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Structure of a C program

An example

A complete example

#include <stdio.h>

#define PI_4_BY_3 4.1887902048

double radius = 10;

double sphereVol ( double r )
{

return PI_4_BY_3 * r * r * r;
}

main ()
{

double area;
area = sphereVol(radius);
printf("Radius = %lf, volume = %lf.\n", radius, area);

}
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main ()
{

printf("Hello, world!\n");
}

This program takes no input, but outputs the string
“Hello, world!”

in a line.
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Some simple C programs

The correct reciprocal finder

The correct reciprocal finder

#include <stdio.h>

main ()
{

int n;

scanf("%d",&n);
printf("%f\n",1.0/n);

}
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<nn> is the number of your PC.

This opens your window manager (usually KDE) with
icons, the bottom panel, and so on. You are now ready to
start your work.
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prompt).
Edit your program (new or already existing) by an editor.

emacs myprog.c &

Write your program in the editor and save it.
Go to the shell and compile your program:

cc myprog.c

If compilation is successful, an executable called a.out

will be created.
Run your program:

./a.out

Continue your edit-compile-debug-run-debug cycle.
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Using emacs

emacs is a powerful text editor.
Run emacs as: emacs myprog.c &

Type in your program in the text area
Navigate with mouse and cursor keys
Save your file before closing emacs.

“File -> Save (Current buffer)”
Click the save button (disk)
“File -> Save buffer as” (to another file)

Save your file once in every 15 minutes.
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gvim is another powerful text editor.
Run gvim as: gvim myprog.c

Hit Insert before you start typing matter
You will exit the insert mode if you hit Insert when you are
already in the insert mode
Hit Esc to exit insert mode
When in doubt, it is safe to hit Esc several times to come
back to view mode
Navigate with mouse and cursor keys
You need to save the file by clicking on the appropriate
icon (disk).
Save your file once in every 15 minutes.
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A practice program

#include <stdio.h>

char name[100];
int i;

main ()
{

printf("Hello, may I know your full name? ");
scanf("%s",name);
printf("Welcome %s.\n",name);
printf("Your name printed backward is : ");
for (i=strlen(name)-1; i>=0; --i)

printf("%c",name[i]);
printf("\n");

}
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A practice program (corrected)

#include <stdio.h>

char name[100];
int i;

main ()
{

printf("Hello, may I know your full name? ");
fgets(name,100,stdin);
name[strlen(name)-1] = ’\0’;
printf("Welcome %s.\n",name);
printf("Your name printed backward is : ");
for (i=strlen(name)-1; i>=0; --i)

printf("%c",name[i]);
printf("\n");

}
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Using a web browser

Open a web browser: mozilla or konqueror.
Set a proxy:

10.3.100.211:8080
10.3.100.212:8080
144.16.192.218:8080
144.16.192.245:8080
144.16.192.247:8080

Bypass proxy for local machines.
Type in a URL (web address) in the location field

http://cse.iitkgp.ac.in/∼pds/
http://cse.iitkgp.ac.in/∼pds/semester/2010a/
http://cse.iitkgp.ac.in/∼pds/notes/
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Assignments and submissions

Click the link on the day’s assignment.
If your assignment is a PDF file, save it to your machine.
Use xpdf in order to view PDF files.

xpdf newassgn.pdf

Consult your lab instructor to know how to submit your
programs.
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Some useful Unix commands

Create a directory: mkdir progs

Go to a new directory: cd progs/

Go to the parent directory: cd ../

List all files in a directory: ls -lF

View a file: cat filename

Copy a file to another: cp file1.c file2.c

Copy a file to a directory: cp file1.c progs/file3.c

Move a file to another: mv file1.c file2.c

Move a file to a directory: mv file1.c progs/file3.c

Delete a file: rm filename
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