until “iterations” (all loop constructs)

Before MidSem Test: Until “introduction to pointers”

Before Class Test 2: Until “linked structures”

Before EndSem Test: Everything

Introduction

Structure of a C program

How to write C programs

Skeleton of a C program

Include header files

Declare global variables, constants and function prototypes

Function bodies

There must be a main function in any C program.

Introduction

Structure of a C program

How to write C programs

Skeleton of a C program
Include header files

Declare global variables, constants and function prototypes

Function bodies

There must be a main function in any C program.

Introduction

Structure of a C program

How to write C programs

Skeleton of a C program
Include header files

Declare global variables, constants and function prototypes

Function bodies

There must be a main function in any C program.

Introduction

Structure of a C program

How to write C programs

Skeleton of a C program
Include header files

Declare global variables, constants and function prototypes

Function bodies

There must be a main function in any C program.

Introduction

Structure of a C program

How to write C programs

Skeleton of a C program
Include header files

Declare global variables, constants and function prototypes

Function bodies

There must be a main function in any C program.

Introduction

Structure of a C program

An example

A complete example

#include <stdio.h>

#define PI_4_BY_3 4.1887902048

double radius = 10;

double sphereVol (double r)
{

return PI_4_BY_3 * r * r * r;
}

main ()
{

double area;
area = sphereVol(radius);
printf("Radius = %lf, volume = %lf.\n", radius, area);

}

Introduction

Some simple C programs

The traditional starter

The traditional starter

#include <stdio.h>

main ()
{

printf("Hello, world!\n");
}

This program takes no input, but outputs the string
“Hello, world!”

in a line.

Introduction

Some simple C programs

The traditional starter

The traditional starter

#include <stdio.h>

main ()
{

printf("Hello, world!\n");
}

This program takes no input, but outputs the string
“Hello, world!”

in a line.

Introduction

Some simple C programs

The short-circuit program

The short-circuit program

#include <stdio.h>

main ()
{

int n;

scanf("%d",&n);
printf("%d\n",n);

}

This program accepts an integer as input and outputs the same
integer.

Introduction

Some simple C programs

The short-circuit program

The short-circuit program

#include <stdio.h>

main ()
{

int n;

scanf("%d",&n);
printf("%d\n",n);

}

This program accepts an integer as input and outputs the same
integer.

Introduction

Some simple C programs

The square finder

The square finder

#include <stdio.h>

main ()
{

int n;

scanf("%d",&n);
printf("%d\n",n*n);

}

This program takes an integer n as input and outputs the
square n2 of n.

Introduction

Some simple C programs

The square finder

The square finder

#include <stdio.h>

main ()
{

int n;

scanf("%d",&n);
printf("%d\n",n*n);

}

This program takes an integer n as input and outputs the
square n2 of n.

Introduction

Some simple C programs

A faulty reciprocal finder

A faulty reciprocal finder

#include <stdio.h>

main ()
{

int n;

scanf("%d",&n);
printf("%d\n",1/n);

}

The division 1/n is of integers (quotient).

The format %d is for printing integers.

Introduction

Some simple C programs

A faulty reciprocal finder

A faulty reciprocal finder

#include <stdio.h>

main ()
{

int n;

scanf("%d",&n);
printf("%d\n",1/n);

}

The division 1/n is of integers (quotient).

The format %d is for printing integers.

Introduction

Some simple C programs

A faulty reciprocal finder

A faulty reciprocal finder

#include <stdio.h>

main ()
{

int n;

scanf("%d",&n);
printf("%d\n",1/n);

}

The division 1/n is of integers (quotient).

The format %d is for printing integers.

Introduction

Some simple C programs

The correct reciprocal finder

The correct reciprocal finder

#include <stdio.h>

main ()
{

int n;

scanf("%d",&n);
printf("%f\n",1.0/n);

}

Introduction

PDS laboratory

PDS Laboratory

Introduction

PDS laboratory

Log in

Getting started

Switch on your monitor.
Switch on your PC.
Allow the machine to boot. Wait until the log in prompt
comes.
Supply your log-in and password:

Login: s<nn>

Password: s<nn>

Here s is your section (a for 1, b for 2, and so on)
<nn> is the number of your PC.

This opens your window manager (usually KDE) with
icons, the bottom panel, and so on. You are now ready to
start your work.

Introduction

PDS laboratory

Log in

Getting started

Switch on your monitor.

Switch on your PC.
Allow the machine to boot. Wait until the log in prompt
comes.
Supply your log-in and password:

Login: s<nn>

Password: s<nn>

Here s is your section (a for 1, b for 2, and so on)
<nn> is the number of your PC.

This opens your window manager (usually KDE) with
icons, the bottom panel, and so on. You are now ready to
start your work.

Introduction

PDS laboratory

Log in

Getting started

Switch on your monitor.
Switch on your PC.

Allow the machine to boot. Wait until the log in prompt
comes.
Supply your log-in and password:

Login: s<nn>

Password: s<nn>

Here s is your section (a for 1, b for 2, and so on)
<nn> is the number of your PC.

This opens your window manager (usually KDE) with
icons, the bottom panel, and so on. You are now ready to
start your work.

Introduction

PDS laboratory

Log in

Getting started

Switch on your monitor.
Switch on your PC.
Allow the machine to boot. Wait until the log in prompt
comes.

Supply your log-in and password:
Login: s<nn>

Password: s<nn>

Here s is your section (a for 1, b for 2, and so on)
<nn> is the number of your PC.

This opens your window manager (usually KDE) with
icons, the bottom panel, and so on. You are now ready to
start your work.

Introduction

PDS laboratory

Log in

Getting started

Switch on your monitor.
Switch on your PC.
Allow the machine to boot. Wait until the log in prompt
comes.
Supply your log-in and password:

Login: s<nn>

Password: s<nn>

Here s is your section (a for 1, b for 2, and so on)
<nn> is the number of your PC.

This opens your window manager (usually KDE) with
icons, the bottom panel, and so on. You are now ready to
start your work.

Introduction

PDS laboratory

Edit, compile and run

Getting started

Click on the terminal icon to open a shell (command
prompt).
Edit your program (new or already existing) by an editor.

emacs myprog.c &

Write your program in the editor and save it.
Go to the shell and compile your program:

cc myprog.c

If compilation is successful, an executable called a.out

will be created.
Run your program:

./a.out

Continue your edit-compile-debug-run-debug cycle.

Introduction

PDS laboratory

Edit, compile and run

Getting started

Click on the terminal icon to open a shell (command
prompt).

Edit your program (new or already existing) by an editor.
emacs myprog.c &

Write your program in the editor and save it.
Go to the shell and compile your program:

cc myprog.c

If compilation is successful, an executable called a.out

will be created.
Run your program:

./a.out

Continue your edit-compile-debug-run-debug cycle.

Introduction

PDS laboratory

Edit, compile and run

Getting started

Click on the terminal icon to open a shell (command
prompt).
Edit your program (new or already existing) by an editor.

emacs myprog.c &

Write your program in the editor and save it.
Go to the shell and compile your program:

cc myprog.c

If compilation is successful, an executable called a.out

will be created.
Run your program:

./a.out

Continue your edit-compile-debug-run-debug cycle.

Introduction

PDS laboratory

Edit, compile and run

Getting started

Click on the terminal icon to open a shell (command
prompt).
Edit your program (new or already existing) by an editor.

emacs myprog.c &

Write your program in the editor and save it.

Go to the shell and compile your program:
cc myprog.c

If compilation is successful, an executable called a.out

will be created.
Run your program:

./a.out

Continue your edit-compile-debug-run-debug cycle.

Introduction

PDS laboratory

Edit, compile and run

Getting started

Click on the terminal icon to open a shell (command
prompt).
Edit your program (new or already existing) by an editor.

emacs myprog.c &

Write your program in the editor and save it.
Go to the shell and compile your program:

cc myprog.c

If compilation is successful, an executable called a.out

will be created.

Run your program:
./a.out

Continue your edit-compile-debug-run-debug cycle.

Introduction

PDS laboratory

Edit, compile and run

Getting started

Click on the terminal icon to open a shell (command
prompt).
Edit your program (new or already existing) by an editor.

emacs myprog.c &

Write your program in the editor and save it.
Go to the shell and compile your program:

cc myprog.c

If compilation is successful, an executable called a.out

will be created.
Run your program:

./a.out

Continue your edit-compile-debug-run-debug cycle.

Introduction

PDS laboratory

Edit, compile and run

Getting started

Click on the terminal icon to open a shell (command
prompt).
Edit your program (new or already existing) by an editor.

emacs myprog.c &

Write your program in the editor and save it.
Go to the shell and compile your program:

cc myprog.c

If compilation is successful, an executable called a.out

will be created.
Run your program:

./a.out

Continue your edit-compile-debug-run-debug cycle.

Introduction

PDS laboratory

Shut down

Getting started

Close all the windows you opened.
Log out from your window manager. This leaves you again
in the log-in console.
Select the item to shut down the machine. Wait until the
machine completely shuts down.
Switch off your monitor.

Introduction

PDS laboratory

Shut down

Getting started

Close all the windows you opened.

Log out from your window manager. This leaves you again
in the log-in console.
Select the item to shut down the machine. Wait until the
machine completely shuts down.
Switch off your monitor.

Introduction

PDS laboratory

Shut down

Getting started

Close all the windows you opened.
Log out from your window manager. This leaves you again
in the log-in console.

Select the item to shut down the machine. Wait until the
machine completely shuts down.
Switch off your monitor.

Introduction

PDS laboratory

Shut down

Getting started

Close all the windows you opened.
Log out from your window manager. This leaves you again
in the log-in console.
Select the item to shut down the machine. Wait until the
machine completely shuts down.

Switch off your monitor.

Introduction

PDS laboratory

Shut down

Getting started

Close all the windows you opened.
Log out from your window manager. This leaves you again
in the log-in console.
Select the item to shut down the machine. Wait until the
machine completely shuts down.
Switch off your monitor.

Introduction

PDS laboratory

Using emacs

Using emacs

emacs is a powerful text editor.
Run emacs as: emacs myprog.c &

Type in your program in the text area
Navigate with mouse and cursor keys
Save your file before closing emacs.

“File -> Save (Current buffer)”
Click the save button (disk)
“File -> Save buffer as” (to another file)

Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using emacs

Using emacs

emacs is a powerful text editor.

Run emacs as: emacs myprog.c &

Type in your program in the text area
Navigate with mouse and cursor keys
Save your file before closing emacs.

“File -> Save (Current buffer)”
Click the save button (disk)
“File -> Save buffer as” (to another file)

Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using emacs

Using emacs

emacs is a powerful text editor.
Run emacs as: emacs myprog.c &

Type in your program in the text area
Navigate with mouse and cursor keys
Save your file before closing emacs.

“File -> Save (Current buffer)”
Click the save button (disk)
“File -> Save buffer as” (to another file)

Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using emacs

Using emacs

emacs is a powerful text editor.
Run emacs as: emacs myprog.c &

Type in your program in the text area

Navigate with mouse and cursor keys
Save your file before closing emacs.

“File -> Save (Current buffer)”
Click the save button (disk)
“File -> Save buffer as” (to another file)

Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using emacs

Using emacs

emacs is a powerful text editor.
Run emacs as: emacs myprog.c &

Type in your program in the text area
Navigate with mouse and cursor keys

Save your file before closing emacs.
“File -> Save (Current buffer)”
Click the save button (disk)
“File -> Save buffer as” (to another file)

Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using emacs

Using emacs

emacs is a powerful text editor.
Run emacs as: emacs myprog.c &

Type in your program in the text area
Navigate with mouse and cursor keys
Save your file before closing emacs.

“File -> Save (Current buffer)”
Click the save button (disk)
“File -> Save buffer as” (to another file)

Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using emacs

Using emacs

emacs is a powerful text editor.
Run emacs as: emacs myprog.c &

Type in your program in the text area
Navigate with mouse and cursor keys
Save your file before closing emacs.

“File -> Save (Current buffer)”

Click the save button (disk)
“File -> Save buffer as” (to another file)

Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using emacs

Using emacs

emacs is a powerful text editor.
Run emacs as: emacs myprog.c &

Type in your program in the text area
Navigate with mouse and cursor keys
Save your file before closing emacs.

“File -> Save (Current buffer)”
Click the save button (disk)

“File -> Save buffer as” (to another file)

Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using emacs

Using emacs

emacs is a powerful text editor.
Run emacs as: emacs myprog.c &

Type in your program in the text area
Navigate with mouse and cursor keys
Save your file before closing emacs.

“File -> Save (Current buffer)”
Click the save button (disk)
“File -> Save buffer as” (to another file)

Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using emacs

Using emacs

emacs is a powerful text editor.
Run emacs as: emacs myprog.c &

Type in your program in the text area
Navigate with mouse and cursor keys
Save your file before closing emacs.

“File -> Save (Current buffer)”
Click the save button (disk)
“File -> Save buffer as” (to another file)

Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using gvim

Using gvim

gvim is another powerful text editor.
Run gvim as: gvim myprog.c

Hit Insert before you start typing matter
You will exit the insert mode if you hit Insert when you are
already in the insert mode
Hit Esc to exit insert mode
When in doubt, it is safe to hit Esc several times to come
back to view mode
Navigate with mouse and cursor keys
You need to save the file by clicking on the appropriate
icon (disk).
Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using gvim

Using gvim

gvim is another powerful text editor.

Run gvim as: gvim myprog.c

Hit Insert before you start typing matter
You will exit the insert mode if you hit Insert when you are
already in the insert mode
Hit Esc to exit insert mode
When in doubt, it is safe to hit Esc several times to come
back to view mode
Navigate with mouse and cursor keys
You need to save the file by clicking on the appropriate
icon (disk).
Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using gvim

Using gvim

gvim is another powerful text editor.
Run gvim as: gvim myprog.c

Hit Insert before you start typing matter
You will exit the insert mode if you hit Insert when you are
already in the insert mode
Hit Esc to exit insert mode
When in doubt, it is safe to hit Esc several times to come
back to view mode
Navigate with mouse and cursor keys
You need to save the file by clicking on the appropriate
icon (disk).
Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using gvim

Using gvim

gvim is another powerful text editor.
Run gvim as: gvim myprog.c

Hit Insert before you start typing matter

You will exit the insert mode if you hit Insert when you are
already in the insert mode
Hit Esc to exit insert mode
When in doubt, it is safe to hit Esc several times to come
back to view mode
Navigate with mouse and cursor keys
You need to save the file by clicking on the appropriate
icon (disk).
Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using gvim

Using gvim

gvim is another powerful text editor.
Run gvim as: gvim myprog.c

Hit Insert before you start typing matter
You will exit the insert mode if you hit Insert when you are
already in the insert mode

Hit Esc to exit insert mode
When in doubt, it is safe to hit Esc several times to come
back to view mode
Navigate with mouse and cursor keys
You need to save the file by clicking on the appropriate
icon (disk).
Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using gvim

Using gvim

gvim is another powerful text editor.
Run gvim as: gvim myprog.c

Hit Insert before you start typing matter
You will exit the insert mode if you hit Insert when you are
already in the insert mode
Hit Esc to exit insert mode

When in doubt, it is safe to hit Esc several times to come
back to view mode
Navigate with mouse and cursor keys
You need to save the file by clicking on the appropriate
icon (disk).
Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using gvim

Using gvim

gvim is another powerful text editor.
Run gvim as: gvim myprog.c

Hit Insert before you start typing matter
You will exit the insert mode if you hit Insert when you are
already in the insert mode
Hit Esc to exit insert mode
When in doubt, it is safe to hit Esc several times to come
back to view mode

Navigate with mouse and cursor keys
You need to save the file by clicking on the appropriate
icon (disk).
Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using gvim

Using gvim

gvim is another powerful text editor.
Run gvim as: gvim myprog.c

Hit Insert before you start typing matter
You will exit the insert mode if you hit Insert when you are
already in the insert mode
Hit Esc to exit insert mode
When in doubt, it is safe to hit Esc several times to come
back to view mode
Navigate with mouse and cursor keys

You need to save the file by clicking on the appropriate
icon (disk).
Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using gvim

Using gvim

gvim is another powerful text editor.
Run gvim as: gvim myprog.c

Hit Insert before you start typing matter
You will exit the insert mode if you hit Insert when you are
already in the insert mode
Hit Esc to exit insert mode
When in doubt, it is safe to hit Esc several times to come
back to view mode
Navigate with mouse and cursor keys
You need to save the file by clicking on the appropriate
icon (disk).

Save your file once in every 15 minutes.

Introduction

PDS laboratory

Using gvim

Using gvim

gvim is another powerful text editor.
Run gvim as: gvim myprog.c

Hit Insert before you start typing matter
You will exit the insert mode if you hit Insert when you are
already in the insert mode
Hit Esc to exit insert mode
When in doubt, it is safe to hit Esc several times to come
back to view mode
Navigate with mouse and cursor keys
You need to save the file by clicking on the appropriate
icon (disk).
Save your file once in every 15 minutes.

Introduction

PDS laboratory

A practice program

A practice program

#include <stdio.h>

char name[100];
int i;

main ()
{

printf("Hello, may I know your full name? ");
scanf("%s",name);
printf("Welcome %s.\n",name);
printf("Your name printed backward is : ");
for (i=strlen(name)-1; i>=0; --i)

printf("%c",name[i]);
printf("\n");

}

Introduction

PDS laboratory

A corrected version

A practice program (corrected)

#include <stdio.h>

char name[100];
int i;

main ()
{

printf("Hello, may I know your full name? ");
fgets(name,100,stdin);
name[strlen(name)-1] = ’\0’;
printf("Welcome %s.\n",name);
printf("Your name printed backward is : ");
for (i=strlen(name)-1; i>=0; --i)

printf("%c",name[i]);
printf("\n");

}

Introduction

PDS laboratory

Using a web browser

Using a web browser

Open a web browser: mozilla or konqueror.
Set a proxy:

10.3.100.211:8080
10.3.100.212:8080
144.16.192.218:8080
144.16.192.245:8080
144.16.192.247:8080

Bypass proxy for local machines.
Type in a URL (web address) in the location field

http://cse.iitkgp.ac.in/∼pds/
http://cse.iitkgp.ac.in/∼pds/semester/2010a/
http://cse.iitkgp.ac.in/∼pds/notes/

Introduction

PDS laboratory

Using a web browser

Using a web browser

Open a web browser: mozilla or konqueror.

Set a proxy:
10.3.100.211:8080
10.3.100.212:8080
144.16.192.218:8080
144.16.192.245:8080
144.16.192.247:8080

Bypass proxy for local machines.
Type in a URL (web address) in the location field

http://cse.iitkgp.ac.in/∼pds/
http://cse.iitkgp.ac.in/∼pds/semester/2010a/
http://cse.iitkgp.ac.in/∼pds/notes/

Introduction

PDS laboratory

Using a web browser

Using a web browser

Open a web browser: mozilla or konqueror.
Set a proxy:

10.3.100.211:8080
10.3.100.212:8080
144.16.192.218:8080
144.16.192.245:8080
144.16.192.247:8080

Bypass proxy for local machines.
Type in a URL (web address) in the location field

http://cse.iitkgp.ac.in/∼pds/
http://cse.iitkgp.ac.in/∼pds/semester/2010a/
http://cse.iitkgp.ac.in/∼pds/notes/

Introduction

PDS laboratory

Using a web browser

Using a web browser

Open a web browser: mozilla or konqueror.
Set a proxy:

10.3.100.211:8080
10.3.100.212:8080
144.16.192.218:8080
144.16.192.245:8080
144.16.192.247:8080

Bypass proxy for local machines.
Type in a URL (web address) in the location field

http://cse.iitkgp.ac.in/∼pds/
http://cse.iitkgp.ac.in/∼pds/semester/2010a/
http://cse.iitkgp.ac.in/∼pds/notes/

Introduction

PDS laboratory

Using a web browser

Using a web browser

Open a web browser: mozilla or konqueror.
Set a proxy:

10.3.100.211:8080
10.3.100.212:8080
144.16.192.218:8080
144.16.192.245:8080
144.16.192.247:8080

Bypass proxy for local machines.

Type in a URL (web address) in the location field
http://cse.iitkgp.ac.in/∼pds/
http://cse.iitkgp.ac.in/∼pds/semester/2010a/
http://cse.iitkgp.ac.in/∼pds/notes/

Introduction

PDS laboratory

Using a web browser

Using a web browser

Open a web browser: mozilla or konqueror.
Set a proxy:

10.3.100.211:8080
10.3.100.212:8080
144.16.192.218:8080
144.16.192.245:8080
144.16.192.247:8080

Bypass proxy for local machines.
Type in a URL (web address) in the location field

http://cse.iitkgp.ac.in/∼pds/
http://cse.iitkgp.ac.in/∼pds/semester/2010a/
http://cse.iitkgp.ac.in/∼pds/notes/

Introduction

PDS laboratory

Using a web browser

Using a web browser

Open a web browser: mozilla or konqueror.
Set a proxy:

10.3.100.211:8080
10.3.100.212:8080
144.16.192.218:8080
144.16.192.245:8080
144.16.192.247:8080

Bypass proxy for local machines.
Type in a URL (web address) in the location field

http://cse.iitkgp.ac.in/∼pds/

http://cse.iitkgp.ac.in/∼pds/semester/2010a/
http://cse.iitkgp.ac.in/∼pds/notes/

Introduction

PDS laboratory

Using a web browser

Using a web browser

Open a web browser: mozilla or konqueror.
Set a proxy:

10.3.100.211:8080
10.3.100.212:8080
144.16.192.218:8080
144.16.192.245:8080
144.16.192.247:8080

Bypass proxy for local machines.
Type in a URL (web address) in the location field

http://cse.iitkgp.ac.in/∼pds/
http://cse.iitkgp.ac.in/∼pds/semester/2010a/

http://cse.iitkgp.ac.in/∼pds/notes/

Introduction

PDS laboratory

Using a web browser

Using a web browser

Open a web browser: mozilla or konqueror.
Set a proxy:

10.3.100.211:8080
10.3.100.212:8080
144.16.192.218:8080
144.16.192.245:8080
144.16.192.247:8080

Bypass proxy for local machines.
Type in a URL (web address) in the location field

http://cse.iitkgp.ac.in/∼pds/
http://cse.iitkgp.ac.in/∼pds/semester/2010a/
http://cse.iitkgp.ac.in/∼pds/notes/

Introduction

PDS laboratory

Assignments and submissions

Assignments and submissions

Click the link on the day’s assignment.
If your assignment is a PDF file, save it to your machine.
Use xpdf in order to view PDF files.

xpdf newassgn.pdf

Consult your lab instructor to know how to submit your
programs.

Introduction

PDS laboratory

Assignments and submissions

Assignments and submissions

Click the link on the day’s assignment.

If your assignment is a PDF file, save it to your machine.
Use xpdf in order to view PDF files.

xpdf newassgn.pdf

Consult your lab instructor to know how to submit your
programs.

Introduction

PDS laboratory

Assignments and submissions

Assignments and submissions

Click the link on the day’s assignment.
If your assignment is a PDF file, save it to your machine.

Use xpdf in order to view PDF files.
xpdf newassgn.pdf

Consult your lab instructor to know how to submit your
programs.

Introduction

PDS laboratory

Assignments and submissions

Assignments and submissions

Click the link on the day’s assignment.
If your assignment is a PDF file, save it to your machine.
Use xpdf in order to view PDF files.

xpdf newassgn.pdf

Consult your lab instructor to know how to submit your
programs.

Introduction

PDS laboratory

Assignments and submissions

Assignments and submissions

Click the link on the day’s assignment.
If your assignment is a PDF file, save it to your machine.
Use xpdf in order to view PDF files.

xpdf newassgn.pdf

Consult your lab instructor to know how to submit your
programs.

Introduction

PDS laboratory

Some useful Unix commands

Some useful Unix commands

Create a directory: mkdir progs

Go to a new directory: cd progs/

Go to the parent directory: cd ../

List all files in a directory: ls -lF

View a file: cat filename

Copy a file to another: cp file1.c file2.c

Copy a file to a directory: cp file1.c progs/file3.c

Move a file to another: mv file1.c file2.c

Move a file to a directory: mv file1.c progs/file3.c

Delete a file: rm filename

Introduction

PDS laboratory

Some useful Unix commands

Some useful Unix commands

Create a directory: mkdir progs

Go to a new directory: cd progs/

Go to the parent directory: cd ../

List all files in a directory: ls -lF

View a file: cat filename

Copy a file to another: cp file1.c file2.c

Copy a file to a directory: cp file1.c progs/file3.c

Move a file to another: mv file1.c file2.c

Move a file to a directory: mv file1.c progs/file3.c

Delete a file: rm filename

Introduction

PDS laboratory

Some useful Unix commands

Some useful Unix commands

Create a directory: mkdir progs

Go to a new directory: cd progs/

Go to the parent directory: cd ../

List all files in a directory: ls -lF

View a file: cat filename

Copy a file to another: cp file1.c file2.c

Copy a file to a directory: cp file1.c progs/file3.c

Move a file to another: mv file1.c file2.c

Move a file to a directory: mv file1.c progs/file3.c

Delete a file: rm filename

Introduction

PDS laboratory

Some useful Unix commands

Some useful Unix commands

Create a directory: mkdir progs

Go to a new directory: cd progs/

Go to the parent directory: cd ../

List all files in a directory: ls -lF

View a file: cat filename

Copy a file to another: cp file1.c file2.c

Copy a file to a directory: cp file1.c progs/file3.c

Move a file to another: mv file1.c file2.c

Move a file to a directory: mv file1.c progs/file3.c

Delete a file: rm filename

Introduction

PDS laboratory

Some useful Unix commands

Some useful Unix commands

Create a directory: mkdir progs

Go to a new directory: cd progs/

Go to the parent directory: cd ../

List all files in a directory: ls -lF

View a file: cat filename

Copy a file to another: cp file1.c file2.c

Copy a file to a directory: cp file1.c progs/file3.c

Move a file to another: mv file1.c file2.c

Move a file to a directory: mv file1.c progs/file3.c

Delete a file: rm filename

Introduction

PDS laboratory

Some useful Unix commands

Some useful Unix commands

Create a directory: mkdir progs

Go to a new directory: cd progs/

Go to the parent directory: cd ../

List all files in a directory: ls -lF

View a file: cat filename

Copy a file to another: cp file1.c file2.c

Copy a file to a directory: cp file1.c progs/file3.c

Move a file to another: mv file1.c file2.c

Move a file to a directory: mv file1.c progs/file3.c

Delete a file: rm filename

Introduction

PDS laboratory

Some useful Unix commands

Some useful Unix commands

Create a directory: mkdir progs

Go to a new directory: cd progs/

Go to the parent directory: cd ../

List all files in a directory: ls -lF

View a file: cat filename

Copy a file to another: cp file1.c file2.c

Copy a file to a directory: cp file1.c progs/file3.c

Move a file to another: mv file1.c file2.c

Move a file to a directory: mv file1.c progs/file3.c

Delete a file: rm filename

Introduction

PDS laboratory

Some useful Unix commands

Some useful Unix commands

Create a directory: mkdir progs

Go to a new directory: cd progs/

Go to the parent directory: cd ../

List all files in a directory: ls -lF

View a file: cat filename

Copy a file to another: cp file1.c file2.c

Copy a file to a directory: cp file1.c progs/file3.c

Move a file to another: mv file1.c file2.c

Move a file to a directory: mv file1.c progs/file3.c

Delete a file: rm filename

Introduction

PDS laboratory

Some useful Unix commands

Some useful Unix commands

Create a directory: mkdir progs

Go to a new directory: cd progs/

Go to the parent directory: cd ../

List all files in a directory: ls -lF

View a file: cat filename

Copy a file to another: cp file1.c file2.c

Copy a file to a directory: cp file1.c progs/file3.c

Move a file to another: mv file1.c file2.c

Move a file to a directory: mv file1.c progs/file3.c

Delete a file: rm filename

Introduction

PDS laboratory

Some useful Unix commands

Some useful Unix commands

Create a directory: mkdir progs

Go to a new directory: cd progs/

Go to the parent directory: cd ../

List all files in a directory: ls -lF

View a file: cat filename

Copy a file to another: cp file1.c file2.c

Copy a file to a directory: cp file1.c progs/file3.c

Move a file to another: mv file1.c file2.c

Move a file to a directory: mv file1.c progs/file3.c

Delete a file: rm filename

Introduction

PDS laboratory

Some useful Unix commands

Some useful Unix commands

Create a directory: mkdir progs

Go to a new directory: cd progs/

Go to the parent directory: cd ../

List all files in a directory: ls -lF

View a file: cat filename

Copy a file to another: cp file1.c file2.c

Copy a file to a directory: cp file1.c progs/file3.c

Move a file to another: mv file1.c file2.c

Move a file to a directory: mv file1.c progs/file3.c

Delete a file: rm filename

	Title page
	Syllabus
	References
	On C
	On data structures

	Marks distribution
	Test schedule (tentative)
	Coverage schedule
	Structure of a C program
	An example

	Some simple C programs
	The traditional starter
	The short-circuit program
	The square finder
	A faulty reciprocal finder
	The correct reciprocal finder

	PDS laboratory
	Log in
	Edit, compile and run
	Shut down
	Using emacs
	Using gvim
	A practice program
	A corrected version
	Using a web browser
	Assignments and submissions
	Some useful Unix commands

