

Isothetic Cover

Isothetic Covers for Digital Objects:

Algorithms and Applications

Partha Bhowmick

CSE, IIT Kharagpur

RESEARCH PROMOTION WORKSHOP
INTRODUCTION TO GRAPH AND GEOMETRIC ALGORITHMS
NOVEMBER 1-3, 2011 (PDPM IIITDM JABALPUR)

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

image

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Application

Hull Shape

object = set of 1s

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Shape

object = set of 1s

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatori

Applications

g = 4: Isothetic Cover

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatori

Applications

g = 6: Isothetic Cover

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatoria

Applications

Hull Shape

g = 8: Isothetic Cover

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatori

Applications

Hull Shape

g = 10: Isothetic Cover

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Hull

Digital plane, \mathbb{Z}^2 = set of all points having integer coordinates.

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Hull

Hull Shape 3D

Digital point (pixel) = a point in \mathbb{Z}^2 .

Isothetic Cover

P. Bnowmick

Introduction

Naive

Combinatoria

Applications

Hull

Digital object = a set S of digital points.

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Hull

4-neighborhood of *p*:

$$N_4(p) = \{(x', y') : (x', y') \in \mathbb{Z}^2 \land |x - x'| + |y - y'| = 1\}$$

Isothetic Cover

P. Bnowmich

Introduction

Naive

Combinatoria

Applications

Hull

8-neighborhood of *p*:

$$N_8(p) = \{(x', y') : (x', y') \in \mathbb{Z}^2 \land \max(|x - x'|, |y - y'|) = 1\}$$

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Shape

Two points p and q are k-connected in S if there exists a sequence $\langle p := p_0, p_1, \ldots, p_n := q \rangle \subseteq S$ such that $p_i \in N_k(p_{i-1})$ for $1 \leq i \leq n$.

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Hull Shane

For any point $p \in S$, the maximum-cardinality set of points that are k-connected to p forms a k-connected component of S.

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Hull

Grid \mathbb{G} with grid size g = 1 (red dashed lines)

Isothetic Cover

P. Bnowmick

Introduction

Naive

Combinatoria

Applications

Shape

Grid \mathbb{G} with grid size g=1 (red dashed lines)

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Application:

Hull

Hull Shape 3D

Isothetic cover for g=1

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Hull

Isothetic cover for g=2

Isothetic Cover

Introduction

Isothetic cover for g = 3

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

, ipplication.

Shape 3D

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatoria

Applications

Application

Shape

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Applications

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Application

Application

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Application

Application

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Application

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Application

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Applications

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Application

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Application

Isothetic Cover

P Rhowmick

Introduction

Naive

Cambinatari

Application

Applications

Hull

Shape 3D

Isothetic Cover

P. Bhowmick

Introduction

Naive

0----

Amaliantina

Application:

Hull

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatoria

Application

Application

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Hull Shape

Disadvantages

- Scans the entire image
- Cell joining required to output the vertex sequence

Alternative solution: Combinatorial algorithm.

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Disadvantages

- Scans the entire image
- Cell joining required to output the vertex sequence

Alternative solution: Combinatorial algorithm.

Isothetic Cover

Combinatorial

Fully black cells can be disregarded

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatorial

Applications

Hull Shape

Avoid also some partly black cells. Just consider the border cells.

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatorial

Applications

Hull Shape

Avoid also some partly black cells. Just consider the border cells.

P. Bhowmick

Introduction

Naive

Combinatorial

Applications

Hull Shape

Avoid the concept of cell joining

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatorial

Applications

Hull Shape

The isothetic polygon contains the object

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatorial

Applications

Hull

Vertex angles are 90° and 270°

P. Bhowmic

Introduction

Naive

Combinatorial

Applications

Hull

Vertex angles are 90° and 270°

Backtracking—A serious issue

Isothetic Cover

P. Bhowmic

Introductio

Naive

Combinatorial

Application

Hull

Backtracking—A serious issue

Isothetic Cover

P. Bhowmic

Introductio

Naive

Combinatorial

Application:

Application

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatorial

Application:

Hull

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatorial

Application:

Hull

Isothetic Cover

P. Bhowmicl

Introduction

Naive

Combinatorial

Application:

Hull

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatorial

Applications

Application

Isothetic Cover

P. Bhowmic

Introductio

Naive

Combinatorial

Applications

Hull

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatorial

Application:

Hull

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatorial

Applications

Hull

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatorial

Applications

Application

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatorial

Application:

Holl

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatorial

Application

Application

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatorial

Application:

Application

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatorial

Application:

Holl

Isothetic Cover

P. Bhowmicl

Introduction

Naive

Combinatorial

Application

Hull

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatorial

Application

Hull

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatorial

Application:

Holl

Isothetic Cover

P. Bhowmicl

Introduction

Naive

Combinatorial

Application:

Application

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatorial

Application:

Hull

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatorial

Application

Application

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatorial

Application:

Application

Isothetic Cover

P. Bhowmicl

Introduction

Naive

Combinatorial

Applications

Application

Isothetic Cover

P. Bhowmicl

Introduction

Naive

Combinatorial

Applications

Hull

Isothetic Cover

P. Bhowmicl

Introduction

Naive

Combinatorial

Applications

Hull

Isothetic Cover

P. Bhowmicl

Introduction

Naive

Combinatorial

Applications

Hull

Isothetic Cover

P. Bhowmicl

Introduction

Naive

Combinatorial

Application

Hull Shape

Isothetic Cover

P. Bhowmicl

Introduction

Naive

Combinatorial

Applications

Hull

Isothetic Cover

P. Bhowmicl

Introduction

Naive

Combinatorial

Applications

Hull

Combinatorial

	$\begin{array}{c c} 0 & 1 \\ \hline 0 & 0 \end{array}$	1 1 0 0	0 1 1 0	1 0 1 1	
	$\begin{array}{c c} 0 & 0 \\ \hline 0 & 1 \end{array}$	$\begin{array}{c c} 0 & 1 \\ \hline 0 & 1 \end{array}$	1 0 0 1	1 1 1 0	
	$\begin{array}{c c} 0 & 0 \\ \hline 1 & 0 \end{array}$	0 0 1 1	0 1 1 0	1 1 0 1	
	$\begin{array}{c c} 1 & 0 \\ 0 & 0 \end{array}$		$\begin{array}{c c} 1 & 0 \\ 0 & 1 \end{array}$	$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$	1 1 1 1
ass 0	Class 1	Class 2A	Class 2B	Class 3	Class 4

Isothetic Cover

P. Bhowmicl

Introduction

inaive

Combinatorial

Applications
Hull
Shape

The line of proof:

- The interior of a cell lies outside $P_{\mathbb{G}}(S)$ if and only if the cell has no object occupancy.
- All vertices are detected and correctly classified.
- If p is a point lying on $P_{\mathbb{G}}(S)$, then $0 < d_{\mathbb{T}}(p, S) \leqslant g$
- The construction of $P_{\mathbb{G}}(S)$ always concludes at the start vertex.

- Best case: $O(|P|/g) \leftarrow$ found in practice
- Worst case: O(|P|)

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatorial

Applications
Hull
Shape

The line of proof:

- The interior of a cell lies outside $P_{\mathbb{G}}(S)$ if and only if the cell has no object occupancy.
- All vertices are detected and correctly classified.
- If p is a point lying on $P_{\mathbb{G}}(S)$, then $0 < d_{\mathbb{T}}(p, S) \leqslant g$
- The construction of $P_{\mathbb{G}}(S)$ always concludes at the start vertex.

- Best case: $O(|P|/g) \leftarrow$ found in practice
- Worst case: O(|P|)

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatorial

Applications

The line of proof:

- The interior of a cell lies outside $P_{\mathbb{G}}(S)$ if and only if the cell has no object occupancy.
- All vertices are detected and correctly classified.
- If p is a point lying on $P_{\mathbb{G}}(S)$, then $0 < d_{\mathbb{T}}(p, S) \leqslant g$.
- The construction of $P_{\mathbb{G}}(S)$ always concludes at the start vertex.

- Best case: $O(|P|/g) \leftarrow$ found in practice
- Worst case: O(|P|)

 $^{^{1}|}P| = \text{perimeter of } P_{\mathbb{G}}(S)$

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatorial

Application:

The line of proof:

- The interior of a cell lies outside $P_{\mathbb{G}}(S)$ if and only if the cell has no object occupancy.
- All vertices are detected and correctly classified.
- If p is a point lying on $P_{\mathbb{G}}(S)$, then $0 < d_{\mathbb{T}}(p, S) \leqslant g$.
- The construction of $P_{\mathbb{G}}(S)$ always concludes at the start vertex.

- Best case: $O(|P|/g) \leftarrow$ found in practice
- Worst case: O(|P|)

Isothetic Cover

P. Bhowmick

Introductio

Naive

Combinatorial

Application

The line of proof:

- The interior of a cell lies outside $P_{\mathbb{G}}(S)$ if and only if the cell has no object occupancy.
- All vertices are detected and correctly classified.
- If p is a point lying on $P_{\mathbb{G}}(S)$, then $0 < d_{\mathbb{T}}(p, S) \leqslant g$.
- The construction of $P_{\mathbb{G}}(S)$ always concludes at the start vertex.

- Best case: $O(|P|/g) \leftarrow$ found in practice
- Worst case: O(|P|)

 $^{^{1}|}P| = \text{perimeter of } P_{\mathbb{G}}(S)$

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatorial

Applications

 $H_{\mathbb{G}}(S)$ = smallest-area orthogonal polygon such that

- S lies inside $H_{\mathbb{G}}(S)$ $\Rightarrow P_{\mathbb{G}}(S)$ lies inside $H_{\mathbb{G}}(S)$
- intersection of H_G(S) with any horizontal or vertical line is either empty or exactly one line segment.

rules over vertex subsequences.

Isothetic Cover

P. Bhowmick

Introduction

Vaive

Combinatorial

Applications Hull $H_{\mathbb{G}}(S)$ = smallest-area orthogonal polygon such that

- S lies inside $H_{\mathbb{G}}(S)$ $\Rightarrow P_{\mathbb{G}}(S)$ lies inside $H_{\mathbb{G}}(S)$
- intersection of $H_{\mathbb{G}}(S)$ with any horizontal or vertical line is either empty or exactly one line segment.

Algorithm—Uses combinatorial rules over vertex subsequences.

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

 $H_{\mathbb{G}}(S)$ = smallest-area orthogonal polygon such that

- S lies inside $H_{\mathbb{G}}(S)$
 - \Rightarrow $P_{\mathbb{G}}(S)$ lies inside $H_{\mathbb{G}}(S)$
- intersection of $H_{\mathbb{G}}(S)$ with any horizontal or vertical line is either empty or exactly one line segment.

Algorithm—Uses combinatoria rules over vertex subsequences.

Isothetic Cover

P. Bhowmick

Introduction

vaive

Combinatoria

Applications

 $H_{\mathbb{G}}(S)$ = smallest-area orthogonal polygon such that

- S lies inside $H_{\mathbb{G}}(S)$ $\Rightarrow P_{\mathbb{G}}(S)$ lies inside $H_{\mathbb{G}}(S)$
- intersection of H_G(S) with any horizontal or vertical line is either empty or exactly one line segment.

Algorithm—Uses combinatorial rules over vertex subsequences.

Isothetic Cover

P. Bhowmick

Introduction

naive

Combinatoria

Applications

 $H_{\mathbb{G}}(S)$ = smallest-area orthogonal polygon such that

- S lies inside $H_{\mathbb{G}}(S)$ $\Rightarrow P_{\mathbb{G}}(S)$ lies inside $H_{\mathbb{G}}(S)$
- intersection of H_G(S) with any horizontal or vertical line is either empty or exactly one line segment.

Algorithm—Uses combinatorial rules over vertex subsequences.

Isothetic Cover

P. Bhowmick

Introduction

naive

Combinatorial

Applications

 $H_{\mathbb{G}}(S)$ = smallest-area orthogonal polygon such that

- S lies inside $H_{\mathbb{G}}(S)$ $\Rightarrow P_{\mathbb{G}}(S)$ lies inside $H_{\mathbb{G}}(S)$
- intersection of H_G(S) with any horizontal or vertical line is either empty or exactly one line segment.

Algorithm—Uses combinatorial rules over vertex subsequences.

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications Hull $H_{\mathbb{G}}(S)$ = smallest-area orthogonal polygon such that

- S lies inside $H_{\mathbb{G}}(S)$
 - $\Rightarrow P_{\mathbb{G}}(S)$ lies inside $H_{\mathbb{G}}(S)$
- intersection of H_G(S) with any horizontal or vertical line is either empty or exactly one line segment.

Algorithm—Uses combinatorial rules over vertex subsequences.

Isothetic Cover

P. Bhowmick

Introduction

vaive

Combinatoria

Applications
Hull

 $H_{\mathbb{G}}(S)$ = smallest-area orthogonal polygon such that

- S lies inside $H_{\mathbb{G}}(S)$
 - \Rightarrow $P_{\mathbb{G}}(S)$ lies inside $H_{\mathbb{G}}(S)$
- intersection of H_G(S) with any horizontal or vertical line is either empty or exactly one line segment.

Algorithm—Uses combinatorial rules over vertex subsequences.

$$g = 14$$

$$g = 8$$

$$g = 4$$

Convex partitioning

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatoria

Applications

Applications

Convex partitioning

Isothetic Cover

P. Bhowmick

Introduction

Naiva

Cambinataria

Annlications

Application

Shortest isothetic path

Isothetic Cover

P. Bhowmick

Introduction

NI-1

Combinatoria

Applications

Applications

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

, .pp...oa...

Hull

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Hull Shape

$$g = 2$$

Isothetic Cover

P. Bhowmic

Introduction

Naive

Cambinataria

Applications

Applications

$$g = 3$$

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Applications

3D

$$g = 4$$

Isothetic Cover

P. Bhowmick

Introduction

Naive

Cambinataria

Annlications

Applications

Hull

$$g = 6$$

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatoria

Applications

Applications

Shape

$$g = 8$$

Isothetic Cover

P. Bhowmick

Introduction

Naive

Cambinataria

Applications

, .pp...oa...o...c

Hull

$$g = 10$$

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

, .pp..oa..o...

Shape

$$g = 12$$

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

/ ipplioationic

3D

$$g = 16$$

Isothetic Cover

P. Bhowmick

Introduction

. . .

Combinatoria

Applications

Applications

$$g = 2$$

Isothetic Cover

P. Bhowmicl

Introduction

Naive

Combinatoria

Applications

Applications

Shape

$$g = 4$$

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatoria

Applications

/ ipplications

Snape 3D

$$g = 6$$

Isothetic Cover

P. Bhowmicl

Introduction

Naive

Combinatoria

Application:

, ipplications

Shape

$$g = 8$$

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatoria

Applications

Applications

$$g = 12$$

Isothetic Cover

P. Bnowmic

Introduction

Naive

Combinatoria

Applications

/ tppiloation

$$g = 16$$

Isothetic Cover

P. Bhowmick

Introduction

Naiva

Cambinataria

Applications

Hull

high resolution

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

/ ipplioations

along x-axis

along y-axis

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

Hull

Shape

along z-axis

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

/ ipplications

Hull

Shape 3D

low resolution

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatoria

Applications

Hull

along y-axis

Isothetic Cover

P. Bhowmic

Introduction

Naive

Combinatoria

Applications

Hull

along z-axis

Further reading I

Isothetic Cover

A. Biswas, P. Bhowmick, M. Sarkar, and B. B. Bhattacharya, A Linear-time Combinatorial Algorithm to Find the Orthogonal Hull of an Object on the Digital Plane, Information Sciences, 216: 176-195, 2012.

A. Biswas, P. Bhowmick, and B. B. Bhattacharya. Construction of Isothetic Covers of a Digital Object: A Combinatorial Approach, Journal of Visual Communication and Image Representation, **21**(4): 295–310, 2010.

M. Dutt, A. Biswas, and P. Bhowmick, ACCORD: With Approximate Covering of Convex Orthogonal Decomposition, DGCI 2011: 16th IAPR International Conference on Discrete Geometry for Computer Imagery, LNCS 6607: 489-500, 2011.

M. Dutt, A. Biswas, P. Bhowmick, and B. B. Bhattacharya, On Finding Shortest Isothetic Path inside a Digital Object. 15th International Workshop on Combinatorial Image Analysis: IWCIA'12, 2012 [To appear in LNCS, Springer]

Further reading II

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

N. Karmakar, A. Biswas, P. Bhowmick, and B.B. Bhattacharya, A Combinatorial Algorithm to Construct 3D Isothetic Covers, *International Journal of Computer Mathematics*, 2012 (in press).

N. Karmakar, A. Biswas, P. Bhowmick, and B.B. Bhattacharya, Construction of 3D Orthogonal Cover of a Digital Object, 14th International Workshop on Combinatorial Image Analysis: IWCIA'11, LNCS 6636:70–83, 2011.

R. Klette and A. Rosenfeld, *Digital Geometry: Geometric Methods for Digital Picture Analysis*, Morgan Kaufmann, San Francisco, 2004.

Isothetic Cover

P. Bhowmick

Introduction

Naive

Combinatoria

Applications

, .pp...oa...

Hull

Shape

Thank You